Facile Synthesis of SnO2 Aerogel/Reduced Graphene Oxide Nanocomposites via in Situ Annealing for the Photocatalytic Degradation of Methyl Orange
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Characterization
2.3. Photocatalyst Properties
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kim, S.P.; Choi, M.Y.; Choi, H.C. Characterization and photocatalytic performance of SnO2—CNT nanocomposites. Appl. Surf. Sci. 2015, 357, 302–308. [Google Scholar] [CrossRef]
- Zhu, X.; An, S.; Liu, Y.; Hu, J.; Liu, H.; Tian, C.; Dai, S.; Yang, X.; Wang, H.; Abney, C.W.; et al. Efficient removal of organic dye pollutants using covalent organic frameworks. Aiche J. 2017, 63, 3470–3478. [Google Scholar] [CrossRef]
- Sreekanth, T.V.M.; Shim, J.-J.; Lee, Y.R. Degradation of organic pollutants by bio-inspired rectangular and hexagonal titanium dioxide nanostructures. J. Photochem. Photobiol. B Biol. 2017, 169, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Tadé, M.O.; Shao, Z. Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 2015, 44, 5371–5408. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.K.; Soin, N.; Roy, S.S. Role of graphene/metal oxide composites as photocatalysts, adsorbents and disinfectants in water treatment: A review. RSC Adv. 2014, 4, 3823–3851. [Google Scholar] [CrossRef]
- Qin, C.; Li, Z.; Chen, G.; Zhao, Y.; Lin, T. Fabrication and visible-light photocatalytic behavior of perovskite praseodymium ferrite porous nanotubes. J. Power Sour. 2015, 285, 178–184. [Google Scholar] [CrossRef]
- Yang, Z.; Chen, S.; Fu, K.; Liu, X.; Li, F.; Du, Y.; Zhou, P.; Cheng, Z. Highly efficient adsorbent for organic dyes based on a temperature- and pH-responsive multiblock polymer. J. Appl. Polym. Sci. 2018, 135, 46626. [Google Scholar] [CrossRef]
- Zucker, I.; Lester, Y.; Avisar, D.; Hübner, U.; Jekel, M.; Weinberger, Y.; Mamane, H. Influence of Wastewater Particles on Ozone Degradation of Trace Organic Contaminants. Environ. Sci. Technol. 2015, 49, 301–308. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-S.; Lee, S.-Y.; Rhee, K.Y.; Park, S.-J. Effect of hydrothermal temperature on photocatalytic properties of TiO2 nanotubes. Curr. Appl. Phys. 2014, 14, 415–420. [Google Scholar] [CrossRef]
- Pant, A.; Tanwar, R.; Kaur, B.; Mandal, U.K. A magnetically recyclable photocatalyst with commendable dye degradation activity at ambient conditions. Sci. Rep. 2018, 8, 14700. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; You, M.; Zhang, K.; Zhang, Y.; Han, J.; Fu, R.; Liu, S.; Zhu, T. Bi3.64Mo0.36O6.55/Bi2MoO6 heterostructure composite with enhanced photocatalytic activity for organic pollutants degradation. J. Alloy. Compd. 2018, 766, 1037–1045. [Google Scholar] [CrossRef]
- Zhang, Y.; Park, M.; Kim, H.-Y.; El-Newehy, M.; Rhee, K.Y.; Park, S.-J. Effect of TiO2 on photocatalytic activity of polyvinylpyrrolidone fabricated via electrospinning. Compos. Part B Eng. 2015, 80, 355–360. [Google Scholar] [CrossRef]
- Wang, H.; Qiu, X.; Liu, W.; Yang, D. Facile preparation of well-combined lignin-based carbon/ZnO hybrid composite with excellent photocatalytic activity. Appl. Surf. Sci. 2017, 426, 206–216. [Google Scholar] [CrossRef]
- Anjum, M.; Miandad, R.; Waqas, M.; Gehany, F.; Barakat, M.A. Remediation of wastewater using various nano-materials. Arab. J. Chem. 2016. [Google Scholar] [CrossRef]
- Karri, R.R.; Tanzifi, M.; Tavakkoli Yaraki, M.; Sahu, J.N. Optimization and modeling of methyl orange adsorption onto polyaniline nano-adsorbent through response surface methodology and differential evolution embedded neural network. J. Environ. Manag. 2018, 223, 517–529. [Google Scholar] [CrossRef] [PubMed]
- Pastrana-Martínez, L.M.; Morales-Torres, S.; Likodimos, V.; Figueiredo, J.L.; Faria, J.L.; Falaras, P.; Silva, A.M.T. Advanced nanostructured photocatalysts based on reduced graphene oxide–TiO2 composites for degradation of diphenhydramine pharmaceutical and methyl orange dye. Appl. Catal. B Environ. 2012, 123−124, 241–256. [Google Scholar] [CrossRef]
- Khalid, N.R.; Ahmed, E.; Hong, Z.; Zhang, Y.; Ullah, M.; Ahmed, M. Graphene modified Nd/TiO2 photocatalyst for methyl orange degradation under visible light irradiation. Ceram. Int. 2013, 39, 3569–3575. [Google Scholar] [CrossRef]
- Filice, S.; D’Angelo, D.; Libertino, S.; Nicotera, I.; Kosma, V.; Privitera, V.; Scalese, S. Graphene oxide and titania hybrid Nafion membranes for efficient removal of methyl orange dye from water. Carbon 2015, 82, 489–499. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Ahmaruzzaman, M.; Sinha, T. A novel approach for the synthesis of SnO2 nanoparticles and its application as a catalyst in the reduction and photodegradation of organic compounds. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2015, 136, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Kumar, M.; Mehta, A.; Mishra, A.; Singh, J.; Rawat, M.; Basu, S. Biosynthesis of tin oxide nanoparticles using Psidium Guajava leave extract for photocatalytic dye degradation under sunlight. Mater. Lett. 2018, 215, 121–124. [Google Scholar] [CrossRef]
- Zhu, L.-P.; Bing, N.-C.; Yang, D.-D.; Yang, Y.; Liao, G.-H.; Wang, L.-J. Synthesis and photocatalytic properties of core–shell structured α-Fe2O3@SnO2 shuttle-like nanocomposites. Cryst. Eng. Comm. 2011, 13, 4486–4490. [Google Scholar] [CrossRef]
- Oh, T. Effect of double junctions in nano structure oxide materials and gas sensitivity. Trans. Electr. Electron. Mater. 2018, 19, 382–386. [Google Scholar] [CrossRef]
- Wang, N.; Xu, J.; Guan, L. Synthesis and enhanced photocatalytic activity of tin oxide nanoparticles coated on multi-walled carbon nanotube. Mater. Res. Bull. 2011, 46, 1372–1376. [Google Scholar] [CrossRef]
- Wang, C.; Wang, X.; Xu, B.-Q.; Zhao, J.; Mai, B.; Peng, P.; Sheng, G.; Fu, J. Enhanced photocatalytic performance of nanosized coupled ZnO/SnO2 photocatalysts for methyl orange degradation. J. Photochem. Photobiol. A Chem. 2014, 168, 47–52. [Google Scholar] [CrossRef]
- Li, Y.; Li, X.; Li, J.; Yin, J. Photocatalytic degradation of methyl orange by TiO2-coated activated carbon and kinetic study. Water Res. 2006, 40, 1119–1126. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Zhang, Q.; Wu, A.; Jiang, M.; Liang, Z.; Jiang, B.; Fu, H. Cost-effective large-scale synthesis of ZnO photocatalyst with excellent performance for dye photodegradation. Chem. Commun. 2012, 48, 2858–2860. [Google Scholar] [CrossRef] [PubMed]
- Jiwan, S.; Prasanna, L.L.; Yoon-Young, C.; Jae-Kyu, Y.; Reddy, K.J. Degradation and mechanism of methyl orange by nanometallic particles under a fenton-like process. Environ. Eng. Sci. 2017, 34, 350–356. [Google Scholar] [CrossRef]
- Singh, J.; Chang, Y.-Y.; Koduru, J.R.; Yang, J.-K.; Singh, D.P. Rapid Fenton-like degradation of methyl orange by ultrasonically dispersed nano-metallic particles. Environ. Eng. Res. 2017, 22, 245–254. [Google Scholar] [CrossRef]
- Tammina, S.K.; Mandal, B.K.; Kadiyala, N.K. Photocatalytic degradation of methylene blue dye by nonconventional synthesized SnO2 nanoparticles. Environ. Nanotechnol. Monit. Manag. 2018, 10, 339–350. [Google Scholar] [CrossRef]
- Dai, S.; Yao, Z. Synthesis of flower-like SnO2 single crystals and its enhanced photocatalytic activity. Appl. Surf. Sci. 2012, 258, 5703–5706. [Google Scholar] [CrossRef]
- Pal, M.; Bera, S.; Jana, S. Sol–gel based simonkolleite nanopetals with SnO2 nanoparticles in graphite-like amorphous carbon as an efficient and reusable photocatalyst. RSC Adv. 2015, 5, 75062–75074. [Google Scholar] [CrossRef]
- Hejazi Juybari, S.A.; Milani Moghaddam, H. Facile fabrication of porous hierarchical SnO2 via a self-degraded template and their remarkable photocatalytic performance. Appl. Surf. Sci. 2018, 457, 179–186. [Google Scholar] [CrossRef]
- Dhanalakshmi, M.; Saravanakumar, K.; Lakshmi Prabavathi, S.; Abinaya, M.; Muthuraj, V. Fabrication of novel surface plasmon resonance induced visible light driven iridium decorated SnO2 nanorods for degradation of organic contaminants. J. Alloys. Compd. 2018. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, L.; Zhang, X.; Shao, C.; Hu, J.; Shao, G. SnO2-core carbon-shell composite nanotubes with enhanced photocurrent and photocatalytic performance. Appl. Catal. B Environ. 2015, 166−167, 193–201. [Google Scholar] [CrossRef]
- Liang, Y.; Wu, W.; Wang, P.; Liou, S.-C.; Liu, D.; Ehrman, S.H. Scalable fabrication of SnO2/eo-GO nanocomposites for the photoreduction of CO2 to CH4. Nano Res. 2018, 11, 4049–4061. [Google Scholar] [CrossRef]
- Begum, S.; Ahmaruzzaman, M. Biogenic synthesis of SnO2/activated carbon nanocomposite and its application as photocatalyst in the degradation of naproxen. Appl. Surf. Sci. 2018, 449, 780–789. [Google Scholar] [CrossRef]
- Ding, S.-S.; Huang, W.-Q.; Zhou, B.-X.; Peng, P.; Hu, W.-Y.; Long, M.-Q.; Huang, G.-F. The mechanism of enhanced photocatalytic activity of SnO2 through fullerene modification. Curr. Appl. Phys. 2017, 17, 1547–1556. [Google Scholar] [CrossRef]
- Hung-Low, F.; Ramirez, D.A.; Peterson, G.R.; Hikal, W.M.; Hope-Weeks, L.J. Development of a carbon-supported Sn–SnO2 photocatalyst by a new hybridized sol-gel/dextran approach. RSC Adv. 2016, 6, 21019–21025. [Google Scholar] [CrossRef]
- Chen, Y.; Li, H.; Ma, Q.; Zhang, Z.; Wang, J.; Wang, G.; Che, Q.; Yang, P. A novel electrospun approach for highly-dispersed carambola-like SnO2/C composite microparticles with superior photocatalytic performance. Mater. Lett. 2017, 202, 17–20. [Google Scholar] [CrossRef]
- Mahadik, D.B.; Lee, Y.K.; Park, C.-S.; Chung, H.-Y.; Hong, M.-H.; Jung, H.-N.-R.; Han, W.; Park, H.-H. Effect of water ethanol solvents mixture on textural and gas sensing properties of tin oxide prepared using epoxide-assisted sol-gel process and dried at ambient pressure. Solid State Sci. 2015, 50, 1–8. [Google Scholar] [CrossRef]
- Jung, H.-N.-R.; Parale, V.G.; Kim, T.; Cho, H.H.; Park, H.-H. Zirconia-based alumina compound aerogels with enhanced mesopore structure. Ceram. Int. 2018, 44, 10579–10584. [Google Scholar] [CrossRef]
- Parale, V.G.; Jung, H.-N.-R.; Han, W.; Lee, K.-Y.; Mahadik, D.B.; Cho, H.H.; Park, H.-H. Improvement in the high temperature thermal insulation performance of Y2O3 opacified silica aerogels. J. Alloy. Compd. 2017, 727, 871–878. [Google Scholar] [CrossRef]
- Huang, R.; Hou, L.; Zhou, B.; Zhao, Q.; Ren, S. Formation and characterization of tin oxide aerogel derived from sol-gel process based on Tetra(n-butoxy)tin(IV). J. Non-Cryst. Solids 2005, 351, 23–28. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, D.; Jiao, X. Zirconia aerogels with high surface area derived from sols prepared by electrolyzing zirconium oxychloride solution: Comparison of aerogels prepared by freeze-drying and supercritical CO2(I) Extraction. J. Phys. Chem. C 2007, 777, 18738–18743. [Google Scholar] [CrossRef]
- Kido, Y.; Nakanishi, K.; Miyasaka, A.; Kanamori, K. Synthesis of monolithic hierarchically porous iron-based xerogels from Iron(III) salts via an epoxide-mediated sol-gel process. Chem. Mater. 2012, 24, 2071–2077. [Google Scholar] [CrossRef]
- Baumann, T.F.; Kucheyev, S.O.; Gash, A.E.; Satcher, J.H. Facile synthesis of a crystalline, high-surface-area SnO2 aerogel. Adv. Mater. 2005, 17, 1546–1548. [Google Scholar] [CrossRef]
- Rakibuddin, M.; Ananthakrishnan, R. A novel Ag deposited nanocoordination polymer derived porous SnO2/NiO heteronanostructure for the enhanced photocatalytic reduction of Cr(VI) under visible light. New J. Chem. 2016, 40, 3385–3394. [Google Scholar] [CrossRef]
- Wang, Z.-l.; Xu, D.; Huang, Y.; Wu, Z.; Wang, L.-m.; Zhang, X.-B. Facile, mild and fast thermal-decomposition reduction of graphene oxide in air and its application in high-performance lithium batteries. Chem. Commun. 2012, 48, 976–978. [Google Scholar] [CrossRef] [PubMed]
- Da Cunha, C.R.; Toffolo, G.H.; dos Santos, C.E.I.; Pezzi, R.P. Structural, optical and chemical characterizations of sol-gel grown tin oxide aerogels. J. Non-Cryst. Solids 2013, 380, 48–52. [Google Scholar] [CrossRef]
- Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. P25-Graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Wan, F.; Lü, H.-Y.; Wu, X.-L.; Yan, X.; Guo, J.-Z.; Zhang, J.-P.; Wang, G.; Han, D.-X.; Niu, L. Do the bridging oxygen bonds between active Sn nanodots and graphene improve the Li-storage properties? Energy Storage Mater. 2016, 5, 214–222. [Google Scholar] [CrossRef]
- Chen, F.-J.; Cao, Y.-L.; Jia, D.-Z. A room-temperature solid-state route for the synthesis of graphene oxide–metal sulfide composites with excellent photocatalytic activity. Cryst. Eng. Comm. 2013, 15, 4747–4754. [Google Scholar] [CrossRef]
- Wang, C.; Shao, C.; Zhang, X.; Liu, Y. SnO2 nanostructures-TiO2 nanofibers heterostructures: Controlled fabrication and high photocatalytic properties. Inorg. Chem. 2009, 48, 7261–7268. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Zhan, S.; Xia, Y.; Ma, S.; Zhou, Q.; Li, Y. The fundamental role and mechanism of reduced graphene oxide in rGO/Pt-TiO2 nanocomposite for high-performance photocatalytic water splitting. Appl. Catal. B Environ. 2017, 207, 335–346. [Google Scholar] [CrossRef]
- Cao, Y.; Li, Y.; Jia, D.; Xie, J. Solid-state synthesis of SnO2—Graphene nanocomposite for photocatalysis and formaldehyde gas sensing. RSC Adv. 2014, 4, 46179–46186. [Google Scholar] [CrossRef]
- Zhu, Y.; Wang, Y.; Yao, W.; Zong, R.; Zhu, Y. New insights into the relationship between photocatalytic activity and TiO2–GR composites. RSC Adv. 2015, 5, 29201–29208. [Google Scholar] [CrossRef]
- Yadav, H.M.; Kim, J.-S. Solvothermal synthesis of anatase TiO2—Graphene oxide nanocomposites and their photocatalytic performance. J. Alloy. Compd. 2016, 688, 123–129. [Google Scholar] [CrossRef]
- Jo, W.-K.; Won, Y.; Hwang, I.; Tayade, R.J. Enhanced photocatalytic degradation of aqueous nitrobenzene using graphitic carbon–TiO2 composites. Ind. Eng. Chem. Res. 2014, 53, 3455–3461. [Google Scholar] [CrossRef]
Graphene Content (wt.%) | Surface Area (m2 g−1) | Pore Volume (cm3 g−1) | Pore diameter (nm) | Average Crystallite Size (nm) |
---|---|---|---|---|
0 | 117 | 0.49 | 17 | 3.48 |
0.05 | 131 | 0.62 | 19 | 3.42 |
0.1 | 147 | 0.69 | 18 | 3.46 |
0.3 | 157 | 0.57 | 15 | 3.35 |
Graphene Content (wt.%) | Surface Area (m2 g−1) Before Annealing | Surface Area (m2 g−1) Facile, in-situ Annealing | Surface Area (m2 g−1) Post Annealing |
---|---|---|---|
0 | 199 | 117 | 84 |
0.05 | 277 | 131 | 75 |
0.1 | 314 | 147 | 73 |
0.3 | 359 | 157 | 92 |
Photocatalyst | Light Source/Pollutant | Experimental Condition | Photodegradation Efficiency | Ref. |
---|---|---|---|---|
SnO2 nanoparticles coated on MWCNT | 4 × 6 W fluorescent halogen lamps (254 nm), methyl orange | C: 1000 mg L−1; P: 20 mg L−1 | 45 min/94% | [17] |
Simonkolleite nanopetals with SnO2 | 3 × 8 W UV lamps (254 nm), rhodamine 6G | C: 500 mg L−1; P: 10 mg L−1 | 32 min /100% | [25] |
SnO2–graphene nanocomposite (solid state) | 300 W mercury lamp, methyl orang and rhodamine B | C: 500 mg L−1; P: 20 mg L−1 | Methyl orange 40 min/95% Rhodamine B 60 min/97% | [49] |
SnO2–CNT nanocomposites | 9 W eight UV–vis lamps (365 nm), methylene blue and methyl orange | C: 200 mg L−1; P: 20 ppm (methylene blue), 10 ppm (methyl orange) | Methylene blue 180 min/93% Methyl orange 180 min/79% | [1] |
SnO2 aerogel/rGO nanocomposite | 40 W UV lamp (370 nm), methyl orange | C: 1 × 10−5 M; P: 100 mg L−1 | Methyl orange 60 min/84% | This work |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, T.; Parale, V.G.; Jung, H.-N.-R.; Kim, Y.; Driss, Z.; Driss, D.; Bouabidi, A.; Euchy, S.; Park, H.-H. Facile Synthesis of SnO2 Aerogel/Reduced Graphene Oxide Nanocomposites via in Situ Annealing for the Photocatalytic Degradation of Methyl Orange. Nanomaterials 2019, 9, 358. https://doi.org/10.3390/nano9030358
Kim T, Parale VG, Jung H-N-R, Kim Y, Driss Z, Driss D, Bouabidi A, Euchy S, Park H-H. Facile Synthesis of SnO2 Aerogel/Reduced Graphene Oxide Nanocomposites via in Situ Annealing for the Photocatalytic Degradation of Methyl Orange. Nanomaterials. 2019; 9(3):358. https://doi.org/10.3390/nano9030358
Chicago/Turabian StyleKim, Taehee, Vinayak G. Parale, Hae-Noo-Ree Jung, Younghun Kim, Zied Driss, Dorra Driss, Abdallah Bouabidi, Souhir Euchy, and Hyung-Ho Park. 2019. "Facile Synthesis of SnO2 Aerogel/Reduced Graphene Oxide Nanocomposites via in Situ Annealing for the Photocatalytic Degradation of Methyl Orange" Nanomaterials 9, no. 3: 358. https://doi.org/10.3390/nano9030358
APA StyleKim, T., Parale, V. G., Jung, H.-N.-R., Kim, Y., Driss, Z., Driss, D., Bouabidi, A., Euchy, S., & Park, H.-H. (2019). Facile Synthesis of SnO2 Aerogel/Reduced Graphene Oxide Nanocomposites via in Situ Annealing for the Photocatalytic Degradation of Methyl Orange. Nanomaterials, 9(3), 358. https://doi.org/10.3390/nano9030358