Synthesis of Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TNT) Composites as an Electrical Double Layer Capacitor
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of Reduced Graphene Oxide (rGO)
2.3. Synthesis of Titanium Dioxide Nanotubes (TNT)
2.4. Synthesis of Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TNT) Composites
2.5. Characterization and Electrode Performance Assessment
2.6. Electrode Characterization and Performance
3. Results and Discussion
3.1. XRD, SEM, and CV of Precursors
3.2. Electrochemical Performance of GO/TNT Composites
3.3. Electrochemical Performance of rGO/TiO2 Composites
3.4. Electrochemical Performance of rGO/TNT Composites
3.5. SEM, TEM, and XRD of rGO/TNT
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Oren, Y. Capacitive Deionization (CDI) for Desalination and Water Treatment—Past, Present and Future (a Review). Desalination 2008, 228, 10–29. [Google Scholar] [CrossRef]
- Leclerc, M.; Gauvin, R. Functional Materials for Energy, Sustainable Development and Biomedical Sciences; De Gruyter: Göttingen, Germany, 2014. [Google Scholar]
- Bommier, C.; Ji, X. Nanoporous Carbon for Capacitive Energy Storage. In Mesoporous Materials for Advanced Energy Storage and Conversion Technologies; Taylor & Francis: Boca Raton, FL, USA, 2017. [Google Scholar]
- Srimuk, P.; Zeiger, M.; Jäckel, N.; Tolosa, A.; Krüner, B.; Fleischmann, S.; Grobelsek, I.; Aslan, M.; Shvartsev, B.; Suss, M.E.; et al. Enhanced Performance Stability of Carbon/titania Hybrid Electrodes during Capacitive Deionization of Oxygen Saturated Saline Water. Electrochim. Acta 2017, 224, 314–328. [Google Scholar] [CrossRef]
- Xie, J.; Xue, Y.; He, M.; Luo, W.; Wang, H.; Wang, R.; Yan, Y.M. Organic-Inorganic Hybrid Binder Enhances Capacitive Deionization Performance of Activated-Carbon Electrode. Carbon 2017, 123, 574–582. [Google Scholar] [CrossRef]
- Li, Y.; Liu, Y.; Wang, M.; Xu, X.; Lu, T.; Sun, C.Q.; Pan, L. Phosphorus-Doped 3D Carbon Nanofiber Aerogels Derived from Bacterial-Cellulose for Highly-Efficient Capacitive Deionization. Carbon 2018, 130, 377–383. [Google Scholar] [CrossRef]
- Feng, C.; Chen, Y.; Yu, C.; Hou, C. Highly Porous Activated Carbon with Multi-Channeled Structure Derived from Loofa Sponge as a Capacitive Electrode Material for the Deionization of Brackish Water. Chemosphere 2018, 208, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Chai, L.; Liu, M.; Shu, Y.; Li, Q.; Wang, Y.; Wang, Q.; Qiu, D. Capacitive Deionization of Chloride Ions by Activated Carbon Using a Three-Dimensional Electrode Reactor. Sep. Purif. Technol. 2018, 191, 424–432. [Google Scholar] [CrossRef]
- Zornitta, R.L.; Ruotolo, L.A.M. Simultaneous Analysis of Electrosorption Capacity and Kinetics for CDI Desalination Using Different Electrode Configurations. Chem. Eng. J. 2018, 332, 33–41. [Google Scholar] [CrossRef]
- Yasin, A.S.; Omar, H.; Mohamed, I.M.A.; Mousa, H.M.; Barakat, N.A.M. Enhanced Desalination Performance of Capacitive Deionization Using Zirconium Oxide Nanoparticles-Doped Graphene Oxide as a Novel and Effective Electrode. Sep. Purif. Technol. 2016, 171, 34–43. [Google Scholar] [CrossRef]
- Xiang, C.; Li, M.; Zhi, M.; Manivannan, A.; Wu, N. Reduced Graphene Oxide/titanium Dioxide Composites for Supercapacitor Electrodes: Shape and Coupling Effects. J. Mater. Chem. 2012, 22, 19161–19167. [Google Scholar] [CrossRef]
- Gobal, F.; Faraji, M. Electrochemical Synthesis of Reduced Graphene oxide/TiO2 nanotubes/Ti for High-Performance Supercapacitors. Ionics 2014, 21, 525–531. [Google Scholar] [CrossRef]
- Sahu, R.S.; Bindumadhavan, K.; Doong, R. Boron-Doped Reduced Graphene Oxide-Based Bimetallic Ni/Fe Nanohybrids for the Rapid Dechlorination of Trichloroethylene. Environ. Sci. Nano 2017, 4, 565–576. [Google Scholar] [CrossRef]
- Yee, T.G.; Lin, O.H.; Bindumadhavan, K.; Doong, R.A. Unveiling the Thermal Kinetics and Scissoring Mechanism of Neolatry Polyethylene/reduced Graphite Oxide Nanocomposites. J. Anal. Appl. Pyrolysis 2017, 123, 20–29. [Google Scholar] [CrossRef]
- Cui, L.; Hui, K.N.; Hui, K.S.; Lee, S.K.; Zhou, W.; Wan, Z.P.; Thuc, C.H. Facile Microwave-Assisted Hydrothermal Synthesis of TiO2 Nanotubes. Mater. Lett. 2012, 75, 175–178. [Google Scholar] [CrossRef]
- Tan, L.-L.; Ong, W.-J.; Chai, S.-P.; Mohamed, A. Reduced Graphene Oxide-TiO2 Nanocomposite as a Promising Visible-Light-Active Photocatalyst for the Conversion of Carbon Dioxide. Nanoscale Res. Lett. 2013, 8, 465. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhou, J.; Du, F. Synthesis of Highly Reduced Graphene Oxide for Supercapacitor. J. Nanomater. 2016, 2016, 1–7. [Google Scholar] [CrossRef]
- Umrao, S.; Gupta, T.K.; Kumar, S.; Singh, V.K.; Sultania, M.K.; Jung, J.H.; Oh, I.; Srivastava, A. Microwave-Assisted Synthesis of Boron and Nitrogen Co-Doped Reduced Graphene Oxide for the Protection of Electromagnetic Radiation in Ku-Band. ACS Appl. Mater.Interfaces 2015, 7, 19831–19842. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.H.T.; Au, H.T.; Tran, L.T.; Nguyen, T.M.T.; Tran, T.T.T.; Pham, M.T.; Do, M.H.; Nguyen, D.L. Synthesis of Titanium Dioxide Nanotubes via One-Step Dynamic Hydrothermal Process. J. Mater. Sci. 2014, 49, 5617–5625. [Google Scholar] [CrossRef]
- Zheng, P.; Liu, T.; Su, Y.; Zhang, L.; Guo, S. TiO2 Nanotubes Wrapped with Reduced Graphene Oxide as a High-Performance Anode Material for Lithium-Ion Batteries. Sci. Rep. 2016, 6, 36580. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Jiang, Q.; Ma, Z.; Fu, M.; Shangguan, W. Synthesis of Titania Nanotubes by Microwave Irradiation. Solid State Commun. 2005, 136, 513–517. [Google Scholar] [CrossRef]
- Lee, K.; Mazare, A.; Schmuki, P. One-Dimensional Titanium Dioxide Nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385–9454. [Google Scholar] [CrossRef] [PubMed]
Material | Specific Capacitance (F/g) |
---|---|
rGO | 148.18 |
3:1 | 73.62 |
1:1 | 14.03 |
1:3 | 26.69 |
TNT | 59.69 |
Material | Specific Capacitance (F/g) |
---|---|
rGO | 148.18 |
3:1 | 84.36 |
1:1 | 80.36 |
1:3 | 41.93 |
TNT | 59.69 |
Material | Specific Capacitance (F/g) |
---|---|
rGO | 148.18 |
3:1 | 165.22 |
1:1 | 47.26 |
1:3 | 129.08 |
TNT | 59.69 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazarte, J.P.L.; Dipasupil, R.C.; Pasco, G.Y.S.; Eusebio, R.C.P.; Orbecido, A.H.; Doong, R.-a.; Bautista-Patacsil, L. Synthesis of Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TNT) Composites as an Electrical Double Layer Capacitor. Nanomaterials 2018, 8, 934. https://doi.org/10.3390/nano8110934
Lazarte JPL, Dipasupil RC, Pasco GYS, Eusebio RCP, Orbecido AH, Doong R-a, Bautista-Patacsil L. Synthesis of Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TNT) Composites as an Electrical Double Layer Capacitor. Nanomaterials. 2018; 8(11):934. https://doi.org/10.3390/nano8110934
Chicago/Turabian StyleLazarte, John Paolo L., Regine Clarisse Dipasupil, Gweneth Ysabelle S. Pasco, Ramon Christian P. Eusebio, Aileen H. Orbecido, Ruey-an Doong, and Liza Bautista-Patacsil. 2018. "Synthesis of Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TNT) Composites as an Electrical Double Layer Capacitor" Nanomaterials 8, no. 11: 934. https://doi.org/10.3390/nano8110934
APA StyleLazarte, J. P. L., Dipasupil, R. C., Pasco, G. Y. S., Eusebio, R. C. P., Orbecido, A. H., Doong, R.-a., & Bautista-Patacsil, L. (2018). Synthesis of Reduced Graphene Oxide/Titanium Dioxide Nanotubes (rGO/TNT) Composites as an Electrical Double Layer Capacitor. Nanomaterials, 8(11), 934. https://doi.org/10.3390/nano8110934