ZrBr4-Mediated Phase Engineering in CsPbBr3 for Enhanced Operational Stability of White-Light-Emitting Diodes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphological Analysis
2.2. Optical Properties
2.3. Device Performance
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K.; et al. Low Trap-State Density and Long Carrier Diffusion in Organolead Trihalide Perovskite Single Crystals. Science 2015, 347, 519–522. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Xue, Q.; Yao, Q.; Li, N.; Brabec, C.J.; Yip, H.-L. Inorganic Halide Perovskite Solar Cells: Progress and Challenges. Adv. Energy Mater. 2020, 10, 2000183. [Google Scholar] [CrossRef]
- Chen, D.; Fang, G.; Chen, X. Silica-Coated Mn-Doped CsPb(Cl/Br)3 Inorganic Perovskite Quantum Dots: Exciton-to-Mn Energy Transfer and Blue-Excitable Solid-State Lighting. ACS Appl. Mater. Interfaces 2017, 9, 40477–40487. [Google Scholar] [CrossRef]
- Li, F.; Xia, Z.; Pan, C.; Gong, Y.; Gu, L.; Liu, Q.; Zhang, J.Z. High Br– Content CsPb(ClyBr1–y)3 Perovskite Nanocrystals with Strong Mn2+ Emission Through Diverse Cation/Anion Exchange Engineering. ACS Appl. Mater. Interfaces 2018, 10, 11739–11746. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.K.; Kim, I.J.; Park, Y.; Kim, M.K.; Lee, J.S. Inorganic Perovskite Quantum Dot-Mediated Photonic Multimodal Synapse. ACS Appl. Mater. Interfaces 2023, 15, 18055–18064. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-Z.; Guo, L.-C.; Ding, G.-L.; Zhou, K.; Xiong, Z.-Y.; Han, S.-T.; Zhou, Y. Inorganic Perovskite Quantum Dot-Based Strain Sensors for Data Storage and In-Sensor Computing. ACS Appl. Mater. Interfaces 2021, 13, 30861–30873. [Google Scholar] [CrossRef] [PubMed]
- Moyen, E.; Jun, H.; Kim, H.-M.; Jang, J. Surface Engineering of Room Temperature-Grown Inorganic Perovskite Quantum Dots for Highly Efficient Inverted Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2018, 10, 42647–42656. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Sun, C.; Bai, X.; Zhang, X.; Wang, Y.; Wang, Y.; Song, H.; Yu, W.W. Efficient and Stable CsPb(Br/I)3@Anthracene Composites for White Light-Emitting Devices. ACS Appl. Mater. Interfaces 2018, 10, 16768–16775. [Google Scholar] [CrossRef]
- Zhang, X.; Qian, Y.; Ling, X.; Wang, Y.; Zhang, Y.; Shi, J.; Shi, Y.; Yuan, J.; Ma, W. α-CsPbBr3 Perovskite Quantum Dots for Application in Semitransparent Photovoltaics. ACS Appl. Mater. Interfaces 2020, 12, 27307–27315. [Google Scholar] [CrossRef]
- Gong, R.; Wang, F.; Cheng, J.; Wang, Z.; Lu, Y.; Wang, J.; Wang, H. Weak-solvent-modulated optical encryption based on perovskite nanocrystals/polymer composites. Chem. Eng. J. 2022, 446, 137212. [Google Scholar] [CrossRef]
- Yoon, S.J.; Draguta, S.; Manser, J.S.; Sharia, O.; Schneider, W.F.; Kuno, M.; Kamat, P.V. Tracking Iodide and Bromide Ion Segregation in Mixed Halide Lead Perovskites During Photoirradiation. ACS Energy Lett. 2016, 1, 290–296. [Google Scholar] [CrossRef]
- Wu, H.; Yao, L.; Cao, W.; Yang, Y.; Cui, Y.; Yang, D.; Qian, G. Stable and Wide-Wavelength Tunable Luminescence of CsPbX3 Nanocrystals Encapsulated in Metal–Organic Frameworks. J. Mater. Chem. C 2022, 10, 5550–5558. [Google Scholar] [CrossRef]
- Chen, T.; Xu, Y.; Xie, Z.; Jiang, W.; Wang, L.; Jiang, W. Ionic Liquid Assisted Preparation and Modulation of the Photoluminescence Kinetics for Highly Efficient CsPbX3 Nanocrystals with Improved Stability. Nanoscale 2020, 12, 9569–9580. [Google Scholar] [CrossRef]
- Zhou, Y.; Chen, J.; Bakr, O.M.; Sun, H.-T. Metal-Doped Lead Halide Perovskites: Synthesis, Properties, and Optoelectronic Applications. Chem. Mater. 2018, 30, 6589–6613. [Google Scholar] [CrossRef]
- Padhiar, M.A.; Wang, M.; Ji, Y.; Yang, Z.; Zhou, Y.; Qiu, H.; Wang, H.; Shah, A.A.; Bhatti, A.S. Stable CsPbX3 (Br/Cl) Perovskite Nanocrystal Layer Passivated with Al-Doped CdSe for Blue Light-Emitting Diodes. ACS Appl. Nano Mater. 2022, 5, 908–916. [Google Scholar] [CrossRef]
- Otero-Martínez, C.; Fiuza-Maneiro, N.; Polavarapu, L. Enhancing the Intrinsic and Extrinsic Stability of Halide Perovskite Nanocrystals for Efficient and Durable Optoelectronics. ACS Appl. Mater. Interfaces 2022, 14, 34291–34302. [Google Scholar] [CrossRef] [PubMed]
- Lou, S.; Xuan, T.; Wang, J. (INVITED) Stability: A Desiderated Problem for the Lead Halide Perovskites. Opt. Mater. X 2019, 1, 100023. [Google Scholar] [CrossRef]
- Hu, H.; Wu, L.; Tan, Y.; Zhong, Q.; Chen, M.; Qiu, Y.; Yang, D.; Sun, B.; Zhang, Q.; Yin, Y. Interfacial Synthesis of Highly Stable CsPbX(3)/Oxide Janus Nanoparticles. J. Am. Chem. Soc. 2018, 140, 406–412. [Google Scholar] [CrossRef]
- Chen, W.; Hao, J.; Hu, W.; Zang, Z.; Tang, X.; Fang, L.; Niu, T.; Zhou, M. Enhanced Stability and Tunable Photoluminescence in Perovskite CsPbX3/ZnS Quantum Dot Heterostructure. Small 2017, 13, 1604085. [Google Scholar] [CrossRef]
- Huang, S.; Li, Z.; Kong, L.; Zhu, N.; Shan, A.; Li, L. Enhancing the Stability of CH3NH3PbBr3 Quantum Dots by Embedding in Silica Spheres Derived from Tetramethyl Orthosilicate in “Waterless” Toluene. J. Am. Chem. Soc. 2016, 138, 5749–5752. [Google Scholar] [CrossRef]
- Jiang, M.-C.; Lin, C.-Q.; Yang, Z.; Pan, C.-Y. Silica-Coated CsPbBr3 Nanocrystals with High Stability for Bright White-Emitting Displays. J. Solid-State Chem. 2023, 318, 123724. [Google Scholar] [CrossRef]
- Kumar, A.; Tripathi, S.K.; Shkir, M.; Alqahtani, A.; AlFaify, S. Prospective and Challenges for Lead-Free Pure Inorganic Perovskite Semiconductor Materials in Photovoltaic Application: A Comprehensive Review. Appl. Surf. Sci. Adv. 2023, 18, 100495. [Google Scholar] [CrossRef]
- Gahlot, K.; di Mario, L.; Bosma, R.; Loi, M.A.; Protesescu, L. Air-Stable Thin Films of Tin Halide Perovskite Nanocrystals by Polymers and Al2O3 Encapsulation. Chem. Mater. 2024, 36, 11227–11235. [Google Scholar] [CrossRef] [PubMed]
- Zhong, Q.; Cao, M.; Hu, H.; Yang, D.; Chen, M.; Li, P.; Wu, L.; Zhang, Q. One-Pot Synthesis of Highly Stable CsPbBr3@SiO2 Core–Shell Nanoparticles. ACS Nano 2018, 12, 8579–8587. [Google Scholar] [CrossRef]
- Padhiar, M.A.; Ji, Y.; Wang, M.; Pan, S.; Khan, S.A.; Khan, N.Z.; Zhao, L.; Qin, F.; Zhao, Z.; Zhang, S. Sr2+ Doped CsPbBrI2 Perovskite Nanocrystals Coated with ZrO2 for Applications as White LEDs. Nanotechnology 2023, 34, 275201. [Google Scholar] [CrossRef] [PubMed]
- Das, S.; De, A.; Samanta, A. Ambient Condition Mg2+ Doping Producing Highly Luminescent Green- and Violet-Emitting Perovskite Nanocrystals with Reduced Toxicity and Enhanced Stability. J. Phys. Chem. Lett. 2020, 11, 1178–1188. [Google Scholar] [CrossRef]
- Chen, C.; Xuan, T.; Bai, W.; Zhou, T.; Huang, F.; Xie, A.; Wang, L.; Xie, R.-J. Highly Stable CsPbI3:Sr2+ Nanocrystals with Near-Unity Quantum Yield Enabling Perovskite Light-Emitting Diodes with An External Quantum Efficiency of 17.1%. Nano Energy 2021, 85, 106033. [Google Scholar] [CrossRef]
- Yao, J.-S.; Ge, J.; Han, B.-N.; Wang, K.-H.; Yao, H.-B.; Yu, H.-L.; Li, J.-H.; Zhu, B.-S.; Song, J.-Z.; Chen, C.; et al. Ce3+-Doping to Modulate Photoluminescence Kinetics for Efficient CsPbBr3 Nanocrystals Based Light-Emitting Diodes. J. Am. Chem. Soc. 2018, 140, 3626–3634. [Google Scholar] [CrossRef]
- Xu, L.; Yuan, S.; Zeng, H.; Song, J. A Comprehensive Review of Doping in Perovskite Nanocrystals/Quantum Dots: Evolution Of Structure, Electronics, Optics, And Light-Emitting Diodes. Mater. Today Nano 2019, 6, 100036. [Google Scholar] [CrossRef]
- Ahmad, I.; Abohashrh, M.; Aftab, A.; Aziz, H.; Fatima, I.; Shahzadi, N.; Ahmad, S.; Muhmood, T. Manganese and Copper Doped Perovskites Nanocrystals and Their Optoelectronic Applications. Appl. Mater. Today 2023, 32, 101827. [Google Scholar] [CrossRef]
- Zhao, Q.; Chen, F.; Huang, Q.; Wang, K.; Li, C.; Wang, R.; Liu, C.; Xu, W.; Liu, R.; Zhu, H.; et al. Shape-Controlled Synthesis of CsPbBr3 Nanorods with Bright Pure Blue Emission and High Stability. J. Mater. Chem. C 2024, 12, 4234–4242. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Z. In-situ fabrication of Cu doped dual-phase CsPbBr3–Cs4PbBr6 Inorganic Perovskite Nanocomposites for Efficient and Selective Photocatalytic CO2 reduction. Chem. Eng. J. 2022, 434, 134811. [Google Scholar] [CrossRef]
- Padhiar, M.A.; Zhang, S.; Qin, F.; Wang, M.; Ji, Y.; Khan, N.Z.; Muhammad, N.; Khan, S.A.; Ahmed, J.; Pan, S. Lead-Free Cs₂NaInCl₆:Bi3⁺/Mn2⁺ Double Perovskite Nanocrystals to Nanosheets with Improved Photoluminescence Quantum Yield for Anti-Counterfeit Marks And Led Applications. Ceram. Int. 2024, 50, 19552–19560. [Google Scholar] [CrossRef]
- Ornelas-Cruz, I.; Santos, R.M.D.; González, J.E.; Lima, M.P.; Da Silva, J.L.F. Cubic-to-Hexagonal Structural Phase Transition in Metal Halide Compounds: A DFT study. J. Mater. Chem. A 2024, 12, 12564–12580. [Google Scholar] [CrossRef]
- Zhang, B.; Liang, Q.; Yong, X.; Wu, H.; Chu, Z.; Ma, Y.; Brovelli, S.; Manna, L.; Lu, S. Facet-Defect Tolerant Bi-Doped Cs2AgxNa1–xInCl6 Nanoplatelets with a Near-Unity Photoluminescence Quantum Yield. Nano Lett. 2023, 23, 9050–9055. [Google Scholar] [CrossRef]
- Chan, W.K.; Zhou, D.; Yu, Z.; Tan, T.T.Y. Mechanistic studies of CsPbBr3 superstructure formation. J. Mater. Chem. C 2021, 9, 14699–14708. [Google Scholar] [CrossRef]
- Ghorai, A.; Singh, S.; Roy, B.; Bose, S.; Mahato, S.; Mukhin, N.; Jha, P.; Ray, S.K. Suppression of Light-Induced Phase Segregations in Mixed Halide Perovskites Through Ligand Passivation. J. Phys. Chem. Lett. 2025, 16, 1760–1768. [Google Scholar] [CrossRef]
- Yang, J.; Liu, Y.; Cai, Y.; Zhang, Y.; Zhou, P.; Liu, B.; Li, Y. Phase Stability and Electronic Structure of CsPbBr3 Perovskites Under Rare-Earth Doping and Hydrostatic Pressure. J. Mater. Sci. 2024, 59, 4586–4595. [Google Scholar] [CrossRef]
- Zeng, Y.-T.; Li, Z.-R.; Chang, S.-P.; Ansay, A.; Wang, Z.-H.; Huang, C.-Y. Bright CsPbBr3 Perovskite Nanocrystals with Improved Stability by In-Situ Zn-Doping. Nanomaterials 2022, 12, 759. [Google Scholar] [CrossRef]
- Keeble, D.J.; Wiktor, J.; Pathak, S.K.; Phillips, L.J.; Dickmann, M.; Durose, K.; Snaith, H.J.; Egger, W. Identification of Lead Vacancy Defects in Lead Halide Perovskites. Nat. Commun. 2021, 12, 5566. [Google Scholar] [CrossRef]
- Varnakavi, N.; Gupta, K.; Lee, K.; Yang, J.; Cha, P.-R.; Lee, N. Compositional Engineering of ZnBr2-Doped CsPbBr3 Perovskite Nanocrystals: Insights into Structure Transformation, Optical Performance, and Charge-Carrier Dynamics. J. Mater. Chem. C 2023, 11, 14248–14259. [Google Scholar] [CrossRef]
- Mączka, M.; Sieradzki, A.; Bondzior, B.; Dereń, P.; Hanuza, J.; Hermanowicz, K. Effect of Aliovalent Doping on the Properties of Perovskite-Like Multiferroic Formates. J. Mater. Chem. C 2015, 3, 9337–9345. [Google Scholar] [CrossRef]
- Luo, L.; Hu, W.; Liang, X.; Ding, Y.; Yuan, H.; Song, Y.; Deng, S.; Kang, K. Study of Phase Transition, Structural Stability and Mechanical Properties of CsPbBr3 Under High Pressure by First Principles. Mater. Today Commun. 2024, 41, 110586. [Google Scholar] [CrossRef]
- Xie, S.; Yang, D.; Li, Z.; Ma, X.; Wang, H.; Liu, S.; Liu, Y.; Yue, S. The Evolution of Electrical, Optical, and Mechanical Properties of CsPbBr3 Perovskites During Continuous Phase Transitions. Chem. Eng. J. 2025, 505, 159524. [Google Scholar] [CrossRef]
- Lawal, S.O.; Takahashi, Y.; Nagasawa, H.; Tsuru, T.; Kanezashi, M. Microporous Structure Control of SiO2-ZrO2 Composite Membranes via Yttrium Doping and an Evaluation of Thermal Stability. J. Sol-Gel Sci. Technol. 2022, 104, 566–579. [Google Scholar] [CrossRef]
- Chen, R.; Xu, Y.; Wang, S.; Xia, C.; Liu, Y.; Yu, B.; Xuan, T.; Li, H. Zinc Ions Doped Cesium Lead Bromide Perovskite Nanocrystals with Enhanced Efficiency and Stability for White Light-Emitting Diodes. J. Alloys Compd. 2021, 866, 158969. [Google Scholar] [CrossRef]
- Guo, X.; Lv, Y.; Wang, L.; Liu, H.; Wang, W. CsPbBr3 Perovskite Quantum Dots by Mesoporous Silica Encapsulated for Enhancing Water and Thermal Stability via High Temperature Solid State Method. Opt. Mater. 2024, 157, 116097. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, L.; Zhou, T.; Zheng, P.; Li, Y.; Xie, R.-J. Improved Stability of CsPbBr3 Perovskite Quantum Dots Achieved by Suppressing Inter ligand Proton Transfer and Applying a Polystyrene Coating. Nanoscale 2018, 10, 21441–21450. [Google Scholar] [CrossRef]
- Schryver, S.; Lamichhane, A. Temperature-driven structural phase transitions in CsPbBr3. Solid State Commun. 2023, 371, 115237. [Google Scholar] [CrossRef]
- Li, Y.; Dong, L.; Patterson, R.; Teh, Z.L.; Hu, Y.; Huang, S.; Chen, C. Stabilizing CsPbBr3 perovskite quantum dots on zirconium phosphate nanosheets through an ion exchange/surface adsorption strategy. Chem. Eng. J. 2020, 381, 122735. [Google Scholar] [CrossRef]
- Yan, D.; Zhao, S.; Zhang, Y.; Wang, H.; Zang, Z. Highly efficient emission and high-CRI warm white light-emitting diodes from ligand-modified CsPbBr3 quantum dots. Opto-Electron. Adv. 2022, 5, 200075. [Google Scholar] [CrossRef]
- Rao, L.; Sun, B.; Liu, Y.; Zhong, G.; Wen, M.; Zhang, J.; Fu, T.; Wang, S.; Wang, F.; Niu, X. Highly Stable and Photoluminescent CsPbBr3/Cs4PbBr6 Composites for White-Light-Emitting Diodes and Visible Light Communication. Nanomaterials 2023, 13, 355. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lv, Y.; Guo, Z.; Dong, L.; Zheng, J.; Chai, C.; Chen, N.; Lu, Y.; Chen, C. One-Step Preparation of Long-Term Stable and Flexible CsPbBr3 Perovskite Quantum Dots/Ethylene Vinyl Acetate Copolymer Composite Films for White Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2018, 10, 15888–15894. [Google Scholar] [CrossRef]
- Guan, H.; Zhao, S.; Wang, H.; Yan, D.; Wang, M.; Zang, Z. Room temperature synthesis of stable single silica-coated CsPbBr3 quantum dots combining tunable red emission of Ag–In–Zn–S for High-CRI white light-emitting diodes. Nano Energy 2020, 67, 104279. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padhiar, M.A.; Ji, Y.; Wang, J.; Khan, N.Z.; Xiong, M.; Wang, S. ZrBr4-Mediated Phase Engineering in CsPbBr3 for Enhanced Operational Stability of White-Light-Emitting Diodes. Nanomaterials 2025, 15, 674. https://doi.org/10.3390/nano15090674
Padhiar MA, Ji Y, Wang J, Khan NZ, Xiong M, Wang S. ZrBr4-Mediated Phase Engineering in CsPbBr3 for Enhanced Operational Stability of White-Light-Emitting Diodes. Nanomaterials. 2025; 15(9):674. https://doi.org/10.3390/nano15090674
Chicago/Turabian StylePadhiar, Muhammad Amin, Yongqiang Ji, Jing Wang, Noor Zamin Khan, Mengji Xiong, and Shuxin Wang. 2025. "ZrBr4-Mediated Phase Engineering in CsPbBr3 for Enhanced Operational Stability of White-Light-Emitting Diodes" Nanomaterials 15, no. 9: 674. https://doi.org/10.3390/nano15090674
APA StylePadhiar, M. A., Ji, Y., Wang, J., Khan, N. Z., Xiong, M., & Wang, S. (2025). ZrBr4-Mediated Phase Engineering in CsPbBr3 for Enhanced Operational Stability of White-Light-Emitting Diodes. Nanomaterials, 15(9), 674. https://doi.org/10.3390/nano15090674