Fluorescent Silver Nanoclusters Associated with Double-Stranded Poly(dGdC) DNA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. DNA Synthesis
2.3. Purification of Poly(dGdC) Molecules
2.4. Preparation of DNA-Ag+ and DNA-AgNC Conjugates
2.5. Atomic Force Microscopy (AFM)
2.6. Extending AgNCs in a Poly(dGdC)–AgNC Conjugate
2.7. Absorption, CD, and Fluorescent Spectroscopy
2.8. High-Resolution Transmission Electron Microscopy (HRTEM) Samples Preparation and Measurements
2.9. Quantum Mechanical Calculations of CD Spectra
2.10. Quantum Mechanical Calculations of the DNA Luminescence
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Heer, W.A. The Physics of Simple Metal Clusters: Experimental Aspects and Simple Models. Rev. Mod. Phys. 1993, 65, 611–676. [Google Scholar] [CrossRef]
- Copp, S.M.; Schultz, D.; Swasey, S.; Pavlovich, J.; Debord, M.; Chiu, A.; Olsson, K.; Gwinn, E. Magic Numbers in DNA-Stabilized Fluorescent Silver Clusters Lead to Magic Colors. J. Phys. Chem. Lett. 2014, 5, 959–963. [Google Scholar] [CrossRef] [PubMed]
- Ramazanov, R.R.; Kononov, A.I. Excitation Spectra Argue for Threadlike Shape of DNA-Stabilized Silver Fluorescent Clusters. J. Phys. Chem. C 2013, 117, 18681–18687. [Google Scholar] [CrossRef]
- Copp, S.M.; Schultz, D.; Swasey, S.M.; Faris, A.; Gwinn, E.G. Cluster Plasmonics: Dielectric and Shape Effects on DNA-Stabilized Silver Clusters. Nano Lett. 2016, 16, 3594–3599. [Google Scholar] [CrossRef] [PubMed]
- Petty, J.T.; Ganguly, M.; Yunus, A.I.; He, C.; Goodwin, P.M.; Lu, Y.-H.; Dickson, R.M. A DNA-Encapsulated Silver Cluster and the Roles of Its Nucleobase Ligands. J. Phys. Chem. C 2018, 122, 28382–28392. [Google Scholar] [CrossRef]
- Wang, C.; Wang, C.; Xu, L.; Cheng, H.; Lin, Q.; Zhang, C. Protein-Directed Synthesis of pH-Responsive Red Fluorescent Copper Nanoclusters and Their Applications in Cellular Imaging and Catalysis. Nanoscale 2014, 6, 1775–1781. [Google Scholar] [CrossRef]
- Xu, Y.; Sherwood, J.; Qin, Y.; Crowley, D.; Bonizzoni, M.; Bao, Y. The Role of Protein Characteristics in the Formation and Fluorescence of Au Nanoclusters. Nanoscale 2014, 6, 1515–1524. [Google Scholar] [CrossRef]
- Sych, T.S.; Buglak, A.A.; Reveguk, Z.V.; Pomogaev, V.A.; Ramazanov, R.R.; Kononov, A.I. Which Amino Acids Are Capable of Nucleating Fluorescent Silver Clusters in Proteins? J. Phys. Chem. C 2018, 122, 26275–26280. [Google Scholar] [CrossRef]
- Gwinn, E.; Schultz, D.; Copp, S.; Swasey, S. DNA-Protected Silver Clusters for Nanophotonics. Nanomaterials 2015, 5, 180–207. [Google Scholar] [CrossRef]
- Cerretani, C.; Kanazawa, H.; Vosch, T.; Kondo, J. Crystal Structure of a NIR-Emitting DNA-Stabilized Ag 16 Nanocluster. Angew. Chem. Int. Ed. 2019, 58, 17153–17157. [Google Scholar] [CrossRef]
- Neacşu, V.A.; Cerretani, C.; Liisberg, M.B.; Swasey, S.M.; Gwinn, E.G.; Copp, S.M.; Vosch, T. Unusually Large Fluorescence Quantum Yield for a Near-Infrared Emitting DNA-Stabilized Silver Nanocluster. Chem. Commun. 2020, 56, 6384–6387. [Google Scholar] [CrossRef]
- Kondo, J.; Tada, Y.; Dairaku, T.; Hattori, Y.; Saneyoshi, H.; Ono, A.; Tanaka, Y. A Metallo-DNA Nanowire with Uninterrupted One-Dimensional Silver Array. Nat. Chem. 2017, 9, 956–960. [Google Scholar] [CrossRef] [PubMed]
- Müller, J. Nucleic Acid Duplexes with Metal-Mediated Base Pairs and Their Structures. Coord. Chem. Rev. 2019, 393, 37–47. [Google Scholar] [CrossRef]
- Scharf, P.; Müller, J. Nucleic Acids With Metal-Mediated Base Pairs and Their Applications. ChemPlusChem 2013, 78, 20–34. [Google Scholar] [CrossRef]
- Shukla, S.; Sastry, M. Probing Differential Ag+–Nucleobase Interactions with Isothermal Titration Calorimetry (ITC): Towards Patterned DNA Metallization. Nanoscale 2009, 1, 122. [Google Scholar] [CrossRef] [PubMed]
- DiRico, D.E.; Keller, P.B.; Hartman, K.A. The Infrared Spectrum and Structure of the Type I Complex of Silver and DNA. Nucleic Acids Res. 1985, 13, 251–260. [Google Scholar] [CrossRef]
- Torigoe, H.; Okamoto, I.; Dairaku, T.; Tanaka, Y.; Ono, A.; Kozasa, T. Thermodynamic and Structural Properties of the Specific Binding between Ag+ Ion and C:C Mismatched Base Pair in Duplex DNA to Form C–Ag–C Metal-Mediated Base Pair. Biochimie 2012, 94, 2431–2440. [Google Scholar] [CrossRef]
- Schulze, W.; Rabin, I.; Ertl, G. Formation of Light-Emitting Ag 2 and Ag 3 Species in the Course of Condensation of Ag Atoms with Ar. ChemPhysChem 2004, 5, 403–407. [Google Scholar] [CrossRef]
- Richards, C.I.; Choi, S.; Hsiang, J.-C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y.-L.; Dickson, R.M. Oligonucleotide-Stabilized Ag Nanocluster Fluorophores. J. Am. Chem. Soc. 2008, 130, 5038–5039. [Google Scholar] [CrossRef]
- Petty, J.T.; Sergev, O.O.; Ganguly, M.; Rankine, I.J.; Chevrier, D.M.; Zhang, P. A Segregated, Partially Oxidized, and Compact Ag 10 Cluster within an Encapsulating DNA Host. J. Am. Chem. Soc. 2016, 138, 3469–3477. [Google Scholar] [CrossRef]
- Obliosca, J.M.; Babin, M.C.; Liu, C.; Liu, Y.-L.; Chen, Y.-A.; Batson, R.A.; Ganguly, M.; Petty, J.T.; Yeh, H.-C. A Complementary Palette of NanoCluster Beacons. ACS Nano 2014, 8, 10150–10160. [Google Scholar] [CrossRef]
- New, S.Y.; Lee, S.T.; Su, X.D. DNA-Templated Silver Nanoclusters: Structural Correlation and Fluorescence Modulation. Nanoscale 2016, 8, 17729–17746. [Google Scholar] [CrossRef]
- Yang, M.; Zhu, L.; Yang, W.; Xu, W. Nucleic Acid-Templated Silver Nanoclusters: A Review of Structures, Properties, and Biosensing Applications. Coord. Chem. Rev. 2023, 491, 215247. [Google Scholar] [CrossRef]
- Gonzàlez-Rosell, A.; Cerretani, C.; Mastracco, P.; Vosch, T.; Copp, S.M. Structure and Luminescence of DNA-Templated Silver Clusters. Nanoscale Adv. 2021, 3, 1230–1260. [Google Scholar] [CrossRef]
- Yang, M.; Chen, X.; Su, Y.; Liu, H.; Zhang, H.; Li, X.; Xu, W. The Fluorescent Palette of DNA-Templated Silver Nanoclusters for Biological Applications. Front. Chem. 2020, 8, 601621. [Google Scholar] [CrossRef]
- Petty, J.T.; Story, S.P.; Juarez, S.; Votto, S.S.; Herbst, A.G.; Degtyareva, N.N.; Sengupta, B. Optical Sensing by Transforming Chromophoric Silver Clusters in DNA Nanoreactors. Anal. Chem. 2012, 84, 356–364. [Google Scholar] [CrossRef]
- Schultz, D.; Copp, S.M.; Markešević, N.; Gardner, K.; Oemrawsingh, S.S.R.; Bouwmeester, D.; Gwinn, E. Dual-Color Nanoscale Assemblies of Structurally Stable, Few-Atom Silver Clusters, As Reported by Fluorescence Resonance Energy Transfer. ACS Nano 2013, 7, 9798–9807. [Google Scholar] [CrossRef]
- Swasey, S.M.; Karimova, N.; Aikens, C.M.; Schultz, D.E.; Simon, A.J.; Gwinn, E.G. Chiral Electronic Transitions in Fluorescent Silver Clusters Stabilized by DNA. ACS Nano 2014, 8, 6883–6892. [Google Scholar] [CrossRef]
- Karimova, N.V.; Aikens, C.M. Time-Dependent Density Functional Theory Investigation of the Electronic Structure and Chiroptical Properties of Curved and Helical Silver Nanowires. J. Phys. Chem. A 2015, 119, 8163–8173. [Google Scholar] [CrossRef]
- Huard, D.J.E.; Demissie, A.; Kim, D.; Lewis, D.; Dickson, R.M.; Petty, J.T.; Lieberman, R.L. Atomic Structure of a Fluorescent Ag 8 Cluster Templated by a Multistranded DNA Scaffold. J. Am. Chem. Soc. 2019, 141, 11465–11470. [Google Scholar] [CrossRef]
- Leon, C.; Gonzalez-Abradelo, D.; Strassert, C.; Müller, J. Fluorescent DNA-Templated Silver Nanoclusters from Silver(I) Mediated Base Pairs. Chem. Eur.J 2018, 24, 8320–8324. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Pu, F.; Hu, D.; Chunyan, W.; Ren, J.; Xiaogang, Q. Site-Specific DNA-Programmed Growth of Fluorescent and Functional Silver Nanoclusters. Chem. Eur. J 2011, 17, 3774–3780. [Google Scholar] [CrossRef] [PubMed]
- Kotlyar, A.B. In Vitro Synthesis of Uniform Poly(dG)-Poly(dC) by Klenow Exo- Fragment of Polymerase I. Nucleic Acids Res. 2005, 33, 525–535. [Google Scholar] [CrossRef]
- Liu, H.; Shen, F.; Haruehanroengra, P.; Yao, Q.; Cheng, Y.; Chen, Y.; Yang, C.; Zhang, J.; Wu, B.; Luo, Q.; et al. A DNA Structure Containing AgI -Mediated G:G and C:C Base Pairs. Angew. Chem. Int. Ed. 2017, 56, 9430–9434. [Google Scholar] [CrossRef] [PubMed]
- Atsugi, T.; Ono, A.; Tasaka, M.; Eguchi, N.; Fujiwara, S.; Kondo, J. A Novel AgI -DNA Rod Comprising a One-Dimensional Array of 11 Silver Ions within a Double Helical Structure. Angew. Chem. Int. Ed. 2022, 61, e202204798. [Google Scholar] [CrossRef]
- Zhao, Y.; Schultz, N.E.; Truhlar, D.G. Design of Density Functionals by Combining the Method of Constraint Satisfaction with Parametrization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions. J. Chem. Theory Comput. 2006, 2, 364–382. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Density Functionals with Broad Applicability in Chemistry. Acc. Chem. Res. 2008, 41, 157–167. [Google Scholar] [CrossRef]
- Andrae, D.; Hubermann, U.; Dolg, M.; Stoll, H.; Preu, H. Energy-Adjusted Ab Initio Pseudopotentials for the Second and Third Row Transition Elements. Theor. Chim. Acta 1990, 77, 123–141. [Google Scholar] [CrossRef]
- Tomasi, J.; Mennucci, B.; Cammi, R. Quantum Mechanical Continuum Solvation Models. Chem. Rev. 2005, 105, 2999–3094. [Google Scholar] [CrossRef]
- Martínez Fernández, L.; Santoro, F.; Improta, R. Nucleic Acids as a Playground for the Computational Study of the Photophysics and Photochemistry of Multichromophore Assemblies. Acc. Chem. Res. 2022, 55, 2077–2087. [Google Scholar] [CrossRef]
- Improta, R.; Santoro, F.; Blancafort, L. Quantum Mechanical Studies on the Photophysics and the Photochemistry of Nucleic Acids and Nucleobases. Chem. Rev. 2016, 116, 3540–3593. [Google Scholar] [CrossRef] [PubMed]
- Katrivas, L.; Makarovsky, A.; Kempinski, B.; Randazzo, A.; Improta, R.; Rotem, D.; Porath, D.; Kotlyar, A.B. Ag+-Mediated Folding of Long Polyguanine Strands to Double and Quadruple Helixes. Nanomaterials 2024, 14, 663. [Google Scholar] [CrossRef]
- Martínez-Fernández, L.; Kohl, F.R.; Zhang, Y.; Ghosh, S.; Saks, A.J.; Kohler, B. Triplet Excimer Formation in a DNA Duplex with Silver Ion-Mediated Base Pairs. J. Am. Chem. Soc. 2024, 146, 1914–1925. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16, Rev. C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016.
- Gell, L.; Kulesza, A.; Petersen, J.; Röhr, M.I.S.; Mitrić, R.; Bonačić-Koutecký, V. Tuning Structural and Optical Properties of Thiolate-Protected Silver Clusters by Formation of a Silver Core with Confined Electrons. J. Phys. Chem. C 2013, 117, 14824–14831. [Google Scholar] [CrossRef]
- Liasi, Z.; Jensen, L.; Mikkelsen, K.V. A Combined Quantum Mechanics and Molecular Mechanics Approach for Simulating the Optical Properties of DNA-Stabilized Silver Nanoclusters. J. Chem. Theory Comput. 2024, 20, 937–945. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0 Model. J. Chem. Phys. 1999, 110, 6158–6170. [Google Scholar] [CrossRef]
- Hellweg, A.; Hättig, C.; Höfener, S.; Klopper, W. Optimized Accurate Auxiliary Basis Sets for RI-MP2 and RI-CC2 Calculations for the Atoms Rb to Rn. Theor. Chem. Acc. 2007, 117, 587–597. [Google Scholar] [CrossRef]
- Bannwarth, C.; Ehlert, S.; Grimme, S. GFN2-xTB—An Accurate and Broadly Parametrized Self-Consistent Tight-Binding Quantum Chemical Method with Multipole Electrostatics and Density-Dependent Dispersion Contributions. J. Chem. Theory Comput. 2019, 15, 1652–1671. [Google Scholar] [CrossRef]
- Ehlert, S.; Stahn, M.; Spicher, S.; Grimme, S. Robust and Efficient Implicit Solvation Model for Fast Semiempirical Methods. J. Chem. Theory Comput. 2021, 17, 4250–4261. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA Quantum Chemistry Program Package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef]
- Shimodaira, Y.; Miura, T.; Kudo, A.; Kobayashi, H. DFT Method Estimation of Standard Redox Potential of Metal Ions and Metal Complexes. J. Chem. Theory Comput. 2007, 3, 789–795. [Google Scholar] [CrossRef] [PubMed]
- Zikich, D.; Lubitz, I.; Alexander, K. Ag+ Induced Arrangement of Poly(dC) into Compact Ring-Shaped Structures. Int. Rev. Biophys. Chem. 2010, 1, 1–6. [Google Scholar]
- Avila Ferrer, F.J.; Cerezo, J.; Stendardo, E.; Improta, R.; Santoro, F. Insights for an Accurate Comparison of Computational Data to Experimental Absorption and Emission Spectra: Beyond the Vertical Transition Approximation. J. Chem. Theory Comput. 2013, 9, 2072–2082. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reveguk, Z.; Improta, R.; Martínez-Fernández, L.; Ramazanov, R.; Richter, S.; Kotlyar, A. Fluorescent Silver Nanoclusters Associated with Double-Stranded Poly(dGdC) DNA. Nanomaterials 2025, 15, 397. https://doi.org/10.3390/nano15050397
Reveguk Z, Improta R, Martínez-Fernández L, Ramazanov R, Richter S, Kotlyar A. Fluorescent Silver Nanoclusters Associated with Double-Stranded Poly(dGdC) DNA. Nanomaterials. 2025; 15(5):397. https://doi.org/10.3390/nano15050397
Chicago/Turabian StyleReveguk, Zakhar, Roberto Improta, Lara Martínez-Fernández, Ruslan Ramazanov, Shachar Richter, and Alexander Kotlyar. 2025. "Fluorescent Silver Nanoclusters Associated with Double-Stranded Poly(dGdC) DNA" Nanomaterials 15, no. 5: 397. https://doi.org/10.3390/nano15050397
APA StyleReveguk, Z., Improta, R., Martínez-Fernández, L., Ramazanov, R., Richter, S., & Kotlyar, A. (2025). Fluorescent Silver Nanoclusters Associated with Double-Stranded Poly(dGdC) DNA. Nanomaterials, 15(5), 397. https://doi.org/10.3390/nano15050397