A General Solution to the Continuum Rate Equation for Island-Size Distributions: Epitaxial Growth Kinetics and Scaling Analysis
Abstract
:1. Introduction
2. General Considerations
3. General Solution for ISD in the Continuum Limit
4. Family–Viscek Scaling
5. Exactly Solvable Model
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Venables, J.A. Rate equation approaches to thin film nucleation kinetics. Phil. Mag. 1973, 27, 697. [Google Scholar] [CrossRef]
- Brune, H. Microscopic view of epitaxial metal growth: Nucleation and aggregation. Surf. Sci. Rep. 1998, 31, 121. [Google Scholar] [CrossRef]
- Evans, J.W.; Thiel, P.A.; Bartelt, M.C. Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Surf. Sci. Rep. 2006, 61, 1. [Google Scholar] [CrossRef]
- Dieterich, W.; Einax, M.; Maass, P. Stochastic theories and scaling relations for early-stage surface growth. Eur. Phys. J. Spec. Top. 2008, 161, 151. [Google Scholar] [CrossRef]
- Einax, M.; Dieterich, W.; Maass, P. Colloquium: Cluster growth on surfaces: Densities, size distributions, and morphologies. Rev. Mod. Phys. 2013, 85, 921. [Google Scholar] [CrossRef]
- Kukushkin, S.A.; Osipov, A.V. New phase formation on solid surfaces and thin film condensation. Prog. Surf. Sci. 1996, 51, 1. [Google Scholar] [CrossRef]
- Kukushkin, S.A.; Osipov, A.V. Thin-film condensation processes. Phys. Usp. 2007, 41, 983. [Google Scholar] [CrossRef]
- Kuni, F.M.; Shchekin, A.K.; Grinin, A.P. Theory of heterogeneous nucleation for vapor undergoing a gradual metastable state formation. Phys. Usp. 2001, 44, 331. [Google Scholar] [CrossRef]
- McIntyre, P.C.; Fontcuberta i Morral, A. Semiconductor nanowires: To grow or not to grow? Mater. Today Nano 2020, 9, 100058. [Google Scholar] [CrossRef]
- Dubrovskii, V.G.; Berdnikov, Y.; Schmidtbauer, J.; Borg, M.; Storm, K.; Deppert, K.; Johansson, J. Length distributions of nanowires growing by surface diffusion. Cryst. Growth Des. 2016, 16, 2167. [Google Scholar] [CrossRef]
- Bikmeeva, K.R.; Bolshakov, A.D. Diffusion-induced ordered nanowire growth: Mask patterning insights. Nanomaterials 2024, 14, 1743. [Google Scholar] [CrossRef] [PubMed]
- Dubrovskii, V.G. Nucleation Theory and Growth of Nanostructures; Springer: Berlin/Heidelberg, Germany; New York, NY, USA; Dordrecht, The Netherlands; London, UK, 2014. [Google Scholar]
- Vicsek, T.; Family, F. Dynamic scaling for aggregation of clusters. Phys. Rev. Lett. 1984, 52, 1669. [Google Scholar] [CrossRef]
- Bartelt, M.C.; Evans, J.W. Scaling analysis of diffusion-mediated island growth in surface adsorption processes. Phys. Rev. B 1992, 46, 12675. [Google Scholar] [CrossRef] [PubMed]
- Ratsch, C.; Zangwill, A.; Šmilauer, P.; Vvedensky, D.D. Saturation and scaling of epitaxial island densities. Phys. Rev. Lett. 1994, 72, 3194. [Google Scholar] [CrossRef]
- Bartelt, M.C.; Evans, J.W. Exact island-size distributions for submonolayer deposition: Influence of correlations between island size and separation. Phys. Rev. B 1996, 54, R17359. [Google Scholar] [CrossRef]
- Bales, G.S.; Chrzan, D.C. Dynamics of irreversible island growth during submonolayer epitaxy. Phys. Rev. B 1994, 50, 6057. [Google Scholar] [CrossRef]
- Bales, G.S.; Zangwill, A. Self-consistent rate theory of submonolayer homoepitaxy with attachment/detachment kinetics. Phys. Rev. B 1997, 55, R1973. [Google Scholar] [CrossRef]
- Amar, J.G.; Family, F. Critical cluster size: Island morphology and size distribution in submonolayer epitaxial growth. Phys. Rev. Lett. 1995, 74, 2066. [Google Scholar] [CrossRef]
- Jensen, P.; Larralde, H.; Pimpinelli, A. Effect of monomer evaporation on a simple model of submonolayer growth. Phys. Rev. B 1997, 55, 2556. [Google Scholar] [CrossRef]
- Bartelt, M.C.; Stoldt, C.R.; Jenks, C.J.; Tiel, P.A.; Evans, J.W. Adatom capture by arrays of two-dimensional Ag islands on Ag(100). Phys. Rev. B 1999, 59, 3125. [Google Scholar] [CrossRef]
- Vvedensky, D.D. Scaling functions for island-size distributions. Phys. Rev. B 2000, 62, 15435. [Google Scholar] [CrossRef]
- Mulheran, P.A.; Robbie, D.A. Theory of the island and capture zone size distributions in thin film growth. Europhys. Lett. 2000, 49, 617. [Google Scholar] [CrossRef]
- Gibou, F.G.; Ratsch, C.; Gyure, M.F.; Chen, S.; Caflisch, R.E. Rate equations and capture numbers with implicit islands correlations. Phys. Rev. B 2001, 63, 115401. [Google Scholar] [CrossRef]
- Evans, J.W.; Bartelt, M.C. Nucleation, adatom capture, and island size distributions: Unified scaling analysis for submonolayer deposition. Phys. Rev. B 2001, 63, 235408. [Google Scholar] [CrossRef]
- Amar, J.G.; Popescu, M.N.; Family, F. Rate-equation approach to island capture zones and size distributions in epitaxial growth. Phys. Rev. Lett. 2001, 86, 3092. [Google Scholar] [CrossRef]
- Gibou, F.G.; Ratsch, C.; Caflisch, R.E. Capture numbers in rate equations and scaling laws for epitaxial growth. Phys. Rev. B 2003, 67, 155403. [Google Scholar] [CrossRef]
- Shi, F.; Shim, Y.; Amar, J.G. Island-size distribution and capture numbers in three-dimensional nucleation: Comparison with mean-field behavior. Phys. Rev. B 2005, 71, 245411. [Google Scholar] [CrossRef]
- Pimpinelli, A.; Einstein, T.L. Capture-zone scaling in island nucleation: Universal fluctuation behavior. Phys. Rev. Lett. 2007, 99, 226102. [Google Scholar] [CrossRef]
- Royston, J.; Amar, J.G. Island-size distribution and capture numbers in three-dimensional nucleation: Dependence on island morphology. Phys. Rev. E 2009, 80, 041602. [Google Scholar] [CrossRef]
- Korner, M.; Einax, M.; Maass, P. Island size distributions in submonolayer growth: Prediction by mean field theory with coverage dependent capture numbers. Phys. Rev. B 2010, 82, 201401. [Google Scholar] [CrossRef]
- Korner, M.; Einax, M.; Maass, P. Capture numbers and island size distributions in models of submonolayer surface growth. Phys. Rev. B 2012, 86, 085403. [Google Scholar] [CrossRef]
- Javorský, J.; Setvín, M.; Oštádal, I.; Sobotík, P.; Kotrla, M. Heterogeneous nucleation and adatom detachment at one-dimensional growth of In on Si(100)−2×1. Phys. Rev. B 2009, 79, 165424. [Google Scholar] [CrossRef]
- Oliveira, T.J.; Aarao Reis, F.D.A. Crossover in the scaling of island size and capture zone distributions. Phys. Rev. B 2012, 86, 115402. [Google Scholar] [CrossRef]
- Joshi, C.P.; Shim, Y.; Bigioni, T.P.; Amar, J.G. Critical island size, scaling, and ordering in colloidal nanoparticle self-assembly. Phys. Rev. E 2014, 90, 032406. [Google Scholar] [CrossRef] [PubMed]
- Dubrovskii, V.G.; Sibirev, N.V. Size distributions, scaling properties, and Bartelt-Evans singularities in irreversible growth with size-dependent capture coefficients. Phys. Rev. B 2014, 89, 054305. [Google Scholar] [CrossRef]
- Dubrovskii, V.G.; Berdnikov, Y.S. Natural scaling of size distributions in homogeneous and heterogeneous rate equations with size-linear capture rates. J. Chem. Phys. 2015, 142, 124110. [Google Scholar] [CrossRef]
- Dubrovskii, V.G.; Sibirev, N.V. Analytic scaling function for island-size distributions. Phys. Rev. E 2015, 91, 042408. [Google Scholar] [CrossRef]
- Petrov, P.P.; Miller, W.; Rehse, U.; Fornari, R. A new method for calculation of island-size distribution in submonolayer epitaxial growth. Appl. Math. Model. 2011, 35, 1331. [Google Scholar] [CrossRef]
- Einstein, T.L.; Pimpinelli, A.; González, D.L. Analyzing capture zone distributions (CZD) in growth: Theory and applications. J. Cryst. Growth 2014, 401, 67. [Google Scholar] [CrossRef]
- González, D.L.; Camargo, M.; Sánchez, J.A. Island size distribution with hindered aggregation. Phys. Rev. E 2018, 97, 052802. [Google Scholar] [CrossRef]
- de Boer, J.P.; Ford, I.J.; Kantorovich, L.; Vvedensky, D.D. Phase-field method for epitaxial kinetics on surfaces. J. Chem. Phys. 2018, 149, 194107. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Cuartas, J.D.; González-Cabrera, D.L.; Camargo, M. Epitaxial growth in one dimension. J. Phys. Cond. Matter 2024, 36, 463001. [Google Scholar] [CrossRef]
- Álvarez-Cuartas, J.D.; Camargo, M.; González-Cabrera, D.L. Colloidal model for nucleation and aggregation in one dimension: Accessing the interaction parameters. Phys. Rev. E 2024, 109, 064604. [Google Scholar] [CrossRef] [PubMed]
- Fujimoto, K.; Hamazaki, R.; Kawaguchi, Y. Family-Vicsek scaling of roughness growth in a strongly interacting Bose gas. Phys. Rev. Lett. 2020, 124, 210604. [Google Scholar] [CrossRef]
- Dubrovskii, V.G. Analytic form of the size distribution in irreversible growth of nanoparticles. Phys. Rev. E 2019, 99, 012105. [Google Scholar] [CrossRef]
- Dubrovskii, V.G.; Sibirev, N.V.; Sokolovskii, A.S. Kinetic broadening of size distribution in terms of natural versus invariant variables. Phys. Rev. E 2021, 103, 012112. [Google Scholar] [CrossRef] [PubMed]
- Tomellini, M.; De Angelis, M. Fokker-Planck equation for the crystal-size probability density in progressive nucleation and growth with application to lognormal, Gaussian and gamma distributions. J. Cryst. Growth 2025, 650, 127970. [Google Scholar] [CrossRef]
- Kotrla, M.; Krug, J.; Smilauer, P. Submonolayer epitaxy with impurities: Kinetic Monte Carlo simulations and rate-equation analysis. Phys. Rev. B 2000, 62, 2889. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dubrovskii, V.G. A General Solution to the Continuum Rate Equation for Island-Size Distributions: Epitaxial Growth Kinetics and Scaling Analysis. Nanomaterials 2025, 15, 396. https://doi.org/10.3390/nano15050396
Dubrovskii VG. A General Solution to the Continuum Rate Equation for Island-Size Distributions: Epitaxial Growth Kinetics and Scaling Analysis. Nanomaterials. 2025; 15(5):396. https://doi.org/10.3390/nano15050396
Chicago/Turabian StyleDubrovskii, Vladimir G. 2025. "A General Solution to the Continuum Rate Equation for Island-Size Distributions: Epitaxial Growth Kinetics and Scaling Analysis" Nanomaterials 15, no. 5: 396. https://doi.org/10.3390/nano15050396
APA StyleDubrovskii, V. G. (2025). A General Solution to the Continuum Rate Equation for Island-Size Distributions: Epitaxial Growth Kinetics and Scaling Analysis. Nanomaterials, 15(5), 396. https://doi.org/10.3390/nano15050396