Corrosion Protective Coating Based on Chemically Cross-Linked Particles of Few-Layer Graphene
Abstract
1. Introduction
2. Materials and Methods
2.1. Initial Material for Synthesis of FLG Coatings
2.2. Coating Synthesis Methodology
2.3. Characterization Methods for the Initial FLG and FLG-Based Coatings
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| FLG | few-layer graphene |
| GNSs | graphene nanostructures |
| SHS | self-propagating high-temperature synthesis |
References
- Yan, L.; Deng, W.; Wang, N.; Xue, X.; Hua, J.; Chen, Z. Anti-Corrosion Reinforcements Using Coating Technologies—A Review. Polymers 2022, 14, 4782. [Google Scholar] [CrossRef]
- Anwar, S.; Khan, F.; Zhang, Y.; Caines, S. Zn composite corrosion resistance coatings: What works and what does not work? J. Loss Prev. Process Ind. 2021, 69, 104376. [Google Scholar] [CrossRef]
- Yang, H.; Dong, Y.; Li, X.; Gao, Y.; He, W.; Liu, Y.; Mu, X.; Zhao, Y.; Fu, W.; Wang, X.; et al. Development of a Mechanically Robust Superhydrophobic Anti-Corrosion Coating Using Micro-hBN/Nano-Al2O3 with Multifunctional Properties. Ceram. Int. 2025, 51, 491–505. [Google Scholar] [CrossRef]
- Khan, M.A.; Safira, A.R.; Aadil, M.; Kaseem, M. Development of Anti-Corrosive Coating on AZ31 Mg Alloy Modified by MOF/LDH/PEO Hybrids. J. Magnes. Alloys 2024, 12, 586–607. [Google Scholar] [CrossRef]
- Xia, N.N.; Zhang, D.H.; Wu, Q.; Zhang, Z.P.; Rong, M.Z.; Zhang, M.Q. Self-Passivation/Self-Delivery/Self-Healing Anticorrosion Polymer Coating for Marine Applications. J. Colloid Interface Sci. 2025, 678, 494–502. [Google Scholar] [CrossRef]
- Chhipa, S.M.; Sharma, S.; Bagha, A.K. Recent development in polymer coating to prevent corrosion in metals: A review. Mater. Today Proc. 2021, 44, 4498–4502. [Google Scholar] [CrossRef]
- Ulaeto, S.B.; Ravi, R.P.; Udoh, I.I.; Mathew, G.M.; Rajan, T.P.D. Polymer-Based Coating for Steel Protection, Highlighting Metal–Organic Framework as Functional Actives: A Review. Corros. Mater. Degrad. 2023, 4, 284–316. [Google Scholar] [CrossRef]
- Dua, S.; Arora, N.; Saxena, R.C.; Ganguly, S.K. Conjugated Polymer-Based Composites for Anti-Corrosion Applications. Prog. Org. Coat. 2024, 188, 108231. [Google Scholar] [CrossRef]
- Yuan, R.; Tang, Z.; Xiao, M.; Cai, M.; Yuan, X.; Gu, L. Waterborne Phosphated Alkynediol-Modified Mica Nanosheet/Acrylic Nanocomposite Coatings with Superior Anticorrosive Performance. Nanomaterials 2025, 15, 1266. [Google Scholar] [CrossRef] [PubMed]
- Panda, R.; Fatma, K.; Tripathy, J. Anti-Corrosion and Anti-Wear Ceramic Coatings. In Advanced Ceramic Coatings; Bindhu, B., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 197–217. [Google Scholar] [CrossRef]
- Zhu, Q. Ceramic Films and Coatings: Properties and Applications. Coatings 2024, 14, 483. [Google Scholar] [CrossRef]
- Kania, H. Corrosion and Anticorrosion of Alloys/Metals: The Important Global Issue. Coatings 2023, 13, 216. [Google Scholar] [CrossRef]
- ISO/TS 21356-1:2021; Nanotechnology—Structural Characterization of Graphene—Part 1: Graphene from Powders and Dispersions. International Organization for Standardization: Geneva, Switzerland, 2021.
- Cui, G.; Bi, Z.; Zhang, R.; Liu, J.; Yu, X.; Li, Z. A Comprehensive Review on Graphene-Based Anti-Corrosive Coatings. Chem. Eng. J. 2019, 373, 104–121. [Google Scholar] [CrossRef]
- Han, Q.; Wang, R.; Xue, Y.; Camilli, L.; Yu, G.; Luo, B. Optimization Strategies for Graphene-Based Protection Coatings: A Review. Corros. Rev. 2025, 43, 23–59. [Google Scholar] [CrossRef]
- Yang, H.R.; Chen, J.; Zhu, M.Y.; Zhang, F.J.; Hu, Q.F.; Oh, W.C. Research on Anti-Corrosion Graphene Coatings with Promising Properties. J. Korean Ceram. Soc. 2024, 61, 1027–1035. [Google Scholar] [CrossRef]
- Assad, H.; Lone, I.A.; Sihmar, A.; Kumar, A.; Kumar, A. An Overview of Contemporary Developments and the Application of Graphene-Based Materials in Anticorrosive Coatings. Environ. Sci. Pollut. Res. 2025, 32, 16958–16977. [Google Scholar] [CrossRef]
- Kausar, A.; Ahmad, I.; Eisa, M.H.; Maaza, M. Avant-Garde Polymer/Graphene Nanocomposites for Corrosion Protection: Design, Features, and Performance. Corros. Mater. Degrad. 2023, 4, 33–53. [Google Scholar] [CrossRef]
- Yadav, A.; Panjikar, S.; Singh Raman, R.K. Graphene-Based Impregnation into Polymeric Coating for Corrosion Resistance. Nanomaterials 2025, 15, 486. [Google Scholar] [CrossRef]
- Zhang, R.; Yu, X.; Yang, Q.; Cui, G.; Li, Z. The Role of Graphene in Anti-Corrosion Coatings: A Review. Constr. Build. Mater. 2021, 294, 123613. [Google Scholar] [CrossRef]
- Ji, D.; Wen, X.; Foller, T.; You, Y.; Wang, F.; Joshi, R. Chemical Vapour Deposition of Graphene for Durable Anticorrosive Coating on Copper. Nanomaterials 2020, 10, 2511. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Tang, Q.; Huang, B.; Wang, Y. Graphene Synthesis: Method, Exfoliation Mechanism and Large-Scale Production. Crystals 2021, 12, 25. [Google Scholar] [CrossRef]
- Abbas, Q.; Shinde, P.A.; Abdelkareem, M.A.; Alami, A.H.; Mirzaeian, M.; Yadav, A.; Olabi, A.G. Graphene Synthesis Techniques and Environmental Applications. Materials 2022, 15, 7804. [Google Scholar] [CrossRef]
- Hutapea, J.A.A.; Manik, Y.G.O.; Ndruru, S.T.C.L.; Huang, J.; Goei, R.; Tok, A.I.Y.; Siburian, R. Comprehensive Review of Graphene Synthesis Techniques: Advancements, Challenges, and Future Directions. Micro 2025, 5, 40. [Google Scholar] [CrossRef]
- Kulyk, B.; Freitas, M.A.; Santos, N.F.; Mohseni, F.; Carvalho, A.F.; Yasakau, K.; Fernandes, A.J.S.; Bernardes, A.; Figueiredo, B.; Silva, R.; et al. A Critical Review on the Production and Application of Graphene and Graphene-Based Materials in Anti-Corrosion Coatings. Crit. Rev. Solid State Mater. Sci. 2022, 47, 309–355. [Google Scholar] [CrossRef]
- Zheng, X.; Yang, Y.; Xian, Y.; Chen, H.; Cai, W. In Situ Grown Vertically Oriented Graphene Coating on Copper by Plasma-Enhanced CVD to Form Superhydrophobic Surface and Effectively Protect Corrosion. Nanomaterials 2022, 12, 3202. [Google Scholar] [CrossRef] [PubMed]
- Voznyakovskii, A.P.; Vozniakovskii, A.A.; Kidalov, S.V. New Way of Synthesis of Few-Layer Graphene Nanosheets by the Self-Propagating High-Temperature Synthesis Method from Biopolymers. Nanomaterials 2022, 12, 657. [Google Scholar] [CrossRef]
- Vozniakovskii, A.A.; Voznyakovskii, A.P.; Kidalov, S.V.; Osipov, V.Y. Structure and Paramagnetic Properties of Graphene Nanoplatelets Prepared from Biopolymers Using Self-Propagating High-Temperature Synthesis. J. Struct. Chem. 2020, 61, 869–878. [Google Scholar] [CrossRef]
- Voznyakovskii, A.P.; Neverovskaya, A.A.; Vozniakovskii, A.A.; Kidalov, S.V. A Quantitative Chemical Method for Determining the Surface Concentration of Stone–Wales Defects for 1D and 2D Carbon Nanomaterials. Nanomaterials 2022, 12, 883. [Google Scholar] [CrossRef] [PubMed]
- Podlozhnyuk, N.; Vozniakovskii, A.; Kidalov, S.; Voznyakovskii, A. Performance Properties of Epoxy Resin Modified with Few-Layer Graphene Obtained by the Method of Self-Propagating High-Temperature Synthesis. Polymers 2025, 17, 812. [Google Scholar] [CrossRef] [PubMed]
- Podlozhnyuk, N.D.; Vozniakovskii, A.A.; Voznyakovskii, A.P.; Kidalov, S.V. Strength and Thermophysical Properties of Polylactide-Few-Layer Graphene Composites. Int. Polym. Process. 2025, 40, 470–481. [Google Scholar] [CrossRef]
- Trikkaliotis, D.G.; Christoforidis, A.K.; Mitropoulos, A.C.; Kyzas, G.Z. Graphene Oxide Synthesis, Properties and Characterization Techniques: A Comprehensive Review. ChemEngineering 2021, 5, 64. [Google Scholar] [CrossRef]
- Nanjundappa, V.S.; Ramakrishnappa, T.; Prakash, H.R.; Praveen, B.M. Efficient Strategies to Produce Graphene and Functionalized Graphene Materials: A Review. Appl. Surf. Sci. Adv. 2023, 14, 100386. [Google Scholar] [CrossRef]
- Mukhametzhanov, M.N.; Sheichenko, V.I.; Ban’kovskii, A.I.; Rybalko, K.S.; Boryaev, K.I. Stizolin—A New Sesquiterpene Lactone from Stizolophus balsamita. Chem. Nat. Compd. 1969, 5, 49–50. [Google Scholar] [CrossRef]
- Chen, S.; Brown, L.; Levendorf, M.; Cai, W.; Ju, S.-Y.; Edgeworth, J.; Li, X.; Magnuson, C.W.; Velamakanni, A.; Piner, R.D.; et al. Oxidation Resistance of Graphene-Coated Cu and Cu/Ni Alloy. ACS Nano 2011, 5, 1321–1327. [Google Scholar] [CrossRef]
- Surekha, G.; Krishnaiah, K.V.; Ravi, N.; Suvarna, R.P. FTIR, Raman and XRD Analysis of Graphene Oxide Films Prepared by Modified Hummers Method. J. Phys. Conf. Ser. 2020, 1495, 012012. [Google Scholar] [CrossRef]
- Badri, K.B.H.; Sien, W.C.; Shahrom, M.S.B.R.; Hao, L.C.; Baderuliksan, N.Y.; Norzali, N.R. FTIR Spectroscopy Analysis of the Prepolymerization of Palm-Based Polyurethane. Solid State Sci. Technol. 2010, 18, 1–8. [Google Scholar]
- Paillet, M.; Parret, R.; Sauvajol, J.L.; Colomban, P. Graphene and Related 2D Materials: An Overview of the Raman Studies. J. Raman Spectrosc. 2018, 49, 8–12. [Google Scholar] [CrossRef]
- Saito, R.; Hofmann, M.; Dresselhaus, G.; Jorio, A.; Dresselhaus, M.S. Raman Spectroscopy of Graphene and Carbon Nanotubes. Adv. Phys. 2011, 60, 413–550. [Google Scholar] [CrossRef]
- Madito, M.J. Revisiting the Raman disorder band in graphene-based materials: A critical review. Vib. Spectrosc. 2025, 139, 103814. [Google Scholar] [CrossRef]
- Ding, R.; Li, W.; Wang, X.; Gui, T.; Li, B.; Han, P.; Tian, H.; Liu, A.; Wang, X.; Liu, X.; et al. A Brief Review of Corrosion Protective Films and Coatings Based on Graphene and Graphene Oxide. J. Alloys Compd. 2018, 764, 1039–1055. [Google Scholar] [CrossRef]














| Coating | Water Contact Angle |
|---|---|
| Epoxy | 53 ± 3 |
| FLG | 136 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vozniakovskii, A.; Voznyakovskii, A.; Neverovskaya, A.; Podlozhnyuk, N.; Kidalov, S.; Auchynnikau, E. Corrosion Protective Coating Based on Chemically Cross-Linked Particles of Few-Layer Graphene. Nanomaterials 2025, 15, 1841. https://doi.org/10.3390/nano15241841
Vozniakovskii A, Voznyakovskii A, Neverovskaya A, Podlozhnyuk N, Kidalov S, Auchynnikau E. Corrosion Protective Coating Based on Chemically Cross-Linked Particles of Few-Layer Graphene. Nanomaterials. 2025; 15(24):1841. https://doi.org/10.3390/nano15241841
Chicago/Turabian StyleVozniakovskii, Aleksei, Alexander Voznyakovskii, Anna Neverovskaya, Nikita Podlozhnyuk, Sergey Kidalov, and Evgeny Auchynnikau. 2025. "Corrosion Protective Coating Based on Chemically Cross-Linked Particles of Few-Layer Graphene" Nanomaterials 15, no. 24: 1841. https://doi.org/10.3390/nano15241841
APA StyleVozniakovskii, A., Voznyakovskii, A., Neverovskaya, A., Podlozhnyuk, N., Kidalov, S., & Auchynnikau, E. (2025). Corrosion Protective Coating Based on Chemically Cross-Linked Particles of Few-Layer Graphene. Nanomaterials, 15(24), 1841. https://doi.org/10.3390/nano15241841

