Microstructure and Optoelectronic Properties of WZO/Al/Cu/Al/WZO Multilayer Films
Abstract
1. Introduction
2. Experimental Details
2.1. Coating Deposition
2.2. Coating Characterization
3. Results
3.1. Microstructure
3.2. Optoelectronic Properties
4. Conclusions
- (1)
- All the films were composed of a hexagonal wurtzite ZnO phase with a strong (002) preferred orientation and a face-centered cubic Cu phase with a (111) preferred orientation. As the Cu layer thickness increased from 5 nm to 13 nm, both the intensity of the (111) diffraction peak and grain size increased significantly, leading to a marked improvement in the crystallinity. Notably, the crystalline quality of ZnO was optimized at a Cu layer thickness of 7 nm.
- (2)
- With increasing the Cu layer thickness, its absorption loss as a metallic layer in the visible region was gradually enhanced, causing a decrease in the transmittance from 79.2% to 68.0%. Due to a significant improvement in the crystallinity and continuity of the Cu layer, the resistivity of the films decreased sharply from 1.7 × 10−3 Ω·cm to 7.1 × 10−5 Ω·cm, and the decreasing trend tends to be flat after the Cu thickness exceeded 9 nm.
- (3)
- When the Cu layer thickness increased to 11 nm, the film achieved an optimal balance between transmittance and electrical conductivity, the FOM reached a maximum value of 4.4 × 10−3 Ω−1, exhibiting the best comprehensive optoelectronic properties.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Mohamad, F.; Teridi, M.A.M.; Chelvanathan, P.; Nasir, M.N.M.; Ibrahim, M.A. Recent development and challenges of flexible perovskite transparent conductive oxides in optoelectronic applications. Mater. Sci. Semicond. Process. 2025, 196, 109577. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, X.; Sun, A.; Liu, L.; Chen, Y.; Hu, L.; Zhang, D.; Ren, H.; Liu, Y.; Shi, J.; et al. Zinc-tin oxide transparent conductive layers via reactive plasma deposition for silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 2025, 293, 113835. [Google Scholar] [CrossRef]
- Wang, C.Q.; Wen, C.; Li, B.; Chen, M.; Ren, Y.; Dai, Q.Y. Parasitic absorption of zinc oxide as a transparent conductive oxide layer for silicon heterojunction solar cells. Phys. B 2025, 715, 417594. [Google Scholar] [CrossRef]
- Ji, W.; Ma, R.; Li, S.; Sun, H.; Li, Y.; Li, K. High performance perovskite solar cells with sputtered niobium-doped indium tin oxide transparent electrodes. Appl. Surf. Sci. 2025, 713, 164366. [Google Scholar] [CrossRef]
- Szymaniec, M.; Witkowski, F.; Brańko, F.; Białek, E.; Kaczmarski, J. Scalable fabrication of transparent conductive ITO thin films using chemical methods: Optimization of parameters and applications in functional glass technologies. J. Alloys Compd. 2025, 1032, 181195. [Google Scholar] [CrossRef]
- Liu, S.; Xu, X.; Jiang, J. Flexible transparent ITO thin film with high conductivity and high-temperature resistance. Ceram. Int. 2024, 50, 47649–47654. [Google Scholar] [CrossRef]
- Wang, T.; Xu, J.; Zhu, G.; Shang, F.; Xu, H. Sintering densification of ITO targets with low tin oxide content for depositing TCO films as electrodes of solar cells. Ceram. Int. 2024, 50, 5532–5540. [Google Scholar] [CrossRef]
- Alev, O.; Özdemir, O.; Kılıç, A.; Akcan, D.; Büyükköse, S. Effect of Al doping on structural and optical properties of atomic layer deposited ZnO thin films. Surf. Interfaces 2024, 52, 104942. [Google Scholar] [CrossRef]
- Lemine, A.S.; Bhadra, J.; Popelka, A.; Shakoor, R.A.; Ahmad, Z.; Al-Thani, N.J.; Hasan, A. Synergistic effect of concentration and annealing on structural, mechanical, and room-temperature thermoelectric properties of n-type Ga-doped ZnO films. Ceram. Int. 2024, 50, 47741–47753. [Google Scholar] [CrossRef]
- Xing, L.; Lu, Y.; Liu, Y.; Wang, F.; Zhu, L.; Pan, X.; Ye, Z. Ga, Mg, F ternary-doped ZnO-based transparent conductive film prepared by radio-frequency sputtering with high transmittance. Mater. Lett. 2024, 360, 135972. [Google Scholar] [CrossRef]
- Mei, H.; Wang, W.; Zhao, J.; Zhong, W.; Qiu, M.; Xu, J.; Gao, K.; Liu, G.; Liang, J.; Gong, W. Effect of bias voltage on the microstructure and photoelectric properties of W-Doped ZnO films. Nanomaterials 2024, 14, 2050. [Google Scholar] [CrossRef]
- Ngom, B.D.; Mpahane, T.; Manyala, N.; Nemraoui, O.; Buttner, U.; Kana, J.B.; Fasasi, A.Y.; Maaza, M.; Beye, A.C. Structural and optical properties of nano- structured tungsten-doped ZnO thin films grown by pulsed laser deposition. Appl. Surf. Sci. 2009, 255, 4153–4158. [Google Scholar] [CrossRef]
- Ngom, B.D.; Sakho, O.; Manyala, N.; Kana, J.B.; Mlungisi, N.; Guerbous, L.; Fasasi, A.Y.; Maaza, M.; Beye, A.C. Structural, morphological and photoluminescence properties of W-doped ZnO nanostructures. Appl. Surf. Sci. 2009, 255, 7314–7318. [Google Scholar] [CrossRef]
- Zhang, H.F.; Liu, H.F.; Lei, C.X.; Yuan, C.K.; Zhou, A.P. Tungsten-doped ZnO transparent conducting films deposited by direct current magnetron sputtering. Vacuum 2010, 85, 184–186. [Google Scholar] [CrossRef]
- Abliz, A.; Wan, D.; Yang, L.; Mamat, M.; Chen, H.; Xu, L.; Wang, C.; Duan, H. Investigation on the electrical performances and stability of W-doped ZnO thin-film transistors. Mater. Sci. Semicond. Process. 2019, 95, 54–58. [Google Scholar] [CrossRef]
- Sun, K.; Zhang, D.; Yin, H.; Cheng, L.; Yuan, H.; Yang, C. Preparation of AZO/Cu/AZO films with low infrared emissivity, high conductivity and high transmittance by adjusting the AZO layer. Appl. Surf. Sci. 2022, 578, 152051. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, L.; Geng, Z.; Zhang, D.; Wang, D.; Liu, J.; Wang, Q. AZO/Ag/AZO composite film with high transmittance based on an ultrathin continuous Ag layer obtained via micro oxidation. Mater. Sci. Semicond. Process. 2023, 165, 107643. [Google Scholar] [CrossRef]
- Mendil, D.; Touam, T.; Chelouche, A.; Djermoune, A.; Ouhenia, S.; Djouadi, D.; Challali, F. Tuning microstructure and optoelectronic performance in AZO/Ag/AZO and AZO/Cu/AZO multilayers: A comparative investigation. Opt. Mater. 2025, 165, 117154. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, X.; Xu, L.; Yang, Y.; Min, P.; Zhang, R.; Yang, L.; Bolshakov, A.; Zhu, J. Improved stability of dielectric/metal/dielectric-structured transparent conductive films with the insertion of Ni layer under thermal oxidation environment. Mater. Lett. 2021, 282, 128844. [Google Scholar] [CrossRef]
- Zhu, G.; He, Z.; Zhu, K. Improved performance of AZO/Ag/AZO transparent conductive films by inserting an ultrathin Ti layer. Mater. Lett. 2024, 356, 135615. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, K.; Yin, H.; Cheng, L.; Yuan, H.; Yang, C. Optimization of photoelectric properties and temporal stability of AZO/Ti/Cu/AZO films by insertion of Ti layer for low emissivity applications. Mater. Sci. Eng. B 2023, 293, 116471. [Google Scholar] [CrossRef]
- Yu, S.; Liu, Y.; Zheng, H.; Li, L.; Sun, Y. Improved performance of transparent- conducting AZO/Cu/AZO multilayer thin films by inserting a metal Ti layer for flexible electronics. Opt. Lett. 2017, 42, 3020–3023. [Google Scholar] [CrossRef]
- Zhou, L.; Chen, X.; Zhu, F.; Sun, X.; Sun, Z. Improving temperature-stable AZO-Ag-AZO multilayer transparent electrodes using thin Al layer modification. J. Phys. D Appl. Phys. 2012, 45, 505103. [Google Scholar] [CrossRef]
- Mendil, D.; Challali, F.; Touam, T.; Bockelée, V.; Ouhenia, S.; Souici, A.; Djouadi, D.; Chelouche, A. Preparation of RF sputtered AZO/Cu/AZO multilayer films and the investigation of Cu thickness and substrate effects on their microstructural and optoelectronic properties. J. Alloys Compd. 2021, 860, 158470. [Google Scholar] [CrossRef]
- Yang, L.; Yu, X.; Zhang, Z.; Zhao, S.; Zhang, P.; Song, R. Adjusting Cu layer thickness of ITO/Cu/ITO film to improve electrochemical corrosion of GOA unit. J. Alloys Compd. 2023, 936, 168203. [Google Scholar] [CrossRef]
- Touam, T.; Mendil, D.; Chelouche, A.; Djouadi, D.; Challali, F. Competing effect of Cu and Ag thicknesses in monitoring optoelectronic properties of AZO/Cu/Ag/AZO transparent conducting structures deposited on glass substrate. Opt. Mater. 2025, 168, 117442. [Google Scholar] [CrossRef]
- Tüzemen, E.S.; Eker, S.; Kavak, H.; Esen, R. Dependence of film thickness on the structural and optical properties of ZnO thin films. Appl. Surf. Sci. 2009, 255, 6195–6200. [Google Scholar] [CrossRef]
- Langford, J.I.; Wilson, A.J.C. Scherrer after sixty years: A survey and some new results in the determination of crystallite size. J. Appl. Crystallogr. 1978, 11, 102–113. [Google Scholar] [CrossRef]
- Zhang, W.; Xiong, J.; Liu, L.; Zhang, X.; Gu, H. Influence of annealing temperature on structural optical and electrical Properties of AZO/Pd/AZO films. Sol. Energy Mater. Sol. Cells 2016, 153, 52–60. [Google Scholar] [CrossRef]
- Wang, Y.P.; Lu, J.G.; Bie, X.; Ye, Z.Z.; Li, X.; Song, D.; Zhao, X.Y.; Ye, W.Y. Transparent conductive and near-infrared reflective Cu-based Al-doped ZnO multilayer films grown by magnetron sputtering at room temperature. Appl. Surf. Sci. 2011, 257, 5966–5971. [Google Scholar] [CrossRef]
- Song, S.; Yang, T.; Lv, M.; Li, Y.; Xin, Y.; Jiang, L.; Wu, Z.; Han, S. Effect of Cu layer thickness on the structural, optical and electrical properties of AZO/Cu/AZO trilayer films. Vacuum 2010, 85, 39–44. [Google Scholar] [CrossRef]
- Miao, D.; Jiang, S.; Shang, S.; Zhao, H.; Chen, Z. Transparent conductive and infrared reflective AZO/Cu/AZO multilayer film prepared by RF magnetron sputtering. J. Mater. Sci. Mater. Electron. 2014, 25, 5248–5254. [Google Scholar] [CrossRef]
- Dimopoulos, T.; Radnoczi, G.Z.; Horváth, Z.E.; Brückl, H. Increased thermal stability of Al-doped ZnO-based transparent conducting electrodes employing ultra-thin Au and Cu layers. Thin Solid Films 2012, 520, 5222–5226. [Google Scholar] [CrossRef]
- Yu, S.; Zhao, L.; Liu, R.; Zhang, C.; Zheng, H.; Sun, Y.; Lia, L. Performance enhancement of Cu-based AZO multilayer thin films via graphene fence engineering for organic solar cells. Sol. Energy Mater. Sol. Cells 2018, 183, 66–72. [Google Scholar] [CrossRef]
- Haacke, G. New figure of merit for transparent conductors. J. Appl. Phys. 1976, 47, 4086–4089. [Google Scholar] [CrossRef]








| Parameters | |||
|---|---|---|---|
| Base pressure (Pa) | 8.0 × 10−4 | ||
| Working temperature (°C) | 200 | ||
| Working pressure (Pa) | 0.5 | ||
| Target to substrate distance (mm) | 115 | ||
| Target material | WZO | Al | Cu |
| Magnetron sputtering | RF | RF | DC |
| Target power (W) | 70 | 300 | 30 |
| Deposition time | 12 min | 5 s | 33, 46, 59, 72, 85 s |
| Monolayer Thickness (nm) | Total Thickness (nm) | ||||
|---|---|---|---|---|---|
| WZO | Al | Cu | Al | WZO | |
| 44 | 1 | 5 | 1 | 44 | 95 |
| 44 | 1 | 7 | 1 | 44 | 97 |
| 44 | 1 | 9 | 1 | 44 | 99 |
| 44 | 1 | 11 | 1 | 44 | 101 |
| 44 | 1 | 13 | 1 | 44 | 103 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mei, H.; Liu, L.; Zhu, Q.; Ye, H.; Zhao, Z.; Li, Q.; Ding, J.; Yu, Y.; Gan, L.; Li, Y.; et al. Microstructure and Optoelectronic Properties of WZO/Al/Cu/Al/WZO Multilayer Films. Nanomaterials 2025, 15, 1711. https://doi.org/10.3390/nano15221711
Mei H, Liu L, Zhu Q, Ye H, Zhao Z, Li Q, Ding J, Yu Y, Gan L, Li Y, et al. Microstructure and Optoelectronic Properties of WZO/Al/Cu/Al/WZO Multilayer Films. Nanomaterials. 2025; 15(22):1711. https://doi.org/10.3390/nano15221711
Chicago/Turabian StyleMei, Haijuan, Liying Liu, Qingfeng Zhu, Huojuan Ye, Zhenting Zhao, Qiuguo Li, Jicheng Ding, Yi Yu, Libin Gan, Yuhang Li, and et al. 2025. "Microstructure and Optoelectronic Properties of WZO/Al/Cu/Al/WZO Multilayer Films" Nanomaterials 15, no. 22: 1711. https://doi.org/10.3390/nano15221711
APA StyleMei, H., Liu, L., Zhu, Q., Ye, H., Zhao, Z., Li, Q., Ding, J., Yu, Y., Gan, L., Li, Y., Liu, J., & Gong, W. (2025). Microstructure and Optoelectronic Properties of WZO/Al/Cu/Al/WZO Multilayer Films. Nanomaterials, 15(22), 1711. https://doi.org/10.3390/nano15221711

