Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,919)

Search Parameters:
Keywords = optoelectronic properties

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4194 KiB  
Article
Grain Boundary Regulation in Aggregated States of MnOx Nanofibres and the Photoelectric Properties of Their Nanocomposites Across a Broadband Light Spectrum
by Xingfa Ma, Xintao Zhang, Mingjun Gao, Ruifen Hu, You Wang and Guang Li
Coatings 2025, 15(8), 920; https://doi.org/10.3390/coatings15080920 (registering DOI) - 6 Aug 2025
Abstract
Improving charge transport in the aggregated state of nanocomposites is challenging due to the large number of defects present at grain boundaries. To enhance the charge transfer and photogenerated carrier extraction of MnOx nanofibers, a MnOx/GO (graphene oxide) nanocomposite was [...] Read more.
Improving charge transport in the aggregated state of nanocomposites is challenging due to the large number of defects present at grain boundaries. To enhance the charge transfer and photogenerated carrier extraction of MnOx nanofibers, a MnOx/GO (graphene oxide) nanocomposite was prepared. The effects of GO content and bias on the optoelectronic properties were studied. Representative light sources at 405, 650, 780, 808, 980, and 1064 nm were used to examine the photoelectric signals. The results indicate that the MnOx/GO nanocomposites have photocurrent switching behaviours from the visible region to the NIR (near-infrared) when the amount of GO added is optimised. It was also found that even with zero bias and storage of the nanocomposite sample at room temperature for over 8 years, a good photoelectric signal could still be extracted. This demonstrates that the MnOx/GO nanocomposites present a strong built-in electric field that drives the directional motion of photogenerated carriers, avoids the photogenerated carrier recombination, and reflect a good photophysical stability. The strength of the built-in electric field is strongly affected by the component ratios of the resulting nanocomposite. The formation of the built-in electric field results from interfacial charge transfer in the nanocomposite. Modulating the charge behaviour of nanocomposites can significantly improve the physicochemical properties of materials when excited by light with different wavelengths and can be used in multidisciplinary applications. Since the recombination of photogenerated electron–hole pairs is the key bottleneck in multidisciplinary fields, this study provides a simple, low-cost method of tailoring defects at grain boundaries in the aggregated state of nanocomposites. These results can be used as a reference for multidisciplinary fields with low energy consumption. Full article
33 pages, 4366 KiB  
Review
Progress and Prospects of Biomolecular Materials in Solar Photovoltaic Applications
by Anna Fricano, Filippo Tavormina, Bruno Pignataro, Valeria Vetri and Vittorio Ferrara
Molecules 2025, 30(15), 3236; https://doi.org/10.3390/molecules30153236 - 1 Aug 2025
Viewed by 239
Abstract
This Review examines up-to-date advancements in the integration of biomolecules and solar energy technologies, with a particular focus on biohybrid photovoltaic systems. Biomolecules have recently garnered increasing interest as functional components in a wide range of solar cell architectures, since they offer a [...] Read more.
This Review examines up-to-date advancements in the integration of biomolecules and solar energy technologies, with a particular focus on biohybrid photovoltaic systems. Biomolecules have recently garnered increasing interest as functional components in a wide range of solar cell architectures, since they offer a huge variety of structural, optical, and electronic properties, useful to fulfill multiple roles within photovoltaic devices. These roles span from acting as light-harvesting sensitizers and charge transport mediators to serving as micro- and nanoscale structural scaffolds, rheological modifiers, and interfacial stabilizers. In this Review, a comprehensive overview of the state of the art about the integration of biomolecules across the various generations of photovoltaics is provided. The functional roles of pigments, DNA, proteins, and polysaccharides are critically reported improvements and limits associated with the use of biological molecules in optoelectronics. The molecular mechanisms underlying the interaction between biomolecules and semiconductors are also discussed as essential for a functional integration of biomolecules in solar cells. Finally, this Review shows the current state of the art, and the most significant results achieved in the use of biomolecules in solar cells, with the main scope of outlining some guidelines for future further developments in the field of biohybrid photovoltaics. Full article
(This article belongs to the Special Issue Thermal and Photocatalytic Analysis of Nanomaterials: 2nd Edition)
Show Figures

Figure 1

15 pages, 2272 KiB  
Article
Improving the Detection Accuracy of Subsurface Damage in Optical Materials by Exploiting the Fluorescence Polarization Properties of Quantum Dots
by Yana Cui, Xuelian Liu, Bo Xiao, Yajie Wu and Chunyang Wang
Nanomaterials 2025, 15(15), 1182; https://doi.org/10.3390/nano15151182 - 31 Jul 2025
Viewed by 120
Abstract
Optical materials are widely used in large optical systems such as lithography machines and astronomical telescopes. However, optical materials inevitably produce subsurface damage (SSD) during lapping and polishing processes, degrading the laser damage threshold and impacting the service life of the optical system. [...] Read more.
Optical materials are widely used in large optical systems such as lithography machines and astronomical telescopes. However, optical materials inevitably produce subsurface damage (SSD) during lapping and polishing processes, degrading the laser damage threshold and impacting the service life of the optical system. The large surface roughness of the lapped optical materials further increases the difficulty of the nondestructive detection of SSD. Quantum dots (QDs) show great development potential in the nondestructive detection of SSD in lapped materials. However, existing QD-based SSD detection methods ignore the polarization sensitivity of QDs to excitation light, which affects the detection accuracy of SSD. To address this problem, this paper explores the fluorescence polarization properties of QDs in the SSD of optical materials. First, the detection principle of SSD based on the fluorescence polarization of QDs is investigated. Subsequently, a fluorescence polarization detection system is developed to analyze the fluorescence polarization properties of QDs in SSD. Finally, the SSD is detected based on the studied polarization properties. The results show that the proposed method effectively improves the detection rate of SSD by 10.8% and thus provides guidance for evaluating the quality of optical material and optimizing optical material processing technologies. The research paradigm is equally applicable to biomedicine, energy, optoelectronics, and the environment, where QDs have a wide range of applications. Full article
Show Figures

Figure 1

16 pages, 23912 KiB  
Article
First-Principles Study on the Modulation of Schottky Barrier in Graphene/Janus MoSSe Heterojunctions by Interface Contact and Electric Field Effects
by Zhe Zhang, Jiahui Li, Xiaopei Xu and Guodong Shi
Nanomaterials 2025, 15(15), 1174; https://doi.org/10.3390/nano15151174 - 30 Jul 2025
Viewed by 243
Abstract
Constructing heterojunctions can combine the superior performance of different two-dimensional (2D) materials and eliminate the drawbacks of a single material, and modulating heterojunctions can enhance the capability and extend the application field. Here, we investigate the physical properties of the heterojunctions formed by [...] Read more.
Constructing heterojunctions can combine the superior performance of different two-dimensional (2D) materials and eliminate the drawbacks of a single material, and modulating heterojunctions can enhance the capability and extend the application field. Here, we investigate the physical properties of the heterojunctions formed by the contact of different atom planes of Janus MoSSe (JMoSSe) and graphene (Gr), and regulate the Schottky barrier of the Gr/JMoSSe heterojunction by the number of layers and the electric field. Due to the difference in atomic electronegativity and surface work function (WF), the Gr/JSMoSe heterojunction formed by the contact of S atoms with Gr exhibits an n-type Schottky barrier, whereas the Gr/JSeMoS heterojunction formed by the contact of the Se atoms with Gr reveals a p-type Schottky barrier. Increasing the number of layers of JMoSSe allows the Gr/JMoSSe heterojunction to achieve the transition from Schottky contact to Ohmic contact. Moreover, under the control of an external electric field, the Gr/JMoSSe heterojunction can realize the transition among n-type Schottky barrier, p-type Schottky barrier, and Ohmic contact. The physical mechanism of the layer number and electric field modulation effect is analyzed in detail by the change in the interface electron charge transfer. Our results will contribute to the design and application of nanoelectronics and optoelectronic devices based on Gr/JMoSSe heterojunctions in the future. Full article
(This article belongs to the Section 2D and Carbon Nanomaterials)
Show Figures

Figure 1

19 pages, 4549 KiB  
Article
Synthesis, Structure, and Magnetic Properties of (Co/Eu) Co-Doped ZnO Nanoparticles
by Adil Guler
Coatings 2025, 15(8), 884; https://doi.org/10.3390/coatings15080884 - 29 Jul 2025
Viewed by 290
Abstract
Transition-metal and rare-earth element co-doped ZnO nanoparticles have attracted significant attention due to their potential applications in spintronics and optoelectronics. In this study, Zn0.95Co0.01EuxO (x = 0.01–0.05) nanoparticles were synthesized using the sol–gel technique. The estimated stress, strain, and [...] Read more.
Transition-metal and rare-earth element co-doped ZnO nanoparticles have attracted significant attention due to their potential applications in spintronics and optoelectronics. In this study, Zn0.95Co0.01EuxO (x = 0.01–0.05) nanoparticles were synthesized using the sol–gel technique. The estimated stress, strain, and crystallite sizes of the synthesized Co/Eu co-doped ZnO nanoparticles were calculated using the Williamson–Hall method, and their electron spin resonance (ESR) properties were investigated to examine the effect on their magnetic and structural properties. X-ray diffraction (XRD) analysis confirmed the presence of a single-phase structure. Surface morphology, elemental composition, crystal quality, defect types, density, and magnetic behavior were characterized using scanning electron microscope (SEM), electron-dispersive spectroscopy (EDS), and ESR techniques, respectively. The effect of Eu concentration on the linewidth (ΔBpp) and g-factor in the ESR spectra was studied. By correlating ESR results with the obtained structural properties, room-temperature ferromagnetic behavior was identified. Full article
Show Figures

Figure 1

25 pages, 5536 KiB  
Review
Progress in Bi2WO6-Based Materials for Electrochemical Sensing and Supercapacitor Applications
by Khursheed Ahmad, Dhanabalan Karmegam and Tae Hwan Oh
Molecules 2025, 30(15), 3149; https://doi.org/10.3390/molecules30153149 - 28 Jul 2025
Viewed by 273
Abstract
Recently, the design and fabrication of novel electrode materials for electrochemical and electronic devices have received the widespread attention of the scientific community. In particular, electrochemical sensors and supercapacitors (SCs) involve the use of catalysts, which can enhance the electrochemical reactions at the [...] Read more.
Recently, the design and fabrication of novel electrode materials for electrochemical and electronic devices have received the widespread attention of the scientific community. In particular, electrochemical sensors and supercapacitors (SCs) involve the use of catalysts, which can enhance the electrochemical reactions at the surface of the electrode. Bismuth tungstate (Bi2WO6) is a cost-effective and efficient electrode material with decent optoelectronic properties and stability. The properties of Bi2WO6 can be improved by incorporating carbon-based materials, and the resulting composite may be a promising electrode material for electrochemical sensing and SCs. As per the available reports, Bi2WO6 has been combined with various nanostructured and conductive materials for electrochemical sensing and SC applications. This review discusses synthetic methods for the preparation of Bi2WO6. Progress in the construction of hybrid composites for electrochemical sensing and SC applications is reviewed. The Conclusion section discusses the role of electrode materials and their limitations with future perspectives for electrochemical sensing and SCs. It is believed that the present review may be useful for researchers working on Bi2WO6-based materials for electrochemical sensing and SC applications. Full article
(This article belongs to the Section Electrochemistry)
Show Figures

Figure 1

26 pages, 11977 KiB  
Review
Nanostructure Engineering by Oblique Angle Deposition for Photodetectors and Other Applications
by Gyeongho Lee, Raksan Ko, Seungme Kang, Yeong Jae Kim, Young-Joon Kim and Hocheon Yoo
Micromachines 2025, 16(8), 865; https://doi.org/10.3390/mi16080865 - 27 Jul 2025
Viewed by 286
Abstract
Oblique angle deposition (OAD) holds significant potential for diverse applications, including energy harvesting devices, optoelectronic sensors, and electronic devices, owing to the creation of unique nanostructures. These nanostructures are characterized by their porosity and nanoscale columns, which can exist in numerous forms depending [...] Read more.
Oblique angle deposition (OAD) holds significant potential for diverse applications, including energy harvesting devices, optoelectronic sensors, and electronic devices, owing to the creation of unique nanostructures. These nanostructures are characterized by their porosity and nanoscale columns, which can exist in numerous forms depending on deposition conditions. As a result, the engineering of nanostructures using OAD achieves the successful modulation of optical properties such as absorption, reflection, and transmission. This explains the current surge of attention toward photodetectors based on OAD technology. This review presents various photodetectors based on OAD technology and summarizes reported cases. It also explores current advancements, major applications, and future directions in photodetector development and nanostructure engineering. Ultimately, this review aims to provide a comprehensive overview of the research trends in photodetectors utilizing OAD technology and focus on their further development and application potential. Full article
Show Figures

Figure 1

19 pages, 4094 KiB  
Article
Precision Molecular Engineering of Alternating Donor–Acceptor Cycloparaphenylenes: Multidimensional Optoelectronic Response and Chirality Modulation via Polarization-Driven Charge Transfer
by Danmei Zhu, Xinwen Gai, Yi Zou, Ying Jin and Jingang Wang
Molecules 2025, 30(15), 3127; https://doi.org/10.3390/molecules30153127 - 25 Jul 2025
Viewed by 176
Abstract
In this study, three alternating donor–acceptor (D–A) type [12]cycloparaphenylene ([12]CPP) derivatives ([12]CPP 1a, 2a, and 3a) were designed through precise molecular engineering, and their multidimensional photophysical responses and chiroptical properties were systematically investigated. The effects of the alternating D–A architecture on electronic structure, [...] Read more.
In this study, three alternating donor–acceptor (D–A) type [12]cycloparaphenylene ([12]CPP) derivatives ([12]CPP 1a, 2a, and 3a) were designed through precise molecular engineering, and their multidimensional photophysical responses and chiroptical properties were systematically investigated. The effects of the alternating D–A architecture on electronic structure, excited-state dynamics, and optical behavior were elucidated through density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. The results show that the alternating D–A design significantly reduced the HOMO–LUMO energy gap (e.g., 3.11 eV for [12]CPP 2a), enhanced charge transfer characteristics, and induced pronounced red-shifted absorption. The introduction of an imide-based acceptor ([12]CPP 2a) further strengthened the electron push-pull interaction, exhibiting superior performance in two-photon absorption, while the symmetrically multifunctionalized structure ([12]CPP 3a) predominantly exhibited localized excitation with the highest absorption intensity but lacked charge transfer features. Chiral analysis reveals that the alternating D–A architecture modulated the distribution of chiral signals, with [12]CPP 1a displaying a strong Cotton effect in the low-wavelength region. These findings not only provide a theoretical basis for the molecular design of functionalized CPP derivatives, but also lay a solid theoretical foundation for expanding their application potential in optoelectronic devices and chiral functional materials. Full article
(This article belongs to the Section Computational and Theoretical Chemistry)
Show Figures

Figure 1

21 pages, 4524 KiB  
Article
Rotational Influence on Wave Propagation in Semiconductor Nanostructure Thermoelastic Solid with Ramp-Type Heat Source and Two-Temperature Theory
by Sayed M. Abo-Dahab, Emad K. Jaradat, Hanan S. Gafel and Eslam S. Elidy
Axioms 2025, 14(8), 560; https://doi.org/10.3390/axioms14080560 - 24 Jul 2025
Viewed by 271
Abstract
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing [...] Read more.
This study investigates the influence of rotation on wave propagation in a semiconducting nanostructure thermoelastic solid subjected to a ramp-type heat source within a two-temperature model. The thermoelastic interactions are modeled using the two-temperature theory, which distinguishes between conductive and thermodynamic temperatures, providing a more accurate description of thermal and mechanical responses in semiconductor materials. The effects of rotation, ramp-type heating, and semiconductor properties on elastic wave propagation are analyzed theoretically. Governing equations are formulated and solved analytically, with numerical simulations illustrating the variations in thermal and elastic wave behavior. The key findings highlight the significant impact of rotation, nonlocal parameters e0a, and time derivative fractional order (FO) α on physical quantities, offering insights into the thermoelastic performance of semiconductor nanostructures under dynamic thermal loads. A comparison is made with the previous results to show the impact of the external parameters on the propagation phenomenon. The numerical results show that increasing the rotation rate Ω=5 causes a phase lag of approximately 22% in thermal and elastic wave peaks. When the thermoelectric coupling parameter ε3 is increased from 0.8×1042 to 1.2×1042. The temperature amplitude rises by 17%, while the carrier density peak increases by over 25%. For nonlocal parameter values ε=0.30.6, high-frequency stress oscillations are damped by more than 35%. The results contribute to the understanding of wave propagation in advanced semiconductor materials, with potential applications in microelectronics, optoelectronics, and nanoscale thermal management. Full article
(This article belongs to the Section Mathematical Physics)
Show Figures

Figure 1

10 pages, 2398 KiB  
Article
APTES-Modified Interface Optimization in PbS Quantum Dot SWIR Photodetectors and Its Influence on Optoelectronic Properties
by Qian Lei, Lei Rao, Wencan Deng, Xiuqin Ao, Fan Fang, Wei Chen, Jiaji Cheng, Haodong Tang and Junjie Hao
Colloids Interfaces 2025, 9(4), 49; https://doi.org/10.3390/colloids9040049 - 22 Jul 2025
Viewed by 297
Abstract
Lead sulfide colloidal quantum dots (PbS QDs) have demonstrated great potential in short-wave infrared (SWIR) photodetectors due to their tunable bandgap, low cost, and broad spectral response. While significant progress has been made in surface ligand modification and defect state passivation, studies focusing [...] Read more.
Lead sulfide colloidal quantum dots (PbS QDs) have demonstrated great potential in short-wave infrared (SWIR) photodetectors due to their tunable bandgap, low cost, and broad spectral response. While significant progress has been made in surface ligand modification and defect state passivation, studies focusing on the interface between QDs and electrodes remain limited, which hinders further improvement in device performance. In this work, we propose an interface engineering strategy based on 3-aminopropyltriethoxysilane (APTES) to enhance the interfacial contact between PbS QD films and ITO interdigitated electrodes, thereby significantly boosting the overall performance of SWIR photodetectors. Experimental results demonstrate that the optimal 0.5 h APTES treatment duration significantly enhances responsivity by achieving balanced interface passivation and charge carrier transport. Moreover, The APTES-modified device exhibits a controllable dark current and faster photo-response under 1310 nm illumination. This interface engineering approach provides an effective pathway for the development of high-performance PbS QD-based SWIR photodetectors, with promising applications in infrared imaging, spectroscopy, and optical communication. Full article
(This article belongs to the Special Issue State of the Art of Colloid and Interface Science in Asia)
Show Figures

Figure 1

29 pages, 1609 KiB  
Review
Recent Advances in Silver Nanowire-Based Transparent Conductive Films: From Synthesis to Applications
by Ji Li, Jun Luo and Yang Liu
Coatings 2025, 15(7), 858; https://doi.org/10.3390/coatings15070858 - 21 Jul 2025
Viewed by 645
Abstract
Silver nanowire (AgNW)-based transparent conductive films are essential for flexible electronics due to their superior optoelectronic properties and mechanical flexibility. This review examines the characteristics and fabrication methods of AgNW thin films in detail. Among various fabrication techniques, the AgNW thin film produced [...] Read more.
Silver nanowire (AgNW)-based transparent conductive films are essential for flexible electronics due to their superior optoelectronic properties and mechanical flexibility. This review examines the characteristics and fabrication methods of AgNW thin films in detail. Among various fabrication techniques, the AgNW thin film produced by silk-screen printing exhibits the highest quality factor of 568.47, achieving 95.3% visible light transmittance of 95.3% and 13.6 Ω/sq sheet resistance. Ensuring the stability of AgNW films requires the deposition of protective layers through physical or chemical approaches. This review also systematically evaluates the different methods for preparing these protective layers, including their respective advantages and limitations. Furthermore, the review proposes strategies to enhance the conductivity, transparency, and flexibility of AgNW films. Finally, it discusses potential future applications and challenges, offering valuable insights for the development of next-generation flexible transparent electrodes. Full article
(This article belongs to the Special Issue Advanced Thin Films Technologies for Optics, Electronics, and Sensing)
Show Figures

Figure 1

11 pages, 962 KiB  
Article
Possible Realization of Hyperbolic Plasmons in Few-Layered Rhenium Disulfide
by Ravi Kiran, Dimitar Pashov, Mark van Schilfgaarde, Mikhail I. Katsnelson, Arghya Taraphder and Swagata Acharya
Condens. Matter 2025, 10(3), 40; https://doi.org/10.3390/condmat10030040 - 19 Jul 2025
Viewed by 285
Abstract
Hyperbolic plasmons are a highly desired property in optoelectronics and biomolecular sensing. The necessary condition to realize hyperbolic plasmons is a significant anisotropy of the principal components of the dielectric function, such that at a certain frequency range, one component is negative and [...] Read more.
Hyperbolic plasmons are a highly desired property in optoelectronics and biomolecular sensing. The necessary condition to realize hyperbolic plasmons is a significant anisotropy of the principal components of the dielectric function, such that at a certain frequency range, one component is negative and the other is positive, i.e., one component is metallic, and the other one is dielectric. Here, we study the effect of anisotropy in ReS2, and our theory shows that ReS2 can host hyperbolic plasmons in the ultraviolet frequency range. The operating frequency range of the hyperbolic plasmons can be tuned with the number of ReS2 layers. However, we note that the significantly large imaginary part of the macroscopic dielectric response in all layered variants of ReS2 can result in substantial losses for the hyperbolic plasmons, as in the case with other known hyperbolic materials, with the exception of MoOCl2. We also note that ReS2 hosts ultraviolet hyperbolic plasmons while ZrSiSe, WTe2, and CuS nanocrystals host infrared plasmons, providing a novel platform for optoelectronics in the ultraviolet range. Full article
Show Figures

Figure 1

8 pages, 641 KiB  
Communication
Synthesis of 2-(2-((5″-(4-Cyanophenyl)-3,4′,4″-trioctyl[2,2′:5′,2″-terthiophen]-5-yl)methylene)-3-oxo-2,3-dihydro-1H-inden-1-ylidene)malononitrile
by Alexia M. Frîncu, Lidia Căta, David Bălăceanu, Ion Grosu, Andreea P. Crișan and Anamaria Terec
Molbank 2025, 2025(3), M2038; https://doi.org/10.3390/M2038 - 18 Jul 2025
Viewed by 238
Abstract
A new π-conjugated acceptor–donor–acceptor small molecule, designed for applications in organic solar cells, containing a terthiophene core and indandione- and benzonitrile-based electron-withdrawing units, was synthesized via a multi-step process involving Suzuki–Miyaura cross-coupling and Knoevenagel condensation reactions. The structure was confirmed by NMR spectroscopy, [...] Read more.
A new π-conjugated acceptor–donor–acceptor small molecule, designed for applications in organic solar cells, containing a terthiophene core and indandione- and benzonitrile-based electron-withdrawing units, was synthesized via a multi-step process involving Suzuki–Miyaura cross-coupling and Knoevenagel condensation reactions. The structure was confirmed by NMR spectroscopy, HRMS, and its optoelectronic properties were evaluated by UV–vis spectroscopy and cyclic voltammetry. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Graphical abstract

22 pages, 10488 KiB  
Article
Morphological and Functional Evolution of Amorphous AlN Thin Films Deposited by RF-Magnetron Sputtering
by Maria-Iulia Zai, Ioana Lalau, Marina Manica, Lucia Chiriacescu, Vlad-Andrei Antohe, Cristina C. Gheorghiu, Sorina Iftimie, Ovidiu Toma, Mirela Petruta Suchea and Ștefan Antohe
Surfaces 2025, 8(3), 51; https://doi.org/10.3390/surfaces8030051 - 17 Jul 2025
Viewed by 320
Abstract
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron [...] Read more.
Aluminum nitride (AlN) thin films were deposited on SiO2 substrates by RF-magnetron sputtering at varying powers (110–140 W) and subsequently subjected to thermal annealing at 450 °C under nitrogen atmosphere. A comprehensive multi-technique investigation—including X-ray reflectometry (XRR), X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), optical profilometry, spectroscopic ellipsometry (SE), and electrical measurements—was performed to explore the physical structure, morphology, and optical and electrical properties of the films. The analysis of the film structure by XRR revealed that increasing sputtering power resulted in thicker, denser AlN layers, while thermal treatment promoted densification by reducing density gradients but also induced surface roughening and the formation of island-like morphologies. Optical studies confirmed excellent transparency (>80% transmittance in the near-infrared region) and demonstrated the tunability of the refractive index with sputtering power, critical for optoelectronic applications. The electrical characterization of Au/AlN/Al sandwich structures revealed a transition from Ohmic to trap-controlled space charge limited current (SCLC) behavior under forward bias—a transport mechanism frequently present in a material with very low mobility, such as AlN—while Schottky conduction dominated under reverse bias. The systematic correlation between deposition parameters, thermal treatment, and the resulting physical properties offers valuable pathways to engineer AlN thin films for next-generation optoelectronic and high-frequency device applications. Full article
(This article belongs to the Special Issue Surface Engineering of Thin Films)
Show Figures

Graphical abstract

14 pages, 5463 KiB  
Article
First-Principles Study of Topological Nodal Line Semimetal I229-Ge48 via Cluster Assembly
by Liwei Liu, Xin Wang, Nan Wang, Yaru Chen, Shumin Wang, Caizhi Hua, Tielei Song, Zhifeng Liu and Xin Cui
Nanomaterials 2025, 15(14), 1109; https://doi.org/10.3390/nano15141109 - 17 Jul 2025
Viewed by 314
Abstract
Group IV element-based topological semimetals (TSMs) are pivotal for next-generation quantum devices due to their ultra-high carrier mobility and low-energy consumption. However, germanium (Ge)-based TSMs remain underexplored despite their compatibility with existing semiconductor technologies. Here, we propose a novel I229-Ge48 allotrope constructed [...] Read more.
Group IV element-based topological semimetals (TSMs) are pivotal for next-generation quantum devices due to their ultra-high carrier mobility and low-energy consumption. However, germanium (Ge)-based TSMs remain underexplored despite their compatibility with existing semiconductor technologies. Here, we propose a novel I229-Ge48 allotrope constructed via bottom-up cluster assembly that exhibits a unique porous spherical Fermi surface and strain-tunable topological robustness. First-principles calculations reveal that I229-Ge48 is a topological nodal line semimetal with exceptional mechanical anisotropy (Young’s modulus ratio: 2.27) and ductility (B/G = 2.21, ν = 0.30). Remarkably, the topological property persists under spin-orbit coupling (SOC) and tensile strain, while compressive strain induces a semiconductor transition (bandgap: 0.29 eV). Furthermore, I229-Ge48 demonstrates strong visible-light absorption (105 cm−1) and a strong strain-modulated infrared response, surpassing conventional Ge allotropes. These findings establish I229-Ge48 as a multifunctional platform for strain-engineered nanoelectronics and optoelectronic devices. Full article
Show Figures

Figure 1

Back to TopTop