Recent Advances in Improving the Alkaline Oxygen Reduction Performance of Atomically Dispersed Metal–Nitrogen–Carbon Catalysts
Abstract
1. Introduction
2. Advances in Research on M-N-C Catalysts
2.1. Oxygen Reduction Mechanism and Current Challenges of M-N-C Catalysts
2.2. Strategies for Enhancing the Catalytic Activity of M-N-C Catalysts
2.2.1. Increasing the Density of M-Nx Sites
2.2.2. Enhancing Intrinsic Activity
- ①
- Choosing a suitable metal center:
- ②
- Regulation of metal coordination atoms:
- ③
- Regulation of the remote coordination environment:
2.3. Strategies for Enhancing the Stability of M-N-C Catalysts
2.3.1. Enhancing Electronic Effect
2.3.2. Enhancing the Antioxidant Capacity of Carbon-Based Materials
3. Summary and Outlook
- (1)
- Performance testing of M-N-C catalysts under actual operating conditions deserves greater emphasis. At present, the testing conditions for most M-N-C catalysts deviate substantially from their real-world operating environments. Increased focus on evaluating catalyst performance under actual operating conditions can significantly expedite their commercialization. To ensure the reliability of M-N-C catalyst performance during the transition from laboratory research to practical applications, the following key parameters should be prioritized in evaluation to bridge the gap between experimental conditions and real-world operating environments: (a) catalytic stability under high current densities; (b) mechanical stability of the catalyst structure; (c) the catalyst’s adaptability to dynamic operating conditions.
- (2)
- Achieving mass production of M-N-C catalytic materials remains a key challenge. Most of the literature reports on the synthesis of M-N-C catalysts are still limited to the laboratory scale. Scaling up M-N-C catalysts from laboratory-scale synthesis to industrial applications presents the following technical challenges: (a) Dispersibility and agglomeration of metal nanoparticles. Under laboratory conditions, uniform dispersion of single metal atoms can be achieved by precisely controlling the precursor ratio and reaction parameters. However, during the scaling-up process, the uniformity of the precursor mixture decreases, which can easily cause metal atom agglomeration and reduce the density of active sites. (b) Controlled synthesis of porous structures. The performance of M-N-C catalysts relies on a high specific surface area and well-defined hierarchical pore structures (micropores, mesopores, macropores). However, during large-scale synthesis, the uniformity and reproducibility of these pore structures become challenging to maintain, which compromises mass transfer efficiency and limits the exposure of active sites. (c) Temperature gradient challenges in industrial high-temperature heat treatment processes. These thermal gradients can result in localized over-burning or insufficient carbonization, which disrupts the metal–nitrogen coordination structure and consequently diminishes catalytic activity. The template method effectively alleviates the problems faced by M-N-C catalysts in industrialization, such as poor metal dispersion, uncontrollable pore structure, and high cost, through structural pre-design, confinement effects, and in-situ doping strategies.
- (3)
- Research on the in situ characterization of M-N-C catalysts under operational conditions should be prioritized. Techniques such as in situ Raman spectroscopy and in situ infrared spectroscopy are capable of directly elucidating the reaction pathways of M-N-C catalysts during the ORR, facilitating the rapid identification of key kinetic-determining steps and thereby accelerating the resolution of technical bottlenecks. In situ Raman and infrared spectroscopies enable real-time monitoring of oxygen-containing intermediates adsorbed on the surface of M-N-C catalysts during the ORR. Analyzing variations in the adsorption concentration of oxygen-containing intermediates on the catalyst surface provides insights into identifying the rate-determining steps during the ORR.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kang, J.-H.; Lee, J.; Jung, J.-W.; Park, J.; Jang, T.; Kim, H.-S.; Nam, J.-S.; Lim, H.; Yoon, K.R.; Ryu, W.-H.; et al. Lithium–Air Batteries: Air-Breathing Challenges and Perspective. ACS Nano 2020, 14, 14549–14578. [Google Scholar] [CrossRef]
- Liang, Z.; Wang, W.; Lu, Y.-C. The path toward practical Li-air batteries. Joule 2022, 6, 2458–2473. [Google Scholar] [CrossRef]
- Nan, H.; Dang, D.; Tian, X.L. Structural engineering of robust titanium nitride as effective platinum support for the oxygen reduction reaction. J. Mater. Chem. A 2018, 6, 6065–6073. [Google Scholar] [CrossRef]
- Zhao, M.; Wang, X.; Yang, X.; Gilroy, K.D.; Qin, D.; Xia, Y. Hollow Metal Nanocrystals with Ultrathin, Porous Walls and Well-Controlled Surface Structures. Adv. Mater. 2018, 30, 1801956. [Google Scholar] [CrossRef]
- Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.; Liu, Z.; Kaya, S.; Nordlund, D.; Ogasawara, H.; et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Wang, H.; Elnabawy, A.O.; Hood, Z.D.; Chi, M.; Xiao, P.; Zhang, Y.; Mavrikakis, M.; Xia, Y. Facile One-Pot Synthesis of Pd@Pt1L Octahedra with Enhanced Activity and Durability toward Oxygen Reduction. Chem. Mater. 2019, 31, 1370–1380. [Google Scholar] [CrossRef]
- Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H.L.; Snyder, J.D.; Li, D.; Herron, J.A.; Mavrikakis, M.; et al. Highly Crystalline Multimetallic Nanoframes with Three-Dimensional Electrocatalytic Surfaces. Science 2014, 343, 1339–1343. [Google Scholar] [CrossRef]
- Hunt, S.T.; Milina, M.; Alba-Rubio, A.C.; Hendon, C.H.; Dumesic, J.A.; Román-Leshkov, Y. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 2016, 352, 974–978. [Google Scholar] [CrossRef]
- Park, J.; Zhang, L.; Choi, S.-I.; Roling, L.T.; Lu, N.; Herron, J.A.; Xie, S.; Wang, J.; Kim, M.J.; Mavrikakis, M.; et al. Atomic Layer-by-Layer Deposition of Platinum on Palladium Octahedra for Enhanced Catalysts toward the Oxygen Reduction Reaction. ACS Nano 2015, 9, 2635–2647. [Google Scholar] [CrossRef]
- Wu, G.; Wang, J.; Ding, W.; Nie, Y.; Li, L.; Qi, X.; Chen, S.; Wei, Z. A Strategy to Promote the Electrocatalytic Activity of Spinels for Oxygen Reduction by Structure Reversal. Angew. Chem. Int. Ed. 2016, 55, 1340–1344. [Google Scholar] [CrossRef]
- Guo, J.; Mao, Z.; Yan, X.; Su, R.; Guan, P.; Xu, B.; Zhang, X.; Qin, G.; Pennycook, S.J. Ultrasmall tungsten carbide catalysts stabilized in graphitic layers for high-performance oxygen reduction reaction. Nano Energy 2016, 28, 261–268. [Google Scholar] [CrossRef]
- Dou, S.; Tao, L.; Huo, J.; Wang, S.; Dai, L. Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis. Energy Environ. Sci. 2016, 9, 1320–1326. [Google Scholar] [CrossRef]
- Tian, X.; Lu, X.F.; Xia, B.Y.; Lou, X.W. Advanced Electrocatalysts for the Oxygen Reduction Reaction in Energy Conversion Technologies. Joule 2020, 4, 45–68. [Google Scholar] [CrossRef]
- Tang, C.; Wang, H.-F.; Chen, X.; Li, B.-Q.; Hou, T.-Z.; Zhang, B.; Zhang, Q.; Titirici, M.-M.; Wei, F. Topological Defects in Metal-Free Nanocarbon for Oxygen Electrocatalysis. Adv. Mater. 2016, 28, 6845–6851. [Google Scholar] [CrossRef]
- Guan, B.Y.; Zhang, S.L.; Lou, X.W. Realization of Walnut-Shaped Particles with Macro-/Mesoporous Open Channels through Pore Architecture Manipulation and Their Use in Electrocatalytic Oxygen Reduction. Angew. Chem. Int. Ed. 2018, 57, 6176–6180. [Google Scholar] [CrossRef]
- Jasinski, R. A New Fuel Cell Cathode Catalyst. Nature 1964, 201, 1212–1213. [Google Scholar] [CrossRef]
- Gu, Y.; Xi, B.J.; Zhang, H.; Ma, Y.C.; Xiong, S.L. Activation of Main-Group Antimony Atomic Sites for Oxygen Reduction Catalysis. Angew. Chem. Int. Ed. 2022, 61, e202202200. [Google Scholar] [CrossRef]
- Hu, S.; Li, W.-X. Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts. Science 2021, 374, 1360–1365. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Tang, X.; Huang, S.; Lu, C.; Lützenkirchen-Hecht, D.; Yuan, K.; Zhuang, X.; Chen, Y. Longitudinally Grafting of Graphene with Iron Phthalocyanine-based Porous Organic Polymer to Boost Oxygen Electroreduction. Angew. Chem. Int. Ed. 2023, 62, e202301642. [Google Scholar] [CrossRef]
- Liu, J.; Liu, Y.; Nan, B.; Wang, D.; Allen, C.; Gong, Z.; He, G.; Fu, K.; Ye, G.; Fei, H. A Two-in-One Strategy to Simultaneously Boost the Site Density and Turnover Frequency of Fe−N−C Oxygen Reduction Catalysts. Angew. Chem. Int. Ed. 2025, 64, e202425196. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.; Wan, G.; Zhang, R.; Zhou, H.; Yu, S.H.; Jiang, H.L. From metal-organic frameworks to single-atom Fe implanted N-doped porous carbons: Efficient oxygen reduction in both alkaline and acidic media. Angew. Chem. Int. Ed. 2018, 130, 8661–8665. [Google Scholar] [CrossRef]
- Wu, L.; Zhao, R.; Du, G.; Wang, H.; Hou, M.; Zhang, W.; Sun, P.; Chen, T. Hierarchically porous Fe/N/S/C nanospheres with high-content of Fe-Nx for enhanced ORR and Zn-air battery performance. Green Energy Environ. 2023, 8, 1693–1702. [Google Scholar] [CrossRef]
- Peng, L.; Yang, J.; Yang, Y.; Qian, F.; Wang, Q.; Sun-Waterhouse, D.; Shang, L.; Zhang, T.; Waterhouse, G.I.N. Mesopore-Rich Fe–N–C Catalyst with FeN4-O-NCSingle-Atom Sites Delivers Remarkable Oxygen Reduction Reaction Performance in Alkaline Media. Adv. Mater. 2022, 34, 2202544. [Google Scholar] [CrossRef]
- Shao, C.; Wu, L.; Wang, Y.; Qu, K.; Chu, H.; Sun, L.; Ye, J.; Li, B.; Wang, X. Engineering asymmetric Fe coordination centers with hydroxyl adsorption for efficient and durable oxygen reduction catalysis. Appl. Catal. B Environ. 2022, 316, 121607. [Google Scholar] [CrossRef]
- Ji, B.; Gou, J.; Zheng, Y.; Zhou, X.; Kidkhunthod, P.; Wang, Y.; Tang, Q.; Tang, Y. Metalloid-Cluster Ligands Enabling Stable and Active FeN4-Ten Motifs for the Oxygen Reduction Reaction. Adv. Mater. 2022, 34, 2202714. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Ji, S.; Wang, Y.; Dong, J.; Chen, W.; Li, Z.; Shen, R.; Zheng, L.; Zhuang, Z.; Wang, D.; et al. Isolated Single Iron Atoms Anchored on N-Doped Porous Carbon as an Efficient Electrocatalyst for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2017, 56, 6937–6941. [Google Scholar] [CrossRef]
- Chen, G.; Liu, P.; Liao, Z.; Sun, F.; He, Y.; Zhong, H.; Zhang, T.; Zschech, E.; Chen, M.; Wu, G.; et al. Zinc-Mediated Template Synthesis of Fe-N-C Electrocatalysts with Densely Accessible Fe-Nx Active Sites for Efficient Oxygen Reduction. Adv. Mater. 2020, 32, 1907399. [Google Scholar] [CrossRef]
- Xin, C.; Shang, W.; Hu, J.; Zhu, C.; Guo, J.; Zhang, J.; Dong, H.; Liu, W.; Shi, Y. Integration of Morphology and Electronic Structure Modulation on Atomic Iron-Nitrogen-Carbon Catalysts for Highly Efficient Oxygen Reduction. Adv. Funct. Mater. 2022, 32, 2108345. [Google Scholar] [CrossRef]
- Sun, H.; Wang, M.; Du, X.; Jiao, Y.; Liu, S.; Qian, T.; Yan, Y.; Liu, C.; Liao, M.; Zhang, Q.; et al. Modulating the d-band center of boron doped single-atom sites to boost the oxygen reduction reaction. J. Mater. Chem. A 2019, 7, 20952–20957. [Google Scholar] [CrossRef]
- Zhou, W.; Su, H.; Li, Y.; Liu, M.; Zhang, H.; Zhang, X.; Sun, X.; Xu, Y.; Liu, Q.; Wei, S. Identification of the Evolving Dynamics of Coordination-Unsaturated Iron Atomic Active Sites under Reaction Conditions. ACS Energy Lett. 2021, 6, 3359–3366. [Google Scholar] [CrossRef]
- Hu, L.; Dai, C.; Chen, L.; Zhu, Y.; Hao, Y.; Zhang, Q.; Gu, L.; Feng, X.; Yuan, S.; Wang, L.; et al. Metal-Triazolate-Framework-Derived FeN4Cl11 Single-Atom Catalysts with Hierarchical Porosity for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2021, 60, 27324–27329. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Lu, Z.; Lei, J.; Liu, Z.; Li, Y.; Cao, Y. Modulation of Ligand Fields in a Single-Atom Site by the Molten Salt Strategy for Enhanced Oxygen Bifunctional Activity for Zinc-Air Batteries. ACS Nano 2022, 16, 11944–11956. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Wang, J.; Wang, J.; Yang, M.; Yan, C.; Zou, G.; Tse, J.S.; Fernandez, C.; Peng, Q. Atomically dispersed quintuple nitrogen and oxygen co-coordinated zirconium on graphene-type substrate for highly efficient oxygen reduction reaction. Cell Rep. Phys. Sci. 2022, 3, 100773. [Google Scholar] [CrossRef]
- Shang, H.; Zhou, X.; Dong, J.; Li, A.; Zhao, X.; Liu, Q.; Lin, Y.; Pei, J.; Li, Z.; Jiang, Z.; et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049. [Google Scholar] [CrossRef]
- Yang, L.; Shi, L.; Wang, D.; Lv, Y.; Cao, D. Single-atom cobalt electrocatalysts for foldable solid-state Zn-air battery. Nano Energy 2018, 50, 691–698. [Google Scholar] [CrossRef]
- Kong, Z.; Liu, T.; Hou, K.; Guan, L. Atomically dispersed Mn–N4 electrocatalyst with high oxygen reduction reaction catalytic activity from metal–organic framework ZIF-8 by minimal-water-assisted mechanochemical synthesis. J. Mater. Chem. A 2022, 10, 2826–2834. [Google Scholar] [CrossRef]
- Wang, X.; An, Y.; Liu, L.; Fang, L.; Liu, Y.; Zhang, J.; Qi, H.; Heine, T.; Li, T.; Kuc, A. Atomically dispersed pentacoordinated-zirconium catalyst with axial oxygen ligand for oxygen reduction reaction. Angew. Chem. Int. Ed. 2022, 134, e202209746. [Google Scholar] [CrossRef]
- Chen, Y.; Gao, R.; Ji, S.; Li, H.; Tang, K.; Jiang, P.; Hu, H.; Zhang, Z.; Hao, H.; Qu, Q.; et al. Atomic-Level Modulation of Electronic Density at Cobalt Single-Atom Sites Derived from Metal–Organic Frameworks: Enhanced Oxygen Reduction Performance. Angew. Chem. Int. Ed. 2021, 60, 3212–3221. [Google Scholar] [CrossRef]
- Shang, H.; Jiang, Z.; Zhou, D.; Pei, J.; Wang, Y.; Dong, J.; Zheng, X.; Zhang, J.; Chen, W. Engineering a metal–organic framework derived Mn–N4–CxSy atomic interface for highly efficient oxygen reduction reaction. Chem. Sci. 2020, 11, 5994–5999. [Google Scholar] [CrossRef]
- Jiang, Z.; Sun, W.; Shang, H.; Chen, W.; Sun, T.; Li, H.; Dong, J.; Zhou, J.; Li, Z.; Wang, Y.; et al. Atomic interface effect of a single atom copper catalyst for enhanced oxygen reduction reactions. Energy Environ. Sci. 2019, 12, 3508–3514. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, X.; Zhu, M.; Leng, X.; Chen, W.; Wang, W.; Xu, Q.; Yang, L.-M.; Wu, Y. Structural revolution of atomically dispersed Mn sites dictates oxygen reduction performance. Nano Res. 2021, 14, 4512–4519. [Google Scholar] [CrossRef]
- Han, X.; Zhang, T.; Chen, W.; Dong, B.; Meng, G.; Zheng, L.; Yang, C.; Sun, X.; Zhuang, Z.; Wang, D.; et al. Mn@N4 Oxygen Reduction Electrocatalyst: Operando Investigation of Active Sites and High Performance in Zinc–Air Battery. Adv. Energy Mater. 2021, 11, 2002753. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, F.; Yang, C.; Han, X.; Liang, C.; Zhang, Z.; Li, Y.; Han, A.; Liu, J.; Liu, B. Boosting ORR performance by single atomic divacancy Zn-N3C-C8 sites on ultrathin N-doped carbon nanosheets. Chem Catal. 2022, 2, 836–852. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, S.; Sun, M.; Wang, S.; Huang, B.; Du, Y. Heteroatom-Driven Coordination Fields Altering Single Cerium Atom Sites for Efficient Oxygen Reduction Reaction. Adv. Mater. 2023, 35, 2302485. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Zhang, H.; Cao, L.; Liu, X.; Wu, D.; Shen, X.; Zhang, X.; Chen, Z.; Ru, S.; Zhu, X.; et al. Understanding Synergistic Catalysis on Cu-Se Dual Atom Sites via Operando X-ray Absorption Spectroscopy in Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2023, 62, e202217719. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Tian, Z.; Cheng, H.; Wang, T.; Zhang, W.; Lu, Y.; Lai, Y.; He, G. Engineering d-band center of FeN4 moieties for efficient oxygen reduction reaction electrocatalysts. Energy Storage Mater. 2023, 59, 102764. [Google Scholar] [CrossRef]
- Li, Z.; Wang, Q.; Cheng, H.; Wang, M.; Hu, S.; He, G.; Tian, Z. Rectification effect: A universal strategy for single-atom electrocatalysts to enhance oxygen reduction reaction. Energy Storage Mater. 2025, 76, 104121. [Google Scholar] [CrossRef]
- Li, Z.; Cheng, H.; Lu, Y.; Wang, T.; Li, Y.; Zhang, W.; He, G.; Tian, Z. Potent Charge-Trapping for Boosted Electrocatalytic Oxygen Reduction. Adv. Energy Mater. 2023, 13, 2203963. [Google Scholar] [CrossRef]
- Asset, T.; Atanassov, P. Iron-Nitrogen-Carbon Catalysts for Proton Exchange Membrane Fuel Cells. Joule 2020, 4, 33–44. [Google Scholar] [CrossRef]
- Ma, Q.; Jin, H.; Zhu, J.; Li, Z.; Xu, H.; Liu, B.; Zhang, Z.; Ma, J.; Mu, S. Stabilizing Fe–N–C Catalysts as Model for Oxygen Reduction Reaction. Adv. Sci. 2021, 8, 2102209. [Google Scholar] [CrossRef]
- Jiao, L.; Li, J.; Richard, L.L.; Sun, Q.; Stracensky, T.; Liu, E.; Sougrati, M.T.; Zhao, Z.; Yang, F.; Zhong, S.; et al. Chemical vapour deposition of Fe–N–C oxygen reduction catalysts with full utilization of dense Fe–N4 sites. Nat. Mater. 2021, 20, 1385–1391. [Google Scholar] [CrossRef]
- Qiao, Y.; Yuan, P.; Hu, Y.; Zhang, J.; Mu, S.; Zhou, J.; Li, H.; Xia, H.; He, J.; Xu, Q. Sulfuration of an Fe–N–C Catalyst Containing FexC/Fe Species to Enhance the Catalysis of Oxygen Reduction in Acidic Media and for Use in Flexible Zn–Air Batteries. Adv. Mater. 2018, 30, 1804504. [Google Scholar] [CrossRef]
- Tian, H.; Song, A.; Zhang, P.; Sun, K.; Wang, J.; Sun, B.; Fan, Q.; Shao, G.; Chen, C.; Liu, H.; et al. High Durability of Fe–N–C Single-Atom Catalysts with Carbon Vacancies toward the Oxygen Reduction Reaction in Alkaline Media. Adv. Mater. 2023, 35, 2210714. [Google Scholar] [CrossRef]
- Chen, Z.; Niu, H.; Ding, J.; Liu, H.; Chen, P.H.; Lu, Y.H.; Lu, Y.R.; Zuo, W.; Han, L.; Guo, Y. Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: Effect of iron spin-state tuning. Angew. Chem. Int. Ed. 2021, 133, 25608–25614. [Google Scholar] [CrossRef]
- Dai, Y.; Liu, B.; Zhang, Z.; Guo, P.; Liu, C.; Zhang, Y.; Zhao, L.; Wang, Z. Tailoring the d-Orbital Splitting Manner of Single Atomic Sites for Enhanced Oxygen Reduction. Adv. Mater. 2023, 35, 2210757. [Google Scholar] [CrossRef]
- Nørskov, J.K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J.R.; Bligaard, T.; Jónsson, H. Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B 2004, 108, 17886–17892. [Google Scholar] [CrossRef]
- He, Y.; Liu, S.; Priest, C.; Shi, Q.; Wu, G. Atomically dispersed metal–nitrogen–carbon catalysts for fuel cells: Advances in catalyst design, electrode performance, and durability improvement. Chem. Soc. Rev. 2020, 49, 3484–3524. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Li, S. Unconventional Oxygen Reduction Reaction Mechanism and Scaling Relation on Single-Atom Catalysts. ACS Catal. 2020, 10, 4313–4318. [Google Scholar] [CrossRef]
- Lu, X.F.; Xia, B.Y.; Zang, S.Q.; Lou, X.W. Metal–organic frameworks based electrocatalysts for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2020, 132, 4662–4678. [Google Scholar] [CrossRef]
- Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J.K. Understanding Catalytic Activity Trends in the Oxygen Reduction Reaction. Chem. Rev. 2018, 118, 2302–2312. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Li, H.; Liu, C.; Zheng, L.; Liu, C.; Wang, J.-O.; Liu, S.; Han, Y.; Gu, L.; Qian, J.; et al. Single-Atom Fe Catalysts for Fenton-Like Reactions: Roles of Different N Species. Adv. Mater. 2022, 34, 2110653. [Google Scholar] [CrossRef]
- Li, P.; Jiao, Y.; Ruan, Y.; Fei, H.; Men, Y.; Guo, C.; Wu, Y.; Chen, S. Revealing the role of double-layer microenvironments in pH-dependent oxygen reduction activity over metal-nitrogen-carbon catalysts. Nat. Commun. 2023, 14, 6936. [Google Scholar] [CrossRef]
- Yang, H.; Chen, Z.; Kou, S.; Lu, G.; Chen, D.; Liu, Z. Carbon-supported catalysts with atomically dispersed metal sites for oxygen electroreduction: Present and future perspectives. J. Mater. Chem. A 2021, 9, 15919–15936. [Google Scholar] [CrossRef]
- Liu, L.; Corma, A. Confining isolated atoms and clusters in crystalline porous materials for catalysis. Nat. Rev. Mater. 2021, 6, 244–263. [Google Scholar] [CrossRef]
- Sun, J.-F.; Xu, Q.-Q.; Qi, J.-L.; Zhou, D.; Zhu, H.-Y.; Yin, J.-Z. Isolated Single Atoms Anchored on N-Doped Carbon Materials as a Highly Efficient Catalyst for Electrochemical and Organic Reactions. ACS Sustain. Chem. Eng. 2020, 8, 14630–14656. [Google Scholar] [CrossRef]
- Zhang, H.; Hwang, S.; Wang, M.; Feng, Z.; Karakalos, S.; Luo, L.; Qiao, Z.; Xie, X.; Wang, C.; Su, D.; et al. Single Atomic Iron Catalysts for Oxygen Reduction in Acidic Media: Particle Size Control and Thermal Activation. J. Am. Chem. Soc. 2017, 139, 14143–14149. [Google Scholar] [CrossRef]
- Kou, Z.; Zang, W.; Ma, Y.; Pan, Z.; Mu, S.; Gao, X.; Tang, B.; Xiong, M.; Zhao, X.; Cheetham, A.K.; et al. Cage-confinement pyrolysis route to size-controlled molybdenum-based oxygen electrode catalysts: From isolated atoms to clusters and nanoparticles. Nano Energy 2020, 67, 104288. [Google Scholar] [CrossRef]
- Jeong, H.; Shin, S.; Lee, H. Heterogeneous Atomic Catalysts Overcoming the Limitations of Single-Atom Catalysts. ACS Nano 2020, 14, 14355–14374. [Google Scholar] [CrossRef]
- Yi, J.-D.; Xu, R.; Chai, G.-L.; Zhang, T.; Zang, K.; Nan, B.; Lin, H.; Liang, Y.-L.; Lv, J.; Luo, J.; et al. Cobalt single-atoms anchored on porphyrinic triazine-based frameworks as bifunctional electrocatalysts for oxygen reduction and hydrogen evolution reactions. J. Mater. Chem. A 2019, 7, 1252–1259. [Google Scholar] [CrossRef]
- Wan, W.; Triana, C.A.; Lan, J.; Li, J.; Allen, C.S.; Zhao, Y.; Iannuzzi, M.; Patzke, G.R. Bifunctional Single Atom Electrocatalysts: Coordination–Performance Correlations and Reaction Pathways. ACS Nano 2020, 14, 13279–13293. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, H.-Y.; Zhang, X.; Liang, J.-X.; Yu, Q.; Xiao, H.; Li, J. Theoretical Understandings of Graphene-based Metal Single-Atom Catalysts: Stability and Catalytic Performance. Chem. Rev. 2020, 120, 12315–12341. [Google Scholar] [CrossRef] [PubMed]
- Shaari, N.; Kamarudin, S.K. Graphene in electrocatalyst and proton conductiong membrane in fuel cell applications: An overview. Renew. Sustain. Energy Rev. 2017, 69, 862–870. [Google Scholar] [CrossRef]
- Shu, X.; Chen, S.; Chen, S.; Pan, W.; Zhang, J. Cobalt nitride embedded holey N-doped graphene as advanced bifunctional electrocatalysts for Zn-Air batteries and overall water splitting. Carbon 2020, 157, 234–243. [Google Scholar] [CrossRef]
- Chen, S.; Zhang, N.; Narváez Villarrubia, C.W.; Huang, X.; Xie, L.; Wang, X.; Kong, X.; Xu, H.; Wu, G.; Zeng, J.; et al. Single Fe atoms anchored by short-range ordered nanographene boost oxygen reduction reaction in acidic media. Nano Energy 2019, 66, 104164. [Google Scholar] [CrossRef]
- Chen, G.; Qiu, X.; Liu, S.; Cui, Y.; Sun, Y.; Zhang, Y.; Liu, Y.; Liu, G.; Kim, Y.; Xing, W.; et al. Mn–N–C with High-Density Atomically Dispersed Mn Active Sites for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2025, 64, e202503934. [Google Scholar] [CrossRef]
- Zhang, H.; Chung, H.T.; Cullen, D.A.; Wagner, S.; Kramm, U.I.; More, K.L.; Zelenay, P.; Wu, G. High-performance fuel cell cathodes exclusively containing atomically dispersed iron active sites. Energy Environ. Sci. 2019, 12, 2548–2558. [Google Scholar] [CrossRef]
- Lai, Q.; Zheng, L.; Liang, Y.; He, J.; Zhao, J.; Chen, J. Metal–Organic-Framework-Derived Fe-N/C Electrocatalyst with Five-Coordinated Fe-Nx Sites for Advanced Oxygen Reduction in Acid Media. ACS Catal. 2017, 7, 1655–1663. [Google Scholar] [CrossRef]
- Cui, X.; Li, W.; Ryabchuk, P.; Junge, K.; Beller, M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 2018, 1, 385–397. [Google Scholar] [CrossRef]
- Qu, Y.; Li, Z.; Chen, W.; Lin, Y.; Yuan, T.; Yang, Z.; Zhao, C.; Wang, J.; Zhao, C.; Wang, X.; et al. Direct transformation of bulk copper into copper single sites via emitting and trapping of atoms. Nat. Catal. 2018, 1, 781–786. [Google Scholar] [CrossRef]
- Hu, Y.; Li, B.; Yu, C.; Fang, H.; Li, Z. Mechanochemical preparation of single atom catalysts for versatile catalytic applications: A perspective review. Mater. Today 2023, 63, 288–312. [Google Scholar] [CrossRef]
- Zheng, Y.; Yang, D.-S.; Kweun, J.M.; Li, C.; Tan, K.; Kong, F.; Liang, C.; Chabal, Y.J.; Kim, Y.Y.; Cho, M.; et al. Rational design of common transition metal-nitrogen-carbon catalysts for oxygen reduction reaction in fuel cells. Nano Energy 2016, 30, 443–449. [Google Scholar] [CrossRef]
- Peng, H.; Liu, F.; Liu, X.; Liao, S.; You, C.; Tian, X.; Nan, H.; Luo, F.; Song, H.; Fu, Z.; et al. Effect of Transition Metals on the Structure and Performance of the Doped Carbon Catalysts Derived From Polyaniline and Melamine for ORR Application. ACS Catal. 2014, 4, 3797–3805. [Google Scholar] [CrossRef]
- Gao, L.; Xiao, M.; Jin, Z.; Liu, C.; Zhu, J.; Ge, J.; Xing, W. Correlating Fe source with Fe-N-C active site construction: Guidance for rational design of high-performance ORR catalyst. J. Energy Chem. 2018, 27, 1668–1673. [Google Scholar] [CrossRef]
- Zhang, D.; She, F.; Chen, J.; Wei, L.; Li, H. Why Do Weak-Binding M–N–C Single-Atom Catalysts Possess Anomalously High Oxygen Reduction Activity? J. Am. Chem. Soc. 2025, 147, 6076–6086. [Google Scholar] [CrossRef]
- Ruan, Q.-D.; Feng, R.; Liu, L.; Zhang, L.; Feng, J.-J.; Shi, Y.; Gao, Y.-J.; Wang, A.-J. Atomically dispersed dual-active-site catalyst for enhanced oxygen reduction reaction: Synergistic effect of Fe and V in M−N−C structures. Chem. Eng. J. 2025, 509, 161441. [Google Scholar] [CrossRef]
- Zhang, N.; Zhou, T.; Chen, M.; Feng, H.; Yuan, R.; Zhong, C.a.; Yan, W.; Tian, Y.; Wu, X.; Chu, W.; et al. High-purity pyrrole-type FeN4 sites as a superior oxygen reduction electrocatalyst. Energy Environ. Sci. 2020, 13, 111–118. [Google Scholar] [CrossRef]
- Ha, Y.; Fei, B.; Yan, X.; Xu, H.; Chen, Z.; Shi, L.; Fu, M.; Xu, W.; Wu, R. Atomically Dispersed Co-Pyridinic N-C for Superior Oxygen Reduction Reaction. Adv. Energy Mater. 2020, 10, 2002592. [Google Scholar] [CrossRef]
- He, Y.; Guo, H.; Hwang, S.; Yang, X.; He, Z.; Braaten, J.; Karakalos, S.; Shan, W.; Wang, M.; Zhou, H.; et al. Single Cobalt Sites Dispersed in Hierarchically Porous Nanofiber Networks for Durable and High-Power PGM-Free Cathodes in Fuel Cells. Adv. Mater. 2020, 32, 2003577. [Google Scholar] [CrossRef] [PubMed]
- Mun, Y.; Lee, S.; Kim, K.; Kim, S.; Lee, S.; Han, J.W.; Lee, J. Versatile Strategy for Tuning ORR Activity of a Single Fe-N4 Site by Controlling Electron-Withdrawing/Donating Properties of a Carbon Plane. J. Am. Chem. Soc. 2019, 141, 6254–6262. [Google Scholar] [CrossRef] [PubMed]
- Chao, G.; Zhang, L.; Wang, D.; Chen, S.; Guo, H.; Xu, K.; Fan, W.; Liu, T. Activation of graphitic nitrogen sites for boosting oxygen reduction. Carbon 2020, 159, 611–616. [Google Scholar] [CrossRef]
- Zhang, L.; Sang, W.; Wang, T.; Wei, X.; Li, Z.; Chen, C.; Kou, Z.; Mu, S. Cu–N–C support confinement stabilizes active Co sites in oxygen reduction reaction. Nano Res. 2025, 18, 94907345. [Google Scholar] [CrossRef]
- Berwanger, J.; Polesya, S.; Mankovsky, S.; Ebert, H.; Giessibl, F.J. Atomically Resolved Chemical Reactivity of Small Fe Clusters. Phys. Rev. Lett. 2020, 124, 096001. [Google Scholar] [CrossRef]
- Li, Y.; Liu, X.; Zheng, L.; Shang, J.; Wan, X.; Hu, R.; Guo, X.; Hong, S.; Shui, J. Preparation of Fe–N–C catalysts with FeNx (x = 1, 3, 4) active sites and comparison of their activities for the oxygen reduction reaction and performances in proton exchange membrane fuel cells. J. Mater. Chem. A 2019, 7, 26147–26153. [Google Scholar] [CrossRef]
- Zitolo, A.; Goellner, V.; Armel, V.; Sougrati, M.-T.; Mineva, T.; Stievano, L.; Fonda, E.; Jaouen, F. Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 2015, 14, 937–942. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Wu, G.; Wang, G. Role of Local Carbon Structure Surrounding FeN4 Sites in Boosting the Catalytic Activity for Oxygen Reduction. J. Phys. Chem. C 2017, 121, 11319–11324. [Google Scholar] [CrossRef]
- Jia, Q.; Ramaswamy, N.; Hafiz, H.; Tylus, U.; Strickland, K.; Wu, G.; Barbiellini, B.; Bansil, A.; Holby, E.F.; Zelenay, P.; et al. Experimental Observation of Redox-Induced Fe–N Switching Behavior as a Determinant Role for Oxygen Reduction Activity. ACS Nano 2015, 9, 12496–12505. [Google Scholar] [CrossRef]
- Jiao, L.; Zhang, R.; Wan, G.; Yang, W.; Wan, X.; Zhou, H.; Shui, J.; Yu, S.-H.; Jiang, H.-L. Nanocasting SiO2 into metal-organic frameworks imparts dual protection to high-loading Fe single-atom electrocatalysts. Nat. Commun. 2020, 11, 2831. [Google Scholar] [CrossRef] [PubMed]
- Jin, H.; Kou, Z.; Cai, W.; Zhou, H.; Ji, P.; Liu, B.; Radwan, A.; He, D.; Mu, S. P–Fe bond oxygen reduction catalysts toward high-efficiency metal–air batteries and fuel cells. J. Mater. Chem. A 2020, 8, 9121–9127. [Google Scholar] [CrossRef]
- Chen, Y.; Ji, S.; Zhao, S.; Chen, W.; Dong, J.; Cheong, W.-C.; Shen, R.; Wen, X.; Zheng, L.; Rykov, A.I.; et al. Enhanced oxygen reduction with single-atomic-site iron catalysts for a zinc-air battery and hydrogen-air fuel cell. Nat. Commun. 2018, 9, 5422. [Google Scholar] [CrossRef]
- Banham, D.; Ye, S.; Pei, K.; Ozaki, J.-i.; Kishimoto, T.; Imashiro, Y. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Power Sources 2015, 285, 334–348. [Google Scholar] [CrossRef]
- Choi, C.H.; Baldizzone, C.; Grote, J.-P.; Schuppert, A.K.; Jaouen, F.; Mayrhofer, K.J.J. Stability of Fe-N-C Catalysts in Acidic Medium Studied by Operando Spectroscopy. Angew. Chem. Int. Ed. 2015, 54, 12753–12757. [Google Scholar] [CrossRef]
- Herranz, J.; Jaouen, F.; Lefèvre, M.; Kramm, U.I.; Proietti, E.; Dodelet, J.-P.; Bogdanoff, P.; Fiechter, S.; Abs-Wurmbach, I.; Bertrand, P.; et al. Unveiling N-Protonation and Anion-Binding Effects on Fe/N/C Catalysts for O2 Reduction in Proton-Exchange-Membrane Fuel Cells. J. Phys. Chem. C 2011, 115, 16087–16097. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Yang, L.; Kishimoto, T.; Fu, X.; Ye, S.; Chen, Z.; Banham, D. Is the rapid initial performance loss of Fe/N/C non precious metal catalysts due to micropore flooding? Energy Environ. Sci. 2017, 10, 296–305. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Lai, Y.-J.; Wan, L.-Y.; Yang, H.; Dong, J.; Huang, L.; Chen, C.; Rauf, M.; Zhou, Z.-Y.; Sun, S.-G. Suppression Effect of Small Organic Molecules on Oxygen Reduction Activity of Fe/N/C Catalysts. ACS Energy Lett. 2018, 3, 1396–1401. [Google Scholar] [CrossRef]
- Banham, D.; Kishimoto, T.; Sato, T.; Kobayashi, Y.; Narizuka, K.; Ozaki, J.-i.; Zhou, Y.; Marquez, E.; Bai, K.; Ye, S. New insights into non-precious metal catalyst layer designs for proton exchange membrane fuel cells: Improving performance and stability. J. Power Sources 2017, 344, 39–45. [Google Scholar] [CrossRef]
- Lu, Y.; Zhu, Y.; Chen, Z.; Chen, C.; Li, X.; Yu, H.; Peng, K.; Tian, Z. Boosting the Performance of Aluminum–Air Batteries by Interface Modification. ACS Appl. Mater. Interfaces 2024, 16, 37818–37828. [Google Scholar] [CrossRef]
- Jiang, W.-J.; Gu, L.; Li, L.; Zhang, Y.; Zhang, X.; Zhang, L.-J.; Wang, J.-Q.; Hu, J.-S.; Wei, Z.; Wan, L.-J. Understanding the High Activity of Fe–N–C Electrocatalysts in Oxygen Reduction: Fe/Fe3C Nanoparticles Boost the Activity of Fe–Nx. J. Am. Chem. Soc. 2016, 138, 3570–3578. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Wei, L.; Jiang, W.-J.; Hu, Z.; Luo, H.; Zhao, W.; Xu, T.; Wu, W.; Wu, M.; Hu, J.-S. Chemical state of surrounding iron species affects the activity of Fe-Nx for electrocatalytic oxygen reduction. Appl. Catal. B Environ. 2019, 251, 240–246. [Google Scholar] [CrossRef]
- Zhang, Y.-X.; Zhang, S.; Huang, H.; Liu, X.; Li, B.; Lee, Y.; Wang, X.; Bai, Y.; Sun, M.; Wu, Y.; et al. General Synthesis of a Diatomic Catalyst Library via a Macrocyclic Precursor-Mediated Approach. J. Am. Chem. Soc. 2023, 145, 4819–4827. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, J.; Hu, Y.; Jin, Z.; Hu, K.; Reddy, K.M.; Yuan, Q.; Lin, X.; Qiu, H.-J. Theoretically Revealed and Experimentally Demonstrated Synergistic Electronic Interaction of CoFe Dual-Metal Sites on N-doped Carbon for Boosting Both Oxygen Reduction and Evolution Reactions. Nano Lett. 2022, 22, 3392–3399. [Google Scholar] [CrossRef]
- Li, H.; Di, S.; Niu, P.; Wang, S.; Wang, J.; Li, L. A durable half-metallic diatomic catalyst for efficient oxygen reduction. Energy Environ. Sci. 2022, 15, 1601–1610. [Google Scholar] [CrossRef]
- Li, L.; Huang, S.; Cao, R.; Yuan, K.; Lu, C.; Huang, B.; Tang, X.; Hu, T.; Zhuang, X.; Chen, Y. Optimizing Microenvironment of Asymmetric N,S-Coordinated Single-Atom Fe via Axial Fifth Coordination toward Efficient Oxygen Electroreduction. Small 2022, 18, 2105387. [Google Scholar] [CrossRef]
- Chen, K.; Liu, K.; An, P.; Li, H.; Lin, Y.; Hu, J.; Jia, C.; Fu, J.; Li, H.; Liu, H.; et al. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat. Commun. 2020, 11, 4173. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, Y.-J.; Zhou, K. Self-Adjusting Activity Induced by Intrinsic Reaction Intermediate in Fe–N–C Single-Atom Catalysts. J. Am. Chem. Soc. 2019, 141, 14115–14119. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Wang, Y.; Xu, R.; Chen, W.; Zheng, L.; Han, A.; Zhu, Y.; Zhang, J.; Zhang, H.; Luo, J.; et al. Electronic structure engineering to boost oxygen reduction activity by controlling the coordination of the central metal. Energy Environ. Sci. 2018, 11, 2348–2352. [Google Scholar] [CrossRef]
- Choi, C.H.; Lim, H.-K.; Chung, M.W.; Chon, G.; Ranjbar Sahraie, N.; Altin, A.; Sougrati, M.-T.; Stievano, L.; Oh, H.S.; Park, E.S.; et al. The Achilles’ heel of iron-based catalysts during oxygen reduction in an acidic medium. Energy Environ. Sci. 2018, 11, 3176–3182. [Google Scholar] [CrossRef]
- Charreteur, F.; Jaouen, F.; Dodelet, J.-P. Iron porphyrin-based cathode catalysts for PEM fuel cells: Influence of pyrolysis gas on activity and stability. Electrochim. Acta 2009, 54, 6622–6630. [Google Scholar] [CrossRef]
- Choi, C.H.; Baldizzone, C.; Polymeros, G.; Pizzutilo, E.; Kasian, O.; Schuppert, A.K.; Ranjbar Sahraie, N.; Sougrati, M.-T.; Mayrhofer, K.J.J.; Jaouen, F. Minimizing Operando Demetallation of Fe-N-C Electrocatalysts in Acidic Medium. ACS Catal. 2016, 6, 3136–3146. [Google Scholar] [CrossRef]
- Liu, H.; Zeng, W.; Yang, Y.; Chen, J.; Zhao, Y.; Mu, S. Synchronously improved graphitization and surface area in a 3D porous carbon network as a high capacity anode material for lithium/sodium-ion batteries. J. Mater. Chem. A 2021, 9, 1260–1268. [Google Scholar] [CrossRef]
- Gao, W.; Havas, D.; Gupta, S.; Pan, Q.; He, N.; Zhang, H.; Wang, H.-L.; Wu, G. Is reduced graphene oxide favorable for nonprecious metal oxygen-reduction catalysts? Carbon 2016, 102, 346–356. [Google Scholar] [CrossRef]
- Lee, J.M.; Han, H.; Jin, S.; Choi, S.M.; Kim, H.J.; Seo, M.H.; Kim, W.B. A Review on Recent Progress in the Aspect of Stability of Oxygen Reduction Electrocatalysts for Proton-Exchange Membrane Fuel Cell: Quantum Mechanics and Experimental Approaches. Energy Technol. 2019, 7, 1900312. [Google Scholar] [CrossRef]
- Fu, X.; Hassan, F.M.; Zamani, P.; Jiang, G.; Higgins, D.C.; Choi, J.-Y.; Wang, X.; Xu, P.; Liu, Y.; Chen, Z. Engineered architecture of nitrogenous graphene encapsulating porous carbon with nano-channel reactors enhancing the PEM fuel cell performance. Nano Energy 2017, 42, 249–256. [Google Scholar] [CrossRef]
- Xia, D.; Yang, X.; Xie, L.; Wei, Y.; Jiang, W.; Dou, M.; Li, X.; Li, J.; Gan, L.; Kang, F. Direct Growth of Carbon Nanotubes Doped with Single Atomic Fe–N4 Active Sites and Neighboring Graphitic Nitrogen for Efficient and Stable Oxygen Reduction Electrocatalysis. Adv. Funct. Mater. 2019, 29, 1906174. [Google Scholar] [CrossRef]
- Han, G.-F.; Xiao, B.-B.; Kim, S.-J.; Li, F.; Ahmad, I.; Jeon, I.-Y.; Baek, J.-B. Tuning edge-oxygenated groups on graphitic carbon materials against corrosion. Nano Energy 2019, 66, 104112. [Google Scholar] [CrossRef]
- Zhu, J.; Mu, S. Defect Engineering in Carbon-Based Electrocatalysts: Insight into Intrinsic Carbon Defects. Adv. Funct. Mater. 2020, 30, 2001097. [Google Scholar] [CrossRef]
- Jiang, Y.; Yang, L.; Sun, T.; Zhao, J.; Lyu, Z.; Zhuo, O.; Wang, X.; Wu, Q.; Ma, J.; Hu, Z. Significant Contribution of Intrinsic Carbon Defects to Oxygen Reduction Activity. ACS Catal. 2015, 5, 6707–6712. [Google Scholar] [CrossRef]
- Proietti, E.; Jaouen, F.; Lefèvre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J.-P. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2011, 2, 416. [Google Scholar] [CrossRef]
Catalyst | E1/2 (V vs. RHE) | Tafel Slope (mV dec−1) | Stability (ΔE1/2 After CV Cycling) | Reference |
---|---|---|---|---|
Fe-N-CNH4I | 0.92 | 52 | 12 mV@20K cycles | [20] |
FeSA-N-C | 0.89 | -- | 6 mV@5K cycles | [21] |
FeNx/NC-S | 0.92 | 61 | -- | [22] |
FeN4-O-NCR | 0.94 | 54 | 5 mV@5K cycles | [23] |
FeNSC-2Fe | 0.91 | 59 | 7 mV@8K cycles | [24] |
FeN4-Ten | 0.87 | 86 | -- | [25] |
Fe-ISAs/CN | 0.90 | 52 | 2 mV@5K cycles | [26] |
SA-Fe-NHPC | 0.90 | 72 | 1 mV@10K cycles | [27] |
Fe-N/C-SAC | 0.91 | 52 | 7 mV@5K cycles | [28] |
FeSA/B, N-CNT | 0.93 | 62 | -- | [29] |
Fe-SAs/N-C | 0.90 | 56 | 2 mV@10K cycles | [30] |
FeN4Cl1/NC | 0.91 | 36 | 2 mV@5K cycles | [31] |
MS-CoSA-NC | 0.86 | 89 | 14 mV@10K cycles | [32] |
Zr-N/O-C | 0.91 | 71 | 5 mV@10K cycles | [33] |
S-Cu-ISA/SNC | 0.92 | 50 | 2 mV@5K cycles | [34] |
CoN4/NG | 0.87 | 70 | -- | [35] |
Mn-N-C-OAc | 0.94 | 64 | 11 mV@5K cycles | [36] |
O-Zr-N-C | 0.91 | 66 | 2 mV@40K cycles | [37] |
Co1-N3PS/HC | 0.92 | 31 | 1 mV@10K cycles | [38] |
MnSAs/S-NC | 0.92 | 62 | 1 mV@5K cycles | [39] |
Cu-SA/SNC | 0.89 | -- | 1 mV@10K cycles | [40] |
Mn SAs-N4 | 0.90 | 69 | 0 mV@8K cycles | [41] |
Mn-SAS/CN | 0.91 | 69 | 0 mV@5K cycles | [42] |
Zn-SAs/UNCNs | 0.91 | 38 | 6 mV@5K cycles | [43] |
Ce SAs/PSNC | 0.90 | 47 | 4 mV@5K cycles | [44] |
Cu-Se DAs | 0.91 | 31 | 16 mV@10K cycles | [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Li, Z.; Du, X.; Wang, M.; Li, S.; Wang, Q.; Zhou, Y.; Lai, Y. Recent Advances in Improving the Alkaline Oxygen Reduction Performance of Atomically Dispersed Metal–Nitrogen–Carbon Catalysts. Nanomaterials 2025, 15, 1257. https://doi.org/10.3390/nano15161257
Chen J, Li Z, Du X, Wang M, Li S, Wang Q, Zhou Y, Lai Y. Recent Advances in Improving the Alkaline Oxygen Reduction Performance of Atomically Dispersed Metal–Nitrogen–Carbon Catalysts. Nanomaterials. 2025; 15(16):1257. https://doi.org/10.3390/nano15161257
Chicago/Turabian StyleChen, Jian, Zheng Li, Xiong Du, Mengran Wang, Simin Li, Qiyu Wang, Yangen Zhou, and Yanqing Lai. 2025. "Recent Advances in Improving the Alkaline Oxygen Reduction Performance of Atomically Dispersed Metal–Nitrogen–Carbon Catalysts" Nanomaterials 15, no. 16: 1257. https://doi.org/10.3390/nano15161257
APA StyleChen, J., Li, Z., Du, X., Wang, M., Li, S., Wang, Q., Zhou, Y., & Lai, Y. (2025). Recent Advances in Improving the Alkaline Oxygen Reduction Performance of Atomically Dispersed Metal–Nitrogen–Carbon Catalysts. Nanomaterials, 15(16), 1257. https://doi.org/10.3390/nano15161257