The Development of Hexagonal Boron Nitride Crystal Growth Technologies and Their Applications in Neutron Detection
Abstract
1. Introduction
2. Introduction of h-BN Materials
2.1. Fundamental Properties of BN
2.2. Advantages of h-BN as a Neutron Detection Material
3. Development of h-BN Crystal Growth Technologies
3.1. High-Pressure High-Temperature (HPHT) Synthesis
3.2. Chemical Vapor Deposition (CVD) Synthesis
3.3. Flux Growth Method Synthesis
3.4. Other Synthesis Techniques
4. Applications of h-BN in Neutron Detection
5. 10B Enrichment Methods and Considerations
5.1. Enrichment Methods
5.2. Cost Considerations
6. Conclusions and Outlook
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schedin, F.; Geim, A.K.; Morozov, S.V.; Hill, E.W.; Blake, P.; Katsnelson, M.I.; Novoselov, K.S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655. [Google Scholar] [CrossRef]
- Wang, K.; De Greve, K.; Jauregui, L.A.; Sushko, A.; High, A.; Zhou, Y.; Scuri, G.; Taniguchi, T.; Watanabe, K.; Lukin, M.D.; et al. Electrical control of charged carriers and excitons in atomically thin materials. Nat. Nanotechnol. 2018, 13, 128–132. [Google Scholar] [CrossRef]
- Gong, Y.; Duan, R.; Hu, Y.; Wu, Y.; Zhu, S.; Wang, X.; Wang, Q.; Lau, S.P.; Liu, Z.; Tay, B.K. Reconfigurable and nonvolatile ferroelectric bulk photovoltaics based on 3R-WS2 for machine vision. Nat. Commun. 2025, 16, 230. [Google Scholar] [CrossRef]
- Cheng, W.; Zhao, F.; Zhang, T.; He, Y.; Zhu, H. A review of ultra-wide-bandgap semiconductor radiation detector for high-energy particles and photons. Nanotechnology 2025, 35, 152002. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-H.; Magyari-Kope, B.; Hsu, C.-H.; Woon, W.-Y.; Liao, S.S. Boron nitride for applications in microelectronics. Nat. Rev. Electr. Eng. 2025, 2, 205–214. [Google Scholar] [CrossRef]
- Lee, S.; Song, M.-K.; Zhang, X.; Suh, J.M.; Ryu, J.-E.; Kim, J. Mixed-dimensional integration of 3D-on-2D heterostructures for advanced electronics. Nano Lett. 2024, 24, 9117–9128. [Google Scholar] [CrossRef]
- Balmain, W. XLVI. Observations on the formation of compounds of boron and silicon with nitrogen and certain metals. Lond. Edinb. Dublin Philos. Mag. J. Sci. 1842, 21, 270–277. [Google Scholar] [CrossRef]
- Taniguchi, T. Materials science research of boron nitride obtained at high pressure and high temperature. J. Ceram. Soc. Jpn. 2020, 128, 620–626. [Google Scholar] [CrossRef]
- Tian, M.; Wang, N.-N.; Wang, G.; Akash, M.A.S.; Shi, H.; Shu, J.; Chen, R.; Afzal, N.; Hu, Z.; Yang, S.-S. High-Pressure High-Temperature Synthesis of Hexagonal Boron Nitride Single Crystals from a Sr3B2N4 Solvent. Cryst. Growth Des. 2024, 24, 8557–8562. [Google Scholar] [CrossRef]
- Lee, K.H.; Shin, H.-J.; Lee, J.; Lee, I.-Y.; Kim, G.-H.; Choi, J.-Y.; Kim, S.-W. Large-scale synthesis of high-quality hexagonal boron nitride nanosheets for large-area graphene electronics. Nano Lett. 2012, 12, 714–718. [Google Scholar] [CrossRef]
- Cao, J.; Tian, M.; Zhang, S.; Hu, W.; Wan, N.; Lin, T. Carbon-related defect control of bulk hBN single crystals growth by atmospheric-pressure metal-flux-based fusion synthesis. J. Mater. Sci. 2022, 57, 14668–14680. [Google Scholar] [CrossRef]
- Taniguchi, T.; Watanabe, K. Synthesis of high-purity boron nitride single crystals under high pressure by using Ba–BN solvent. J. Cryst. Growth 2007, 303, 525–529. [Google Scholar] [CrossRef]
- Li, J.; Glaser, E.R.; Elias, C.; Ye, G.; Evans, D.; Xue, L.; Liu, S.; Cassabois, G.; Gil, B.; Valvin, P.; et al. Defect engineering of monoisotopic hexagonal boron nitride crystals via neutron transmutation doping. Chem. Mater. 2021, 33, 9231–9239. [Google Scholar] [CrossRef]
- Chen, K.; Song, B.; Ravichandran, N.K.; Zheng, Q.; Chen, X.; Lee, H.; Sun, H.; Li, S.; Gamage, G.A.G.U.; Tian, F.; et al. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride. Science 2020, 367, 555–559. [Google Scholar] [CrossRef]
- Caldwell, J.D.; Aharonovich, I.; Cassabois, G.; Edgar, J.H.; Gil, B.; Basov, D.N. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 2019, 4, 552–567. [Google Scholar] [CrossRef]
- Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Hexagonal boron nitride single crystal growth at atmospheric pressure using Ni−Cr solvent. Chem. Mater. 2008, 20, 1661–1663. [Google Scholar] [CrossRef]
- Maity, A.; Grenadier, S.; Li, J.; Lin, J.; Jiang, H. High efficiency hexagonal boron nitride neutron detectors with 1 cm2 detection areas. Appl. Phys. Lett. 2020, 116, 142102. [Google Scholar] [CrossRef]
- Ahmed, H.; Kar, S.; Cantono, G.; Nersisyan, G.; Brauckmann, S.; Doria, D.; Gwynne, D.; Macchi, A.; Naughton, K.; Willi, O.; et al. Investigations of ultrafast charge dynamics in laser-irradiated targets by a self probing technique employing laser driven protons. Nucl. Instrum. Methods Phys. Res. Sect. A 2016, 829, 172–175. [Google Scholar] [CrossRef]
- Kouzes, R.T.; Ely, J.H.; Erikson, L.E.; Kernan, W.J.; Lintereur, A.T.; Siciliano, E.R.; Stromswold, D.C.; Woodring, M.L. Alternative Neutron Detection Testing Summary; Pacific Northwest National Laboratory (PNNL): Richland, WA, USA, 2010.
- Doan, T.; Li, J.; Lin, J.; Jiang, H. Growth and device processing of hexagonal boron nitride epilayers for thermal neutron and deep ultraviolet detectors. AIP Adv. 2016, 6, 075213. [Google Scholar] [CrossRef]
- Doan, T.; Li, J.; Lin, J.; Jiang, H. Response of alpha particles in hexagonal boron nitride neutron detectors. Appl. Phys. Lett. 2017, 110, 213502. [Google Scholar] [CrossRef]
- Kumar, G.; Karar, P.; Singh, A.; Topkar, A.; Patil, D.; Dusane, R. Ion assisted near-complete filling of high aspect ratio trenches for 3-D neutron detectors. Thin Solid Film 2021, 720, 138521. [Google Scholar] [CrossRef]
- Alemoush, Z.; Hossain, N.; Tingsuwatit, A.; Almohammad, M.; Li, J.; Lin, J.; Jiang, H. Toward achieving cost-effective hexagonal BN semi-bulk crystals and BN neutron detectors via halide vapor phase epitaxy. Appl. Phys. Lett. 2023, 122, 012105. [Google Scholar] [CrossRef]
- Tingsuwatit, A.; Li, J.; Lin, J.; Jiang, H. Probing the bandgap and effects of t-BN domains in h-BN neutron detectors. Appl. Phys. Express 2022, 15, 101003. [Google Scholar] [CrossRef]
- Liu, S.; He, R.; Xue, L.; Li, J.; Liu, B.; Edgar, J.H. Single crystal growth of millimeter-sized monoisotopic hexagonal boron nitride. Chem. Mater. 2018, 30, 6222–6225. [Google Scholar] [CrossRef]
- Naclerio, A.E.; Kidambi, P.R. A review of scalable hexagonal boron nitride (h-BN) synthesis for present and future applications. Adv. Mater. 2023, 35, 2207374. [Google Scholar] [CrossRef]
- Vuong, T.; Liu, S.; Van der Lee, A.; Cuscó, R.; Artús, L.; Michel, T.; Valvin, P.; Edgar, J.; Cassabois, G.; Gil, B. Isotope engineering of van der Waals interactions in hexagonal boron nitride. Nat. Mater. 2018, 17, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Moon, S.; Kim, J.; Park, J.; Im, S.; Kim, J.; Hwang, I.; Kim, J.K. Hexagonal boron nitride for next-generation photonics and electronics. Adv. Mater. 2023, 35, 2204161. [Google Scholar] [CrossRef] [PubMed]
- Bernard, S.; Salameh, C.; Miele, P. Boron nitride ceramics from molecular precursors: Synthesis, properties and applications. Dalton Trans. 2016, 45, 861–873. [Google Scholar] [CrossRef]
- Monteiro, S.N.; Skury, A.L.D.; de Azevedo, M.G.; Bobrovnitchii, G.S. Cubic boron nitride competing with diamond as a superhard engineering material—An overview. J. Mater. Res. Technol. 2013, 2, 68–74. [Google Scholar] [CrossRef]
- Bundy, F.P.; Wentorf, R.H., Jr. Direct transformation of hexagonal boron nitride to denser forms. J. Chem. Phys. 1963, 38, 1144–1149. [Google Scholar] [CrossRef]
- Xu, B.; Lv, M.; Fan, X.; Zhang, W.; Xu, Y.; Zhai, T. Lattice parameters of hexagonal and cubic boron nitrides at high temperature and high pressure. Integr. Ferroelectr. 2015, 162, 85–93. [Google Scholar] [CrossRef]
- Liu, L.; Feng, Y.; Shen, Z. Structural and electronic properties of h-BN. Phys. Rev. B 2003, 68, 104102. [Google Scholar] [CrossRef]
- Kim, K.K.; Lee, H.S.; Lee, Y.H. Synthesis of hexagonal boron nitride heterostructures for 2D van der Waals electronics. Chem. Soc. Rev. 2018, 47, 6342–6369. [Google Scholar] [CrossRef]
- Lee, J.S.; Basu, N.; Shin, H.S. Large-area single-crystal hexagonal boron nitride: From growth mechanism to potential applications. Chem. Phys. Rev. 2023, 4, 041306. [Google Scholar] [CrossRef]
- Yuan, C.; Li, J.; Lindsay, L.; Cherns, D.; Pomeroy, J.W.; Liu, S.; Edgar, J.H.; Kuball, M. Modulating the thermal conductivity in hexagonal boron nitride via controlled boron isotope concentration. Commun. Phys. 2019, 43, 2. [Google Scholar] [CrossRef]
- Grenadier, S.; Maity, A.; Li, J.; Lin, J.; Jiang, H. Electrical transport properties of hexagonal boron nitride epilayers. In Semiconductors and Semimetals; Elsevier: Amsterdam, The Netherlands, 2021; Volume 107, pp. 393–454. [Google Scholar]
- Hasan, S.; Ahmad, I. Progress in hexagonal boron nitride (h-BN)-based solid-state neutron detector. Electron. Mater. 2022, 3, 235–251. [Google Scholar] [CrossRef]
- He, S.; Wang, F.; Chen, L.; Li, Y.; Ruan, J.; Ouyang, X. The performance of a high-resistance semiconductor detector based on h-10BN with thermal neutron detection capability. J. Mater. Sci. 2023, 58, 12288–12297. [Google Scholar] [CrossRef]
- Maity, A.; Grenadier, S.; Li, J.; Lin, J.; Jiang, H. Hexagonal boron nitride neutron detectors with high detection efficiencies. J. Appl. Phys. 2018, 123, 044501. [Google Scholar] [CrossRef]
- Wang, W.; Wu, C.; Li, Z.; Liu, K. Interface Engineering of 2D Materials toward High-Temperature Electronic Devices. Adv. Mater. 2025, 37, 2418439. [Google Scholar] [CrossRef] [PubMed]
- Doan, T.C.C. Thermal Neutron Detector Based on Hexagonal Boron Nitride. Ph.D. Thesis, Texas Tech University, Lubbock, TX, USA, 2016. [Google Scholar]
- Doan, T.; Majety, S.; Grenadier, S.; Li, J.; Lin, J.; Jiang, H. Fabrication and characterization of solid-state thermal neutron detectors based on hexagonal boron nitride epilayers. Nucl. Instrum. Methods Phys. Res. Sect. A 2014, 748, 84–90. [Google Scholar] [CrossRef]
- Ahmed, K.; Dahal, R.; Weltz, A.; Lu, J.J.-Q.; Danon, Y.; Bhat, I.B. Solid-state neutron detectors based on thickness scalable hexagonal boron nitride. Appl. Phys. Lett. 2017, 110, 023503. [Google Scholar] [CrossRef]
- Ney, A.; Danon, Y.; Zerkle, M.; Brain, P.; Fritz, D.; Siemers, G.; Singh, S. A detection system for accurate (α, n) neutron counting measurements of low-rate (α, n) neutron sources. Nucl. Instrum. Methods Phys. Res. Sect. A 2023, 1048, 167930. [Google Scholar] [CrossRef]
- Mballo, A.; Ahaitouf, A.; Sundaram, S.; Srivastava, A.; Ottapilakkal, V.; Gujrati, R.; Vuong, P.; Karrakchou, S.; Kumar, M.; Li, X.; et al. Natural boron and 10B-enriched hexagonal boron nitride for high-sensitivity self-biased metal–semiconductor–metal neutron detectors. ACS Omega 2021, 7, 804–809. [Google Scholar] [CrossRef]
- Wentorf, R., Jr. Modern very-high-pressure research. Br. J. Appl. Phys. 1967, 18, 865. [Google Scholar] [CrossRef]
- Nie, A.; Zhao, Z.; Xu, B.; Tian, Y. Microstructure engineering in diamond-based materials. Nat. Mater. 2025, 24, 1172–1185. [Google Scholar] [CrossRef]
- Paine, R.T.; Narula, C.K. Synthetic routes to boron nitride. Chem. Rev. 1990, 90, 73–91. [Google Scholar] [CrossRef]
- Taniguchi, T.; Yamaoka, S. Spontaneous nucleation of cubic boron nitride single crystal by temperature gradient method under high pressure. J. Cryst. Growth 2001, 222, 549–557. [Google Scholar] [CrossRef]
- Watanabe, K.; Taniguchi, T.; Kanda, H. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal. Nat. Mater. 2004, 3, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Zhigadlo, N.D. Crystal growth of hexagonal boron nitride (hBN) from Mg–B–N solvent system under high pressure. J. Cryst. Growth 2014, 402, 308–311. [Google Scholar] [CrossRef]
- Gong, T.; Chen, L.; Wang, X.; Qiu, Y.; Liu, H.; Yang, Z.; Walther, T. Recent developments in transmission electron microscopy for crystallographic characterization of strained semiconductor heterostructures. Crystals 2025, 15, 192. [Google Scholar] [CrossRef]
- Kamikawa, N.; Huang, X.; Hansen, N. Tailoring structures through two-step annealing process in nanostructured aluminum produced by accumulative roll-bonding. J. Mater. Sci. 2008, 43, 7313–7319. [Google Scholar] [CrossRef]
- Sumiya, H.; Harano, K. Micro-scale abrasion investigations of single-crystal diamonds using nano-polycrystalline diamond wheels. Diam. Relat. Mater. 2022, 126, 109108. [Google Scholar] [CrossRef]
- Poole, C.P., Jr. Encyclopedic Dictionary of Condensed Matter Physics; Academic Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Miyazaki, N. Thermal stress and dislocations in bulk crystal growth. In Handbook of Crystal Growth; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1049–1092. [Google Scholar]
- Abbasloo, M.; Shokrollahi, H.; Alhaji, A. Slip-casting process of MgO–Y2O3 nanocomposite: Investigation of powder synthesis method. Mater. Chem. Phys. 2020, 254, 123387. [Google Scholar] [CrossRef]
- Wang, H.; Lv, Z.; Kumar, S.; Wang, Q. Applications of machine learning to high temperature and high pressure environments: A literature review. APL Mach. Learn. 2024, 2, 046111. [Google Scholar] [CrossRef]
- Qi, X.; Ma, W.; Dang, Y.; Su, W.; Liu, L. Optimization of the melt/crystal interface shape and oxygen concentration during the Czochralski silicon crystal growth process using an artificial neural network and a genetic algorithm. J. Cryst. Growth 2020, 548, 125828. [Google Scholar] [CrossRef]
- Liu, F.; Fan, Z. Defect engineering of two-dimensional materials for advanced energy conversion and storage. Chem. Soc. Rev. 2023, 52, 1723–1772. [Google Scholar] [CrossRef] [PubMed]
- Chou, H.; Majumder, S.; Roy, A.; Catalano, M.; Zhuang, P.; Quevedo-Lopez, M.; Colombo, L.; Banerjee, S.K. Dependence of h-BN film thickness as grown on nickel single-crystal substrates of different orientations. ACS Appl. Mater. Interfaces 2018, 10, 44862–44870. [Google Scholar] [CrossRef]
- Lee, K.; Kim, Y.; Tosa, M.; Kasahara, A.; Yosihara, K. Hexagonal boron nitride film substrate for fabrication of nanostructures. Appl. Surf. Sci. 2001, 169, 415–419. [Google Scholar] [CrossRef]
- Frueh, S.; Kellett, R.; Mallery, C.; Molter, T.; Willis, W.S.; King’ondu, C.; Suib, S.L. Pyrolytic decomposition of ammonia borane to boron nitride. Inorg. Chem. 2011, 50, 783–792. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.W.; Tsang, C.W.; Chen, X.; Guo, R.; Jia, W.; Lu, S.M.; Sui-Seng, C.; Ewart, C.B.; Lough, A.; Amoroso, D.; et al. Catalytic solvolysis of ammonia borane. Angew. Chem. Int. Ed. 2010, 49, 8708–8711. [Google Scholar] [CrossRef]
- Ohashi, T.; Wang, Y.; Shimada, S. Preparation and high catalytic performance of hollow BN spheres-supported Ni for hydrogen production from methanol. J. Mater. Chem. 2010, 20, 5129–5135. [Google Scholar] [CrossRef]
- Song, X.; Gao, J.; Nie, Y.; Gao, T.; Sun, J.; Ma, D.; Li, Q.; Chen, Y.; Jin, C.; Bachmatiuk, A.; et al. Chemical vapor deposition growth of large-scale hexagonal boron nitride with controllable orientation. Nano Res. 2015, 8, 3164–3176. [Google Scholar] [CrossRef]
- Wang, L.; Xu, X.; Zhang, L.; Qiao, R.; Wu, M.; Wang, Z.; Zhang, S.; Liang, J.; Zhang, Z.; Zhang, Z.; et al. Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper. Nature 2019, 570, 91–95. [Google Scholar] [CrossRef]
- Biswas, A.; Ruan, Q.; Lee, F.; Li, C.; Iyengar, S.A.; Puthirath, A.B.; Zhang, X.; Kannan, H.; Gray, T.; Birdwell, A.G.; et al. Unidirectional domain growth of hexagonal boron nitride thin films. Appl. Mater. Today 2023, 30, 101734. [Google Scholar] [CrossRef]
- Yang, Y.; Song, Z.; Lu, G.; Zhang, Q.; Zhang, B.; Ni, B.; Wang, C.; Li, X.; Gu, L.; Xie, X.; et al. Intrinsic toughening and stable crack propagation in hexagonal boron nitride. Nature 2021, 594, 57–61. [Google Scholar] [CrossRef]
- Kim, G.; Kim, D.; Choi, Y.; Ghorai, A.; Park, G.; Jeong, U. New approaches to produce large-area single crystal thin films. Adv. Mater. 2023, 35, 2203373. [Google Scholar] [CrossRef] [PubMed]
- Fukamachi, S.; Solís-Fernández, P.; Kawahara, K.; Tanaka, D.; Otake, T.; Lin, Y.-C.; Suenaga, K.; Ago, H. Large-area synthesis and transfer of multilayer hexagonal boron nitride for enhanced graphene device arrays. Nat. Electron. 2023, 6, 126–136. [Google Scholar] [CrossRef]
- Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934. [Google Scholar] [CrossRef]
- Liu, S.; He, R.; Ye, Z.; Du, X.; Lin, J.; Jiang, H.; Liu, B.; Edgar, J.H. Large-scale growth of high-quality hexagonal boron nitride crystals at atmospheric pressure from an Fe–Cr flux. Cryst. Growth Des. 2017, 17, 4932–4935. [Google Scholar] [CrossRef]
- Li, J.; Yuan, C.; Elias, C.; Wang, J.; Zhang, X.; Ye, G.; Huang, C.; Kuball, M.; Eda, G.; Redwing, J.M.; et al. Hexagonal boron nitride single crystal growth from solution with a temperature gradient. Chem. Mater. 2020, 32, 5066–5072. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Zhang, X.; Elias, C.; Ye, G.; Evans, D.; Eda, G.; Redwing, J.M.; Cassabois, G.; Gil, B.; et al. Hexagonal boron nitride crystal growth from iron, a single component flux. ACS Nano 2021, 15, 7032–7039. [Google Scholar] [CrossRef]
- Ouaj, T.; Kramme, L.; Metzelaars, M.; Li, J.; Watanabe, K.; Taniguchi, T.; Edgar, J.H.; Beschoten, B.; Kögerler, P.; Stampfer, C. Chemically detaching hBN crystals grown at atmospheric pressure and high temperature for high-performance graphene devices. Nanotechnology 2023, 34, 475703. [Google Scholar] [CrossRef]
- Hoffman, T.; Zhang, Y.; Edgar, J.; Gaskill, D. Growth of hBN using metallic boron: Isotopically enriched h10BN and h11BN. MRS Online Proc. Libr. 2014, 1635, 35–40. [Google Scholar] [CrossRef]
- Li, J.; Elias, C.; Ye, G.; Evans, D.; Liu, S.; He, R.; Cassabois, G.; Gil, B.; Valvin, P.; Liu, B.; et al. Single crystal growth of monoisotopic hexagonal boron nitride from a Fe–Cr flux. J. Mater. Chem. C 2020, 8, 9931–9935. [Google Scholar] [CrossRef]
- Zhang, N.; Yang, N.; Wang, W.; Zhong, X.; Chen, X. Growth of hexagonal boron nitride crystals at atmospheric pressure from CuCr flux. J. Cryst. Growth 2021, 562, 126074. [Google Scholar] [CrossRef]
- Li, Y.; Wen, X.; Tan, C.; Li, N.; Li, R.; Huang, X.; Tian, H.; Yao, Z.; Liao, P.; Yu, S.; et al. Synthesis of centimeter-scale high-quality polycrystalline hexagonal boron nitride films from Fe fluxes. Nanoscale 2021, 13, 11223–11231. [Google Scholar] [CrossRef] [PubMed]
- Pierret, A.; Loayza, J.; Berini, B.; Betz, A.; Plaçais, B.; Ducastelle, F.; Barjon, J.; Loiseau, A. Excitonic recombinations in h-BN: From bulk to exfoliated layers. Phys. Rev. B 2014, 89, 035414. [Google Scholar] [CrossRef]
- Griffin, A.; Harvey, A.; Cunningham, B.; Scullion, D.; Tian, T.; Shih, C.-J.; Gruening, M.; Donegan, J.F.; Santos, E.J.; Backes, C. Spectroscopic size and thickness metrics for liquid-exfoliated h-BN. Chem. Mater. 2018, 30, 1998–2005. [Google Scholar] [CrossRef]
- Zhu, W.; Gao, X.; Li, Q.; Li, H.; Chao, Y.; Li, M.; Mahurin, S.M.; Li, H.; Zhu, H.; Dai, S. Controlled gas exfoliation of boron nitride into few-layered nanosheets. Angew. Chem. 2016, 128, 10924–10928. [Google Scholar] [CrossRef]
- Tonkikh, A.; Voloshina, E.; Werner, P.; Blumtritt, H.; Senkovskiy, B.; Güntherodt, G.; Parkin, S.; Dedkov, Y.S. Structural and electronic properties of epitaxial multilayer h-BN on Ni (111) for spintronics applications. Sci. Rep. 2016, 6, 23547. [Google Scholar] [CrossRef] [PubMed]
- Wofford, J.M.; Nakhaie, S.; Krause, T.; Liu, X.; Ramsteiner, M.; Hanke, M.; Riechert, H.; Lopes, J.M.J. A hybrid MBE-based growth method for large-area synthesis of stacked hexagonal boron nitride/graphene heterostructures. Sci. Rep. 2017, 7, 43644. [Google Scholar] [CrossRef]
- Wrigley, J.; Bradford, J.; James, T.; Cheng, T.S.; Thomas, J.; Mellor, C.J.; Khlobystov, A.N.; Eaves, L.; Foxon, C.T.; Novikov, S.V.; et al. Epitaxy of boron nitride monolayers for graphene-based lateral heterostructures. 2D Mater. 2021, 8, 034001. [Google Scholar] [CrossRef]
- Thomas, J.; Bradford, J.; Cheng, T.S.; Summerfield, A.; Wrigley, J.; Mellor, C.J.; Khlobystov, A.N.; Foxon, C.T.; Eaves, L.; Novikov, S.V.; et al. Step-flow growth of graphene-boron nitride lateral heterostructures by molecular beam epitaxy. 2D Mater. 2020, 7, 035014. [Google Scholar] [CrossRef]
- Ahmed, Y.M.Z.; El-Sheikh, S.M.; Abd Allah, A.A.E.B.; Anwar, S. Thermal properties and formation mechanism of h-BN nanoneedles synthesized via carbothermic reduction reaction. Int. J. Appl. Ceram. Technol. 2018, 15, 42–52. [Google Scholar] [CrossRef]
- Daiki, S.; Ishikawa, T. Synthesis of highly purified and crystallized h-BN using calcium-assisted carbothermal reduction nitridation. Int. J. Appl. Ceram. Technol. 2022, 19, 1860–1869. [Google Scholar] [CrossRef]
- Zhao, D.; Tian, Z.; Du, S.; Zhao, S.; Fan, B.; Zhang, S.; Wang, B.; Li, F.; Cao, W.; Chen, K.; et al. Synthesis of near-spherical BN powders by templated carbothermal reduction and nitridation. J. Am. Ceram. Soc. 2025, 108, e20138. [Google Scholar] [CrossRef]
- Mirzaee, M.; Rashidi, A.; Zolriasatein, A.; Abadchi, M.R. A simple, low cost, and template-free method for synthesis of boron nitride using different precursors. Ceram. Int. 2021, 47, 5977–5984. [Google Scholar] [CrossRef]
- Eslami-shahed, H.; Nekouee, K.; Ehsani, N. Synthesis of h-BN through spark plasma sintering with urea and boric acid as the starting materials. Diam. Relat. Mater. 2022, 124, 108915. [Google Scholar] [CrossRef]
- Besisa, D.H.; Hagras, M.A.; Ewais, E.M.; Ahmed, Y.M.; Zaki, Z.I.; Ahmed, A. Low temperature synthesis of nano-crystalline h-boron nitride from boric acid/urea precursors. J. Ceram. Process Res. 2016, 17, 1219–1225. [Google Scholar]
- Alam, T.; Wang, B.; Pulavarthy, R.; Haque, M.A.; Muratore, C.; Glavin, N.; Roy, A.K.; Voevodin, A.A. Domain engineering of physical vapor deposited two-dimensional materials. Appl. Phys. Lett. 2014, 105, 213110. [Google Scholar] [CrossRef]
- Muratore, C.; Voevodin, A.A.; Glavin, N.R. Physical vapor deposition of 2D Van der Waals materials: A review. Thin Solid Film. 2019, 688, 137500. [Google Scholar] [CrossRef]
- Uher, J.; Pospisil, S.; Linhart, V.; Schieber, M. Efficiency of composite boron nitride neutron detectors in comparison with helium-3 detectors. Appl. Phys. Lett. 2007, 90, 124101. [Google Scholar] [CrossRef]
- LiCausi, N.; Dingley, J.; Danon, Y.; Lu, J.-Q.; Bhat, I.B. Hard X-Ray, Gamma-Ray, and Neutron Detector Physics X. In A Novel Solid State Self-Powered Neutron Detector, Proceedings of the Optical Engineering + Applications, San Diego, CA, USA, 10–14 August 2008; SPIE: Bellingham, WA, USA, 2008; pp. 65–76. [Google Scholar]
- Ahmed, K.; Dahal, R.; Weltz, A.; Lu, J.-Q.; Danon, Y.; Bhat, I. Growth of hexagonal boron nitride on (111) Si for deep UV photonics and thermal neutron detection. Appl. Phys. Lett. 2016, 109, 113501. [Google Scholar] [CrossRef]
- Maity, A.; Grenadier, S.; Li, J.; Lin, J.; Jiang, H. High sensitivity hexagonal boron nitride lateral neutron detectors. Appl. Phys. Lett. 2019, 114, 222102. [Google Scholar] [CrossRef]
- Maity, A.; Grenadier, S.; Li, J.; Lin, J.; Jiang, H. Toward achieving flexible and high sensitivity hexagonal boron nitride neutron detectors. Appl. Phys. Lett. 2017, 111, 033507. [Google Scholar] [CrossRef]
- Alemoush, Z.; Tingsuwatit, A.; Maity, A.; Li, J.; Lin, J.; Jiang, H. Status of h-BN quasi-bulk crystals and high efficiency neutron detectors. J. Appl. Phys. 2024, 135, 175704. [Google Scholar] [CrossRef]
- Li, J.; Tingsuwatit, A.; Alemoush, Z.; Lin, J.Y.; Jiang, H.X. Ultrawide bandgap semiconductor h-BN for direct detection of fast neutrons. APL Mater. 2025, 13, 011101. [Google Scholar] [CrossRef]
- McKeown-Green, A.S.; Zeng, H.J.; Saunders, A.P.; Li, J.; Shi, J.; Shen, Y.; Pan, F.; Hu, J.; Dionne, J.A.; Heinz, T.F.; et al. Millimeter-scale exfoliation of hBN with tunable flake thickness for scalable encapsulation. ACS Appl. Nano Mater. 2024, 7, 6574–6582. [Google Scholar] [CrossRef]
- Stehle, Y.Y.; Vlassiouk, I. Controlled Lay-By-Layer Etching of CVD Grown Multilayer h-BN Single. In Electrochemical Society Meeting Abstracts 239; The Electrochemical Society, Inc.: Pennington, NJ, USA, 2021; p. 850. [Google Scholar]
- Islam, M.S.; Mazumder, A.A.M.; Sohag, M.U.; Sarkar, M.M.H.; Stampfl, C.; Park, J. Growth mechanisms of monolayer hexagonal boron nitride (h-BN) on metal surfaces: Theoretical perspectives. Nanoscale Adv. 2023, 5, 4041–4064. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Mu, Y.; Li, X.; Bai, P. Advances in boron-10 isotope separation by chemical exchange distillation. Ann. Nucl. Energy 2010, 37, 1–4. [Google Scholar] [CrossRef]
- Gornushkin, I.B.; Sennikov, P.G.; Kornev, R.A.; Ermakov, A.A.; Shkrunin, V.E. Laser induced dielectric breakdown for chemical vapor deposition by hydrogen reduction of volatile boron halides BCl3 and BF3. Plasma Chem. Plasma Process. 2020, 40, 1145–1162. [Google Scholar] [CrossRef]
Property | Value | |
---|---|---|
Density (g/cm3) | 2.27 | |
Electrical resistivity (Ω/m) | 1016 | |
Dielectric constant (102–105 Hz) | 4~5 | |
Melting point (°C) | 3000 | |
Mohs hardness | 1~2 | |
Thermal conductivity | along c-axis (W/m K) | 34 |
in-plane (W/m K) | 600 | |
Thermal expansion coefficient (200–1000 °C) | Parallel to hot-pressing direction | 7.51 × 10−6 |
Perpendicular to hot-pressing direction | 0.77 × 10−6 | |
Flexural strength (MPa) | Parallel to hot-pressing direction | 60~80 |
Perpendicular to hot-pressing direction | 40~50 | |
Elastic modulus | Parallel to hot-pressing direction | 84 |
Perpendicular to hot-pressing direction | 35 |
Method | Reaction Pathway | Limitations |
---|---|---|
Carbothermal | B2O3 + 3C + N2 → 2BN + 3CO (>1500 °C) | Carbon residues > 5% |
Urea-Borax | Na2B4O7 + 2CO(NH2)2 → 4BN + Na2O + 4H2O + 2CO2 | Requires NH3 atmosphere |
Detector Type | Efficiency (%) | Energy Resolution (%) | Timing Resolution (ns) | Active Area |
---|---|---|---|---|
h-BN | 40–96 | 5–10 | 10–100 | cm2 |
3He | 80–90 | 2–5 | 100–1000 | dm2 |
Scintillators | 50–80 | 5–10 | 10–100 | m2 |
Silicon (B-coated) | 10–30 | 1–2 | <10 | cm2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, W.; Liu, D.; Wang, F.; Zhang, L. The Development of Hexagonal Boron Nitride Crystal Growth Technologies and Their Applications in Neutron Detection. Nanomaterials 2025, 15, 1256. https://doi.org/10.3390/nano15161256
Song W, Liu D, Wang F, Zhang L. The Development of Hexagonal Boron Nitride Crystal Growth Technologies and Their Applications in Neutron Detection. Nanomaterials. 2025; 15(16):1256. https://doi.org/10.3390/nano15161256
Chicago/Turabian StyleSong, Wendong, Dan Liu, Fenglong Wang, and Lu Zhang. 2025. "The Development of Hexagonal Boron Nitride Crystal Growth Technologies and Their Applications in Neutron Detection" Nanomaterials 15, no. 16: 1256. https://doi.org/10.3390/nano15161256
APA StyleSong, W., Liu, D., Wang, F., & Zhang, L. (2025). The Development of Hexagonal Boron Nitride Crystal Growth Technologies and Their Applications in Neutron Detection. Nanomaterials, 15(16), 1256. https://doi.org/10.3390/nano15161256