Liquid-Phase Synthesis of Monodispersed V5+ Faradic Electrode Toward High-Performance Supercapacitor Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Experimental Procedure
2.3. Material Characterization
2.4. Electrode Fabrication and Measurements
3. Results and Discussion
Characterization of Diols-Derived V2O5
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chen, M.; Zhang, Y.; Xing, G.; Chou, S.L.; Tang, Y. Electrochemical energy storage devices working in extreme conditions. Energy Environ. Sci. 2021, 14, 3323–3351. [Google Scholar] [CrossRef]
- Karthikeyan, S.; Narenthiran, B.; Sivanantham, A.; Bhatlu, L.D.; Maridurai, T. Supercapacitor: Evolution and review. Mater. Today Proc. 2021, 46, 3984–3988. [Google Scholar] [CrossRef]
- Pradeepa, S.S.; Sutharthani, K.; Subadevi, R.; Sivakumar, M. Fabrication of 1.8 V hybrid supercapacitor based on molybdenum disulfide-Zinc oxide nanocomposite electrode alongside polyvinyl alcohol (PVA) gel electrolyte. Adv. Powder Technol. 2024, 35, 104490. [Google Scholar] [CrossRef]
- Raj, R.; Verma, R.; Singh, J. Nanomaterials for energy storage applications. In Bioenergy Research: Integrative Solution for Existing Roadblock; Springer: Berlin/Heidelberg, Germany, 2021; pp. 135–156. [Google Scholar]
- Liu, Y.; Zhou, G.; Liu, K.; Cui, Y. Accounts of Chemical Research; ACS Publications: Washington, DC, USA, 2017; Volume 50, pp. 2895–2905. [Google Scholar]
- Janshirani, P.J.; Rengapillai, S.D.; Elumalai, S.; Subashchandrabose, R.; Liu, W.R.; Marimuthu, S. Sulfur-layered porous carbon nanostructured matrix-Co3O4 composites: An enhancement of cycling performance in sodium-sulfur battery. J. Taiwan Inst. Chem. Eng. 2025, 170, 105978. [Google Scholar] [CrossRef]
- Fiévet, F.; Ammar-Merah, S.; Brayner, R.; Chau, F.; Giraud, M.; Mammeri, F.; Peron, J.; Piquemal, J.Y.; Sicard, L.; Viau, G. The polyol process: A unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chem. Soc. Rev. 2018, 47, 5187–5233. [Google Scholar] [CrossRef]
- Qiu, Y.; Xu, G.L.; Yan, K.; Sun, H.; Xiao, J.; Yang, S.; Sun, S.G.; Jin, L.; Deng, H. Morphology-conserved transformation: Synthesis of hierarchical mesoporous nanostructures of Mn2O3 and the nanostructural effects on Li-ion insertion/deinsertion properties. J. Mater. Chem. 2011, 21, 6346–6353. [Google Scholar] [CrossRef]
- Gheitaran, R.; Afkhami, A.; Madrakian, T. Effect of light at different wavelengths on polyol synthesis of silver nanocubes. Sci. Rep. 2022, 12, 19202. [Google Scholar] [CrossRef] [PubMed]
- Orel, Z.C.; Anžlovar, A.; Dražić, G.; Žigon, M. Cuprous oxide nanowires prepared by an additive-free polyol process. Cryst. Growth Des. 2007, 7, 453–458. [Google Scholar] [CrossRef]
- Khulbe, R.; Kandpal, N.D.; Kandpal, A. ZnO Nanoparticles via Modified Polyol Method: Structural Characterization and Antimicrobial Efficacy. J. Water Environ. Nanotechnol. 2025, 10, 61–70. [Google Scholar]
- Fievet, F.; Lagier, J.P.; Figlarz, M. Preparing monodisperse metal powders in micrometer and submicrometer sizes by the polyol process. Mrs Bull. 1989, 14, 29–34. [Google Scholar] [CrossRef]
- Fievet, F.; Lagier, J.P.; Blin, B.; Beaudoin, B.; Figlarz, M. Homogeneous and heterogeneous nucleations in the polyol process for the preparation of micron and submicron size metal particles. Solid State Ion. 1989, 32, 198–205. [Google Scholar] [CrossRef]
- Patil, M.D.; Dhas, S.D.; Mane, A.A.; Moholkar, A.V. Clinker-like V2O5 nanostructures anchored on 3D Ni-foam for supercapacitor application. Mater. Sci. Semicond. Process. 2021, 133, 105978. [Google Scholar] [CrossRef]
- Lee, H.; Kumbhar, V.S.; Lee, J.; Choi, Y.; Lee, K. Highly reversible crystal transformation of anodized porous V2O5 nanostructures for wide potential window high-performance supercapacitors. Electrochim. Acta 2020, 334, 135618. [Google Scholar] [CrossRef]
- Fu, M.; Zhuang, Q.; Zhu, Z.; Zhang, Z.; Chen, W.; Liu, Q.; Yu, H. Facile synthesis of V2O5/graphene composites as advanced electrode materials in supercapacitors. J. Alloys Compd. 2021, 862, 158006. [Google Scholar] [CrossRef]
- Shireesha, K.; Chidurala, S.C. Impact of hybridization on specific capacitance in hybrid NiO/V2O5@ graphene composites as advanced supercapacitor electrode materials. Appl. Surf. Sci. Adv. 2022, 12, 100329. [Google Scholar] [CrossRef]
- Rohith, R.; Prasannakumar, A.T.; Manju, V.; Thomas, M.; Mohan, R.R.; Varma, S.J. An insight into the electrochemical performance of nanostructured V2O5 in aqueous neutral electrolytes and fabrication of 2V, high energy density, symmetric supercapacitor. Electrochim. Acta 2024, 503, 144911. [Google Scholar]
- Leistenschneider, D.; Abedi, Z.; Ivey, D.G.; Chen, W. Coating of low-cost asphaltenes-derived carbon fibers with V2O5 for supercapacitor application. Energy Fuels 2022, 36, 3328–3338. [Google Scholar] [CrossRef]
- Bulla, M.; Kumar, V.; Devi, R.; Kumar, S.; Sindhu, S.; Dahiya, R.; Jatrana, A.; Mishra, A.K.; Singh, R.B. Electrochemical Performance of V2O5//f-CNT Asymmetric Flexible Device for Supercapacitor Application. J. Inorg. Organomet. Polym. Mater. 2025, 35, 1–15. [Google Scholar] [CrossRef]
- Thakur, Y.S.; Acharya, A.D.; Sharma, S.; Bisoyi, S. Enhanced electrochemical performance of in situ polymerized V2O5-PANI nanocomposites and its practical application confirmation by assembling ionic liquid as well as solid state-based supercapacitor device. Results Chem. 2024, 7, 101259. [Google Scholar] [CrossRef]
- Temam, A.G.; Getaneh, S.A.; Alshoaibi, A.; Awada, C.; Nwanya, A.C.; Ezema, F.I.; Ejikeme, P.M. Effect of synthesis method on electrochemical activities of V2O5 nanoparticles for supercapacitor application. J. Mater. Sci. Mater. Electron. 2025, 36, 1–17. [Google Scholar] [CrossRef]
- Singh, A.K.; Deepak, N.; Shukla, S.; Saxena, S. V2O5 coral microspheres: High performance electrode material for Li-ion supercapacitor. Mater. Lett. 2024, 360, 135956. [Google Scholar] [CrossRef]
- Mumtaz, M.; Mumtaz, A. Unravelling the charge storage mechanism in V2O5nanorods through Systematic structural and electrochemical study. J. Electroanal. Chem. 2024, 974, 118745. [Google Scholar] [CrossRef]
- Mounasamy, V.; Keerthana, M.; Ponpandian, N. Exploring the enhanced electrochemical activity of V2O5/h-BN: Investigating its structural dynamics for asymmetric supercapacitors. ACS Appl. Electron. Mater. 2024, 6, 5681–5693. [Google Scholar] [CrossRef]
- Ragupathy, P.; Shivakumara, S.; Vasan, H.N.; Munichandraiah, N. Preparation of nanostrip V2O5 by the polyol method and its electrochemical characterization as cathode material for rechargeable lithium batteries. J. Phys. Chem. C 2008, 112, 16700–16707. [Google Scholar] [CrossRef]
- Muruganantham, R.; Sivakumar, M.; Subadevi, R.; Ramaprabhu, S.; Wu, N.L. Studies on graphene enfolded olivine composite electrode material via polyol technique for high-rate performance lithium-ion batteries. Electron. Mater. Lett. 2015, 11, 841–852. [Google Scholar] [CrossRef]
- Pradeepa, S.S.; Sutharthani, K.; Subadevi, R.; Sivakumar, M. Explorationof magnetic sesquioxide nanocomposite as a potential electrode material for the fabrication of high energy density asymmetric supercapacitors. J. Electroanal. Chem. 2023, 928, 117043. [Google Scholar] [CrossRef]
- Senthilkumar, B.; Sankar, K.V.; Selvan, R.K.; Meyrick, D.; Minakshi, M. Additions and corrections: Nano a-NiMoO4 as new electrode for electrochemical supercapacitors. RSC Adv. 2013, 3, 26473–26479. [Google Scholar] [CrossRef]
- Viau, G.; Fievet-Vincent, F.; Fievet, F. Monodisperse iron-based particles: Precipitation in liquid polyols. J. Mater. Chem. 1996, 6, 1047–1053. [Google Scholar] [CrossRef]
- Uchaker, E.; Zhou, N.; Li, Y.; Cao, G. Polyol-mediated solvothermal synthesis and electrochemical performance of nanostructured V2O5 hollow microspheres. J. Phys. Chem. C 2013, 117, 1621–1626. [Google Scholar] [CrossRef]
- Ashery, M.H.; Elnouby, M.; El-Maghraby, E.M.; Elsehly, E.M. Structural control of V2O5 nanoparticles via a thermal decomposition method for prospective photocatalytic applications. Beni-Suef Univ. J. Basic Appl. Sci. 2023, 12, 12. [Google Scholar] [CrossRef]
- Pan, A.; Zhang, J.G.; Nie, Z.; Cao, G.; Arey, B.W.; Li, G.; Liang, S.Q.; Liu, J. Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J. Mater. Chem. 2010, 20, 9193–9199. [Google Scholar] [CrossRef]
- Jing, P.; Wei, W.; Luo, W.; Li, X.; Xu, F.; Li, H.; Wei, M.; Yu, D.; Zhu, Q.; Liu, G. In-situ XRD study of the structure and electrochemical performance of V2O5nanosheets in aqueous zinc ion batteries. Inorg. Chem. Commun. 2020, 117, 107953. [Google Scholar] [CrossRef]
- Surya Bhaskaram, D.; Cheruku, R.; Govindaraj, G. Reduced graphene oxide wrapped V2O5 nanoparticles: Green synthesis and electrical properties. J. Mater. Sci. Mater. Electron. 2016, 27, 10855–10863. [Google Scholar] [CrossRef]
- Palani, N.S.; Kavitha, N.S.; Venkatesh, K.S.; Kumar, K.A.; Senthilkumar, M.; Pandurangan, A.; Ilangovan, R. The synergistic effect of the RuO2 nanoparticle-decorated V2O5heterostructure for high-performance asymmetric supercapacitors. New J. Chem. 2021, 45, 14598–14607. [Google Scholar] [CrossRef]
- Chesalov, Y.A.; Andrushkevich, T.V.; Sobolev, V.I.; Chernobay, G.B. FTIR study of β-picoline and pyridine-3-carbaldehyde transformation on V–Ti–O catalysts. The effect of sulfate content on β-picoline oxidation into nicotinic acid. J. Mol. Catal. A Chem. 2013, 380, 118–130. [Google Scholar] [CrossRef]
- Piao, L.; Liu, Q.; Li, Y. Interaction of amino acids and single-wall carbon nanotubes. J. Phys. Chem. C 2012, 116, 1724–1731. [Google Scholar] [CrossRef]
- Thakur, S.; Karak, N. Green reduction of graphene oxide by aqueous phytoextracts. Carbon 2012, 50, 5331–5339. [Google Scholar] [CrossRef]
- Umeshbabu, E.; Ranga Rao, G. A vanadium (V) oxide nanorod promoted platinum/reduced graphene oxide electrocatalyst for alcohol oxidation under acidic conditions. ChemPhysChem 2016, 17, 3524–3534. [Google Scholar] [CrossRef]
- Wang, C.C.; Lu, C.L.; Shieu, F.S.; Shih, H.C. Structure and photoluminescence properties of thermally synthesized V2O5 and Al-doped V2O5 nanostructures. Materials 2021, 14, 359. [Google Scholar] [CrossRef]
- Mehdi, S.M.Z.; Abbas, S.Z.; Seo, Y.; Goak, J.C.; Lee, N. Enhancing purity and crystallinity of carbon nanotubes by magnetically assisted arc discharge and thermal purification and their field emission characteristics. Surf. Interfaces 2024, 49, 104442. [Google Scholar] [CrossRef]
- Pitchai, R.; Thavasi, V.; Mhaisalkar, S.G.; Ramakrishna, S. Nanostructured cathode materials: A key for better performance in Li-ion batteries. J. Mater. Chem. 2011, 21, 11040–11051. [Google Scholar] [CrossRef]
- Karuppiah, D.; Palanisamy, R.; Rengapillai, S.; Liu, W.R.; Huang, C.H.; Marimuthu, S. Carbon loaded nano-designed spherically high symmetric Lithium ironorthosilicate cathode materials for Lithium secondary batteries. Polymers 2019, 11, 1703. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, Y.S.; Chang-Jian, C.W.; Syu, W.L.; Yen, S.C.; Huang, J.H.; Weng, H.C.; Lu, C.Z.; Hsu, S.C. Enhanced electrochromic performance of carbon-coated V2O5 derived from a metal–organic framework. Appl. Surf. Sci. 2021, 542, 148498. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, W.; Long, D.; Zhu, J.; Pezzotti, G. Porous V2O5nanorods/reduced graphene oxide composites for high performance symmetric supercapacitors. Appl. Surf. Sci. 2019, 478, 383–392. [Google Scholar] [CrossRef]
- Dubey, V.; Parikh, K.D.; Vyas, D.H.; Jadav, R.J.; Mohamed, H.E.A.; Ghotekar, S. Insights into the photocatalytic and supercapacitor performance of V2O5nanorods synthesized by green synthetic approach using Epipremnumaureum leaves extract. Biomass Convers. Biorefin. 2024, 15, 8755–8770. [Google Scholar] [CrossRef]
- Yang, W.; Zeng, J.; Xue, Z.; Ma, T.; Chen, J.; Li, N.; Zou, H.; Chen, S. Synthesis of vanadium oxide nanorods coated with carbon nanoshell for a high-performance supercapacitor. Ionics 2020, 26, 961–970. [Google Scholar] [CrossRef]
- Karade, S.S.; Lalwani, S.; Eum, J.H.; Kim, H. Coin cell fabricated symmetric supercapacitor device of two-steps synthesized V2O5Nanorods. J. Electroanal. Chem. 2020, 864, 114080. [Google Scholar] [CrossRef]
- Shankar, U.; Govindarajan, D.; Gopalakrishnan, R.; Maiyalagan, T.; Salethraj, J. rGO-encapsulated Sn-doped V2O5nanorods for high-performance supercapacitors. Mater. Today Commun. 2021, 27, 102357. [Google Scholar]
- Pandit, B.; Dubal, D.P.; Gómez-Romero, P.; Kale, B.B.; Sankapal, B.R. V2O5 encapsulated MWCNTs in 2D surface architecture: Complete solid-state bendable highly stabilized energy efficient supercapacitor device. Sci. Rep. 2017, 7, 43430. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Z.; Kalambate, P.K.; Zhong, Y.; Huang, Z.; Xie, M.; Shen, Y.; Huang, Y. V2O5nanopaper as a cathode material with high capacity and long cycle life for rechargeable aqueous zinc-ion battery. Nano Energy 2019, 60, 752–759. [Google Scholar] [CrossRef]
- Ghaly, H.A.; El-Deen, A.G.; Souaya, E.R.; Allam, N.K. Asymmetric supercapacitors based on 3D graphene-wrapped V2O5nanospheres and Fe3O4@3D graphene electrodes with high power and energy densities. Electrochim. Acta 2019, 310, 58–69. [Google Scholar] [CrossRef]
- Jiang, H.; Niu, H.; Yang, X.; Sun, Z.; Li, F.; Wang, Q.; Qu, F. Flexible Fe2O3 and V2O5nanofibers as binder-free electrodes for high-performance all-solid-state asymmetric supercapacitors. Chem. A Eur. J. 2018, 24, 10683–10688. [Google Scholar] [CrossRef]
- Luo, W.; Sun, Y.; Lin, Z.; Li, X.; Han, Y.; Ding, J.; Li, T.; Hou, C.; Ma, Y. Flexible Ti3C2TxMXene/V2O5 composite films for high-performance all-solid supercapacitors. J. Energy Storage 2023, 62, 106807. [Google Scholar] [CrossRef]
- Saravanakumar, B.; Purushothaman, K.K.; Muralidharan, G. V2O5/nitrogen enriched mesoporous carbon spheres nanocomposite as supercapacitor electrode. Microporous Mesoporous Mater. 2018, 258, 83–94. [Google Scholar] [CrossRef]
Sample Codes | Lattice Parameters (Å) | Crystallite Size (nm) | ||
---|---|---|---|---|
a | b | c | ||
EV | 11.50810 | 4.37324 | 3.56388 | 64.50 |
DV | 11.51290 | 4.37184 | 3.55953 | 63.23 |
TV | 11.50952 | 4.37942 | 3.56324 | 64.37 |
TTV | 11.52141 | 4.36976 | 3.55246 | 65.51 |
Samples | Methods | Morphology | Specific Capacitance (F/g) | Current Density (A/g) | Electrolytes | Ref. |
---|---|---|---|---|---|---|
rGO@V2O5 | Solvothermal | Nanorods | 450.5 | 0.5 | 5 M LiNO3 | [46] |
V2O5 NRs | Greensynthesis | Nanorods | 149.1 | 1 | 2 M KOH | [47] |
VOx@C | Sol–hydrothermal | Nanorods | 548 | 0.5 | 1 M Na2SO4 | [48] |
V2O5 | Hydrothermal | Nanorods | 347 | 1 | 1 M LiClO4 | [49] |
Sn-V2O5/rGO | Sol-gel | Nanorods | 159.3 | 1 | 1 M Na2SO4 | [50] |
V2O5 | Sol-gel | Nanorods | 365 | 1 | 2 M NaOH | [24] |
DV | Liquid-phase synthesis | Nanorods | 460 | 1 | 3 M KOH | This work |
Sample Code | Rs (Ω) | Rct (Ω) | Zw (Ω) |
---|---|---|---|
EV | 0.9 | 0.4 | 1.55 |
DV | 0.53 | 0.2 | 4.24 |
TV | 3.8 | 0.27 | 1.78 |
TTV | 1.11 | 0.45 | 1.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kannan, S.; Huang, C.-H.; Sengolammal, P.S.; Rengapillai, S.D.; Marimuthu, S.; Liu, W.-R. Liquid-Phase Synthesis of Monodispersed V5+ Faradic Electrode Toward High-Performance Supercapacitor Application. Nanomaterials 2025, 15, 1252. https://doi.org/10.3390/nano15161252
Kannan S, Huang C-H, Sengolammal PS, Rengapillai SD, Marimuthu S, Liu W-R. Liquid-Phase Synthesis of Monodispersed V5+ Faradic Electrode Toward High-Performance Supercapacitor Application. Nanomaterials. 2025; 15(16):1252. https://doi.org/10.3390/nano15161252
Chicago/Turabian StyleKannan, Sutharthani, Chia-Hung Huang, Pradeepa Stephen Sengolammal, Suba Devi Rengapillai, Sivakumar Marimuthu, and Wei-Ren Liu. 2025. "Liquid-Phase Synthesis of Monodispersed V5+ Faradic Electrode Toward High-Performance Supercapacitor Application" Nanomaterials 15, no. 16: 1252. https://doi.org/10.3390/nano15161252
APA StyleKannan, S., Huang, C.-H., Sengolammal, P. S., Rengapillai, S. D., Marimuthu, S., & Liu, W.-R. (2025). Liquid-Phase Synthesis of Monodispersed V5+ Faradic Electrode Toward High-Performance Supercapacitor Application. Nanomaterials, 15(16), 1252. https://doi.org/10.3390/nano15161252