Transparent Zinc Oxide Memristor Structures: Magnetron Sputtering of Thin Films, Resistive Switching Investigation, and Crossbar Array Fabrication
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yang, J.; Hu, L.; Shen, L.; Wang, J.; Cheng, P.; Lu, H.; Zhuge, F.; Ye, Z. Optically driven intelligent computing with ZnO memristor. Fundam. Res. 2024, 4, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Isyaku, U.B.; Khir, M.H.B.M.; Nawi, I.M.; Zakariya, M.A.; Zahoor, F. ZnO Based Resistive Random Access Memory Device: A Prospective Multifunctional Next-Generation Memory. IEEE Access 2021, 9, 105012. [Google Scholar] [CrossRef]
- Praveen, P.; Rose, T.P.; Saji, K.J. Top electrode dependent resistive switching in M/ZnO/ITO memristors, M = Al, ITO, Cu, and Au. Microelectron. J. 2022, 121, 105388. [Google Scholar] [CrossRef]
- Yu, Z.; Jia, J.; Qu, X.; Wang, Q.; Kang, W.; Liu, B.; Xiao, Q.; Gao, T.; Xie, Q. Tunable Resistive Switching Behaviors and Mechanism of the W/ZnO/ITO Memory Cell. Molecules 2023, 28, 5313. [Google Scholar] [CrossRef]
- Cristian Teran, L.; Calderon, J.A.; Quiroz, H.P.; Dussan, A. Optical properties and bipolar resistive switching of ZnO thin films deposited via DC magnetron sputtering. Chin. J. Phys. 2021, 74, 1–8. [Google Scholar] [CrossRef]
- Prakash, C.; Gupta, L.R.; Mehta, A.; Vasudev, H.; Tominov, R.; Korman, E.; Fedotov, A.; Smirnov, V.; Kesari, K.K. Computing of neuromorphic materials: An emerging approach for bioengineering solutions. Mater. Adv. 2023, 4, 5882–5919. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y.; Li, G. Recent progress in transparent memristors. J. Phys. D Appl. Phys. 2023, 56, 313001. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, R.; Zhao, H.; Sun, Z.; Liu, Z.; He, L.; Li, Y. Research Progress of Biomimetic Memristor Flexible Synapse. Coatings 2022, 12, 21. [Google Scholar] [CrossRef]
- Chen, P.-X.; Panda, D.; Tseng, T.-Y. All oxide based flexible multi-folded invisible synapse as vision photo-receptor. Sci. Rep. 2023, 13, 1454. [Google Scholar] [CrossRef]
- Kiran, M.R.; Ulla, H.; Satyanarayan, M.N.; Umesh, G. Effects of annealing temperature on the resistance switching behaviour of solution-processed ZnO thin films. Superlattices Microstruct. 2020, 148, 106718. [Google Scholar] [CrossRef]
- Patnaik, A.; Mohanty, S.K.; Sahoo, N.; Panda, D. Effect of oxygen concentration in ZnO-based transparent flexible memristor synapse. J. Mater. Sci. Mater. Electron. 2023, 34, 1406. [Google Scholar] [CrossRef]
- Li, H.; Dong, W.; Wu, X.; Xi, J.; Ji, Z. Resistive switching characteristics of ZnO/a-TiO2 bilayer film fabricated on PET/ITO transparent and flexible substrates. Mater. Res. Bull. 2016, 84, 449–454. [Google Scholar] [CrossRef]
- Tomino, R.V.; Vakulov, Z.E.; Avilov, V.I.; Shikhovtsov, I.A.; Varganov, V.I.; Kazantsev, V.B.; Gupta, L.R.; Prakash, C.; Smirnov, V.A. Approaches for Memristive Structures Using Scratching Probe Nanolithography: Towards Neuromorphic Applications. Nanomaterials 2023, 13, 1583. [Google Scholar] [CrossRef]
- Abduev, A.K.; Akhmedov, A.K.; Asvarov, A.S.; Muslimov, A.E.; Kanevsky, V.M. ZnO-based transparent conductive layers obtained by the magnetron sputtering of a composite cermet ZnO:Ga–Zn target: Part 2. Journal of Surface Investigation. X-Ray Synchrotron Neutron Tech. 2021, 15, 121–127. [Google Scholar] [CrossRef]
- Khan, S.A.; Lee, G.H.; Mahata, C.; Ismail, M.; Kim, H.; Kim, S. Bipolar and Complementary Resistive Switching Characteristics and Neuromorphic System Simulation in a Pt/ZnO/TiN Synaptic Device. Nanomaterials 2021, 11, 315. [Google Scholar] [CrossRef]
- Kandpal, K.; Singh, J.; Gupta, N.; Shekhar, C. Effect of thickness on the properties of ZnO thin films prepared by reactive RF sputtering. J. Mater. Sci. Mater. Electron. 2018, 29, 14501–14507. [Google Scholar] [CrossRef]
- Tominov, R.V.; Vakulov, Z.E.; Avilov, V.I.; Khakhulin, D.A.; Fedotov, A.A.; Zamburg, E.G.; Smirnov, V.A.; Ageev, O.A. Synthesis and memristor effect of a forming-free ZnO nanocrystalline films. Nanomaterials 2020, 10, 1007. [Google Scholar] [CrossRef] [PubMed]
- Kaim, P.; Lukaszkowicz, K.; Szindler, M.; Szindler, M.M.; Basiaga, M.; Hajduk, B. The influence of magnetron sputtering process temperature on ZnO thin-film properties. Coatings 2021, 11, 1507. [Google Scholar] [CrossRef]
- Lv, Z.; Wang, Y.; Chen, J.; Wang, J.; Zhou, Y.; Han, S.-T. Semiconductor Quantum Dots for Memories and Neuromorphic Computing Systems. Chem. Rev. J. 2020, 120, 3941–4006. [Google Scholar] [CrossRef]
- Lv, Z.; Zhu, S.; Wang, Y.; Ren, Y.; Luo, M.; Wang, H.; Zhang, G.; Zhai, Y.; Zhao, S.; Zhou, Y.; et al. Development of Bio-Voltage Operated Humidity-Sensory Neurons Comprising Self-Assembled Peptide Memristors. Adv. Mater. 2024, 36, 2405145. [Google Scholar] [CrossRef]
- Wu, S.; Ren, L.; Qing, J.; Yu, F.; Yang, K.; Yang, M.; Wang, Y.; Meng, M.; Zhou, W.; Zhou, X.; et al. Bipolar Resistance Switching in Transparent ITO/LaAlO3/SrTiO3 Memristors. ACS Appl. Mater. Interfaces 2014, 6, 8575–8579. [Google Scholar] [CrossRef] [PubMed]
- Saenko, A.V.; Vakulov, Z.E.; Klimin, V.S.; Bilyk, G.E.; Malyukov, S.P. Effect of Magnetron Sputtering Power on ITO Film Deposition at Room Temperature. Russ. Microelectron. 2023, 23, 297–302. [Google Scholar] [CrossRef]
- Cruz, M.R.A.; Ceballos-Sanchez, O.; Luevano-Hipolito, E.; Torres-Martinez, L.M. ZnO thin films deposited by RF magnetron sputtering: Effects of the annealing and atmosphere conditions on the photocatalytic hydrogen production. Int. J. Hydrogen Energy 2018, 43, 10301–10310. [Google Scholar] [CrossRef]
- Hajara, P.; Praveen, P.; Rose, T.P.; Saji, K.J. Exploring Transparent ZnO-based Memristors: Synaptic Emulation and Conduction Mechanism with Varied Top Electrodes. NanoWorld J. 2024, 10, S19–S25. [Google Scholar]
- Patnaik, A.; Acharya, A.; Tiwari, K.; Saha, P.; Sahoo, N.; Panda, D. Synaptic plasticity in zinc oxide-based flexible invisible transparent memristor by modulating oxygen concentration. J. Appl. Phys. 2024, 136, 045109. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Simanjuntak, F.M.; Panda, D.; Tseng, T.-Y. Enhanced synaptic linearity in ZnO-based invisible memristive synapse by introducing double pulsing scheme. IEEE Trans. Electron Devices 2019, 66, 4722–4726. [Google Scholar] [CrossRef]
- Chang, T.; Jo, S.-H.; Kim, K.-H.; Sheridan, P.; Gaba, S.; Lu, W. Synaptic behaviors and modeling of a metal oxide memristive device. Appl. Phys. A 2011, 102, 857–863. [Google Scholar] [CrossRef]
- Kumar, M.; Abbas, S.; Kim, J. All-oxide-based highly transparent photonic synapse for neuromorphic computing. ACS Appl. Mater. Interfaces 2018, 10, 34370–34376. [Google Scholar] [CrossRef]
- Lin, C.-L.; Tang, C.-C.; Wu, S.-C.; Juan, P.-C.; Kang, T.-K. Impact of oxygen composition of ZnO metal-oxide on unipolar resistive switching characteristics of Al/ZnO/Al resistive RAM (RRAM). Microelectron. Eng. 2015, 136, 15–21. [Google Scholar] [CrossRef]
- Yu, H.; Kim, M.; Kim, Y.; Lee, J.; Kim, K.-K.; Choi, S.-J.; Cho, S. Al-doped ZnO as a switching layer for transparent bipolar resistive switching memory. Electron. Mater. Lett. 2014, 10, 321–324. [Google Scholar] [CrossRef]
- Aziz, T.; Rosli, A.B.; Yusoff, M.M.; Herman, S.H.; Zulkifli, Z. Transparent hybrid ZnO-graphene film for high stability switching behavior of memristor device. Mater. Sci. Semicond. Process. 2019, 89, 68–76. [Google Scholar] [CrossRef]
- Khan, M.U.; Hassan, G.; Bae, J. Highly bendable asymmetric resistive switching memory based on zinc oxide and magnetic iron oxide heterojunction. J. Mater. Sci. Mater. Electron. 2020, 31, 1105–1115. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, H.; Zhang, Q.L.; Dong, S.R.; Luo, J.K. Bipolar resistive switching characteristics of low temperature grown ZnO thin films by plasma-enhanced atomic layer deposition. Appl. Phys. Lett. 2013, 102, 012113. [Google Scholar] [CrossRef]
- Chauhan, A.K.S.; Sharma, D.K.; Datta, A. Rate limited filament formation in Al-ZnO-Al bipolar ReRAM cells and its impact on early current window closure during cycling. J. Appl. Phys. 2019, 125, 104503. [Google Scholar] [CrossRef]
- Manna, A.K.; Dash, P.; Das, D.; Srivastava, S.K.; Sahoo, P.K.; Kanjilal, A.; Kanjilal, D.; Varma, S. Resistive switching properties and photoabsorption behavior of Ti ion implanted ZnO thin films. Ceram. Int. 2022, 48, 3303–3310. [Google Scholar] [CrossRef]
- Simanjuntak, F.M.; Ohno, T.; Samukawa, S.J. Neutral Oxygen Beam Treated ZnO-Based Resistive Switching Memory Device. ACS Appl. Electron. Mater. J. 2019, 1, 18–24. [Google Scholar] [CrossRef]
- Jung, J.; Kwon, D.; Jung, H.; Lee, K.; Yoon, T.; Kang, C.J.; Lee, H.H. Multistate resistive switching characteristics of ZnO nanoparticles embedded polyvinylphenol device. J. Ind. Eng. Chem. 2018, 64, 85–89. [Google Scholar] [CrossRef]
- Wang, H.J.; Zhu, Y.Y.; Liu, Y. Characteristics of the bipolar resistive switching behavior in memory device with Au/ZnO/ITO structure. Chin. J. Phys. 2018, 56, 3073–3077. [Google Scholar] [CrossRef]
- Zhou, F.; Zhou, Z.; Chen, J.; Choy, T.H.; Wang, J.; Zhang, N.; Lin, Z.; Yu, S.; Kang, J.; Wong, H.-S.P.; et al. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 2019, 14, 776–782. [Google Scholar] [CrossRef]
- Xia, Q.F.; Yang, J.J. Memristive crossbar arrays for brain-inspired computing. Nat. Mater. 2019, 18, 309–323. [Google Scholar] [CrossRef]
- Kim, K.Y.; Shim, E.L.; Choi, Y.J. Fabrication of transparent AZO/ZnO/ITO resistive random access memory devices and their ZnO active layer deposition temperature-dependent switching characteristics. J. Nanosci. Nanotechnol. 2016, 16, 10303. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Kim, B.; Hussain, F.; Mahata, C.; Ismail, M.; Kim, Y.; Kim, S. Bio-inspired synaptic functions from a transparent zinc-tin-oxide-based memristor for neuromorphic engineering. Appl. Surf. Sci. 2021, 544, 148796. [Google Scholar] [CrossRef]
- Yang, M.; Pei-Jian, Z.; Zi-Yu, L.; Zhao-Liang, L.; Xin-Yu, P.; Xue-Jin, L.; Hong-Wu, Z.; Dong-Min, C. Enhanced resistance switching stability of transparent ITO/TiO2/ITO sandwiches. Chin. Phys. B 2010, 19, 037304. [Google Scholar] [CrossRef]
- Serb, A.; Bill, J.; Khiat, A.; Berdan, R.; Legenstein, R.; Prodromakis, T. Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses. Nat. Commun. 2016, 7, 12611. [Google Scholar] [CrossRef]
- Gupta, I.; Serb, A.; Khiat, A.; Zeitler, R.; Vassanelli, S.; Prodromakis, T. Real-time encoding and compression of neuronal spikes by metal-oxide memristors. Nat. Commun. 2016, 7, 12805. [Google Scholar] [CrossRef]
- Jung, C.M.; Choi, J.M.; Min, K.S. Two-step write scheme for reducing sneak-path leakage in complementary memristor array. IEEE Trans. Nanotechnol. 2012, 11, 611–618. [Google Scholar] [CrossRef]
- Jin, Y.; Wu, W.; Li, L.; Chen, J.; Zhang, J.; Zuo, Y.; Fu, J. Effect of sputtering power on surface topography of dc magnetron sputtered Ti thin films observed by AFM. Appl. Surf. Sci. 2009, 255, 4673–4679. [Google Scholar] [CrossRef]
- Gudmundsson, J.T. Physics and technology of magnetron sputtering discharges. Plasma Sources Sci. Technol. 2020, 29, 113001. [Google Scholar]
- Ghantasala, S.B.; Sharma, S. Magnetron sputtered thin films based on transition metal nitride: Structure and properties. Phys. Status Solidi (A) 2023, 220, 2200229. [Google Scholar] [CrossRef]
- Won Seo, J.; Park, J.-W.; Lim, K.S.; Kang, S.J.; Hong, Y.H.; Yang, J.H.; Fang, L.; Sung, G.Y.; Kim, H.-K. Transparent flexible resistive random access memory fabricated at room temperature. Appl. Phys. Lett. 2009, 95, 133508. [Google Scholar] [CrossRef]
- Shang, J.; Liu, G.; Yang, H.; Zhu, X.; Chen, X.; Tan, H.; Hu, B.; Pan, L.; Xue, W.; Li, R.-W. Thermally stable transparent resistive random access memory based on all-oxide heterostructures. Adv. Funct. Mater. 2014, 24, 2171. [Google Scholar] [CrossRef]
- Han, X.; Xu, R.; Sun, B.; Xu, J.; Hong, W.; Cai, G.; Qian, K. Conductive silver grid electrode for flexible and transparent memristor applications. Adv. Electron. Mater. 2020, 7, 2000948. [Google Scholar] [CrossRef]
- Chen, C.; Pan, F.; Wang, Z.S.; Yang, J.; Zeng, F. Bipolar resistive switching with self-rectifying effects in Al/ZnO/Si structure. J. Appl. Phys. 2012, 111, 013702–013705. [Google Scholar] [CrossRef]
- Cao, X.; Li, X.; Gao, X.; Liu, X.; Yang, C.; Yang, R.; Jin, P. All-ZnO-based transparent resistance random access memory device fully fabricated at room temperature. J. Phys. D Appl. Phys. 2011, 44, 255104. [Google Scholar] [CrossRef]
- Tominov, R.V.; Vakulov, Z.E.; Polupanov, N.V.; Saenko, A.V.; Avilov, V.I.; Ageev, O.A.; Smirnov, V.A. Nanoscale-resistive switching in forming-free zinc oxide memristive structures. Nanomaterials 2022, 12, 455. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saenko, A.V.; Tominov, R.V.; Jityaev, I.L.; Vakulov, Z.E.; Avilov, V.I.; Polupanov, N.V.; Smirnov, V.A. Transparent Zinc Oxide Memristor Structures: Magnetron Sputtering of Thin Films, Resistive Switching Investigation, and Crossbar Array Fabrication. Nanomaterials 2024, 14, 1901. https://doi.org/10.3390/nano14231901
Saenko AV, Tominov RV, Jityaev IL, Vakulov ZE, Avilov VI, Polupanov NV, Smirnov VA. Transparent Zinc Oxide Memristor Structures: Magnetron Sputtering of Thin Films, Resistive Switching Investigation, and Crossbar Array Fabrication. Nanomaterials. 2024; 14(23):1901. https://doi.org/10.3390/nano14231901
Chicago/Turabian StyleSaenko, Alexander V., Roman V. Tominov, Igor L. Jityaev, Zakhar E. Vakulov, Vadim I. Avilov, Nikita V. Polupanov, and Vladimir A. Smirnov. 2024. "Transparent Zinc Oxide Memristor Structures: Magnetron Sputtering of Thin Films, Resistive Switching Investigation, and Crossbar Array Fabrication" Nanomaterials 14, no. 23: 1901. https://doi.org/10.3390/nano14231901
APA StyleSaenko, A. V., Tominov, R. V., Jityaev, I. L., Vakulov, Z. E., Avilov, V. I., Polupanov, N. V., & Smirnov, V. A. (2024). Transparent Zinc Oxide Memristor Structures: Magnetron Sputtering of Thin Films, Resistive Switching Investigation, and Crossbar Array Fabrication. Nanomaterials, 14(23), 1901. https://doi.org/10.3390/nano14231901