Ferroelectric-Based Optoelectronic Synapses for Visual Perception: From Materials to Systems
Abstract
1. Introduction
2. The Principle and Structure of Ferroelectric-Based Optoelectronic Synapse Devices
2.1. Three-Terminal Ferroelectric Field-Effect Transistor Synaptic Devices
2.1.1. Basic Device Structure and Operating Principle
2.1.2. Advantages and Challenges
2.2. Two-Terminal Ferroelectric Synapses with Vertical Structure
2.2.1. Basic Device Structure and Operating Principle
2.2.2. Advantages and Challenges
2.3. Two-Terminal Ferroelectric Synapses with Parallel Structures
2.3.1. Basic Device Structure and Operating Principle
2.3.2. Advantages and Challenges
3. Ferroelectric Materials for Optoelectronic Synapses
3.1. Oxide Ferroelectric Materials
3.2. Two-Dimensional Ferroelectric Semiconductor Materials
3.3. Polymer Ferroelectric Materials
4. Applications of Ferroelectric-Based Optoelectronic Synaptic Devices
4.1. Image Recognition and Processing
4.2. Dynamic Perception
4.3. Biological Behavior Simulation
4.4. Optical Logic Operations
5. Summary and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Curry, D.G.; Martinsen, G.L.; Hopper, D.G. Capability of the human visual system. Cockpit Disp. X 2003, 5080, 58–69. [Google Scholar]
- Schaeffel, F. Processing of information in the human visual system. In Handbook of Machine and Computer Vision; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; Chapter 1; pp. 1–29. [Google Scholar]
- Yang, D.; Ma, D. Development of organic semiconductor photodetectors: From mechanism to applications. Adv. Opt. Mater. 2019, 7, 1800522. [Google Scholar] [CrossRef]
- Fang, H.; Hu, W. Photogating in low dimensional photodetectors. Adv. Sci. 2017, 4, 1700323. [Google Scholar] [CrossRef]
- Long, M.; Wang, P.; Fang, H.; Hu, W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807. [Google Scholar] [CrossRef]
- Li, Y.; Shen, G. Advances in optoelectronic artificial synapses. Cell Rep. Phy. Sci. 2022, 3, 101037. [Google Scholar] [CrossRef]
- Han, X.; Xu, Z.; Wu, W.; Liu, X.; Yan, P.; Pan, C. Recent progress in optoelectronic synapses for artificial visual-perception system. Small Struct. 2020, 1, 2000029. [Google Scholar] [CrossRef]
- Ilyas, N.; Wang, J.; Li, C.; Li, D.; Fu, H.; Gu, D.; Jiang, X.; Liu, F.; Jiang, Y.; Li, W. Nanostructured materials and architectures for advanced optoelectronic synaptic devices. Adv. Funct. Mater. 2022, 32, 2110976. [Google Scholar] [CrossRef]
- Yan, J.; Pei, Y.; Ma, M.; Kang, Y.; Yang, H.; He, D.; Jiang, C.; Li, W.; Xiao, X. Defect-engineering-based titanium dioxide nanowires for artificial optoelectronic synapses. J. Alloys Compound. Commun. 2024, 3, 100017. [Google Scholar] [CrossRef]
- Yang, Q.; Luo, Z.D.; Zhang, D.; Zhang, M.; Gan, X.; Seidel, J.; Liu, Y.; Hao, Y.; Han, G. Controlled Optoelectronic Response in van der Waals Heterostructures for In-Sensor Computing. Adv. Funct. Mater. 2022, 32, 202207290. [Google Scholar] [CrossRef]
- Zhou, F.; Zhou, Z.; Chen, J.; Choy, T.H.; Wang, J.; Zhang, N.; Lin, Z.; Yu, S.; Kang, J.; Wong, H.-S.P. Optoelectronic resistive random access memory for neuromorphic vision sensors. Nat. Nanotechnol. 2019, 14, 776–782. [Google Scholar] [CrossRef]
- Li, G.; Xie, D.; Zhong, H.; Zhang, Z.; Fu, X.; Zhou, Q.; Li, Q.; Ni, H.; Wang, J.; Guo, E.-j. Photo-induced non-volatile VO2 phase transition for neuromorphic ultraviolet sensors. Nat. Commun. 2022, 13, 1729. [Google Scholar] [CrossRef] [PubMed]
- Ríos, C.; Stegmaier, M.; Hosseini, P.; Wang, D.; Scherer, T.; Wright, C.D.; Bhaskaran, H.; Pernice, W.H. Integrated all-photonic non-volatile multi-level memory. Nat. Photonics 2015, 9, 725–732. [Google Scholar] [CrossRef]
- Rao, D.; Pillai, A.I.K.; Garbrecht, M.; Saha, B. Scandium nitride as a gateway III-nitride semiconductor for both excitatory and inhibitory optoelectronic artificial synaptic devices. Adv. Electron. Mater. 2023, 9, 2200975. [Google Scholar] [CrossRef]
- Lee, W.J.; Sohn, S.H.; Park, I.K. Ultra-Low Power Photosynaptic Devices Based on Persistent Photoconductivity-Modulated SnO2. Adv. Opt. Mater. 2025, 13, 2402636. [Google Scholar] [CrossRef]
- Liu, K.; Zhang, T.; Dang, B.; Bao, L.; Xu, L.; Cheng, C.; Yang, Z.; Huang, R.; Yang, Y. An optoelectronic synapse based on α-In2Se3 with controllable temporal dynamics for multimode and multiscale reservoir computing. Nat. Electron. 2022, 5, 761–773. [Google Scholar] [CrossRef]
- Kim, M.S.; Jung, J.; Kim, H.T.; Choi, D.H.; Jung, S.; Kim, H.J. A facile method based on oxide semiconductor reduction for controlling the photoresponse characteristic of flexible and transparent optoelectronic devices. Adv. Opt. Mater. 2021, 9, 2100725. [Google Scholar] [CrossRef]
- Yang, W.C.; Lin, Y.C.; Inagaki, S.; Shimizu, H.; Ercan, E.; Hsu, L.C.; Chueh, C.C.; Higashihara, T.; Chen, W.C. Low-energy-consumption and electret-free photosynaptic transistor utilizing poly (3-hexylthiophene)-based conjugated block copolymers. Adv. Sci. 2022, 9, 2105190. [Google Scholar] [CrossRef]
- Wu, Q.; Wang, J.; Cao, J.; Lu, C.; Yang, G.; Shi, X.; Chuai, X.; Gong, Y.; Su, Y.; Zhao, Y. Photoelectric plasticity in oxide thin film transistors with tunable synaptic functions. Adv. Electron. Mater. 2018, 4, 1800556. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, D.; Liu, Z.; Li, S.; He, Z. Memtransistors based on non-layered In2S3 two-dimensional thin films with optical-modulated multilevel resistance states and gate-tunable artificial synaptic plasticity. IEEE Access 2020, 8, 106726–106734. [Google Scholar] [CrossRef]
- Wen, J.; Hu, H.; Wen, G.; Wang, S.; Sun, Z.; Ye, S. Thin film transistors integrating CsPbBr3 quantum dots for optoelectronic memory application. J. Phys. D Appl. Phys. 2021, 54, 114002. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, T.; Cui, Y.; Xu, M.; Zhang, M.; Tang, K.; Chen, X.; Tian, H.; Yin, C.; Huang, J. Reconfigurable Sensing-Memory-Processing and Logical Integration Within 2D Ferroelectric Optoelectronic Transistor for CMOS-Compatible Bionic Vision. Adv. Funct. Mater. 2024, 34, 2400039. [Google Scholar] [CrossRef]
- Boyn, S.; Grollier, J.; Lecerf, G.; Xu, B.; Locatelli, N.; Fusil, S.; Girod, S.; Carrétéro, C.; Garcia, K.; Xavier, S. Learning through ferroelectric domain dynamics in solid-state synapses. Nat. Commun. 2017, 8, 14736. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.B.; Zhong, N.; Duan, C.G. Recent advances, perspectives, and challenges in ferroelectric synapses. Chin. Phys. B 2020, 29, 097701. [Google Scholar] [CrossRef]
- Yan, S.; Zang, J.; Xu, P.; Zhu, Y.; Li, G.; Chen, Q.; Chen, Z.; Zhang, Y.; Tang, M.; Zheng, X. Recent progress in ferroelectric synapses and their applications. Sci. China Mater. 2023, 66, 877–894. [Google Scholar] [CrossRef]
- Luo, Z.-D.; Xia, X.; Yang, M.-M.; Wilson, N.R.; Gruverman, A.; Alexe, M. Artificial optoelectronic synapses based on ferroelectric field-effect enabled 2D transition metal dichalcogenide memristive transistors. ACS Nano 2019, 14, 746–754. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, J.; Yan, M.; Jiang, Y.; Jawad, H.; Tian, B.; Wang, W.; Zhan, Y.; Qin, Y.; Xiong, S. Molecular ferroelectric/semiconductor interfacial memristors for artificial synapses. npj Flex. Electron. 2022, 6, 16. [Google Scholar] [CrossRef]
- Dang, Z.; Guo, F.; Wang, Z.; Jie, W.; Jin, K.; Chai, Y.; Hao, J. Object motion detection enabled by reconfigurable neuromorphic vision sensor under ferroelectric modulation. ACS Nano 2024, 18, 27727–27737. [Google Scholar] [CrossRef]
- Zhao, X. Photoelectric synapses based on all-two-dimensional ferroelectric semiconductor heterojunction. Mater. Res. Express 2024, 11, 055901. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, F.; Wang, Z.; Wang, J.; Yang, J.; Yao, Y.; Li, N.; Sendeku, M.G.; Zhan, X.; Shan, C. Reconfigurable photovoltaic effect for optoelectronic artificial synapse based on ferroelectric pn junction. Nano Res. 2021, 14, 4328–4335. [Google Scholar] [CrossRef]
- Zeng, J.; Feng, G.; Wu, G.; Liu, J.; Zhao, Q.; Wang, H.; Wu, S.; Wang, X.; Chen, Y.; Han, S. Multisensory ferroelectric semiconductor synapse for neuromorphic computing. Adv. Funct. Mater. 2024, 34, 2313010. [Google Scholar] [CrossRef]
- Luo, Z.D.; Zhang, S.; Liu, Y.; Zhang, D.; Gan, X.; Seidel, J.; Liu, Y.; Han, G.; Alexe, M.; Hao, Y. Dual-ferroelectric-coupling-engineered two-dimensional transistors for multifunctional in-memory computing. ACS Nano 2022, 16, 3362–3372. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Zhu, C.; Deng, Y.; Duan, R.; Chen, J.; Zeng, Q.; Zhou, J.; Fu, Q.; You, L.; Liu, S. Van der Waals engineering of ferroelectric heterostructures for long-retention memory. Nat. Commun. 2021, 12, 1109. [Google Scholar] [CrossRef] [PubMed]
- Lao, J.; Yan, M.; Tian, B.; Jiang, C.; Luo, C.; Xie, Z.; Zhu, Q.; Bao, Z.; Zhong, N.; Tang, X. Ultralow-power machine vision with self-powered sensor reservoir. Adv. Sci. 2022, 9, 2106092. [Google Scholar] [CrossRef] [PubMed]
- Ci, W.; Xue, W.; Wang, P.; Yin, W.; Wang, X.; Shi, L.; Zhou, P.; Xu, X. All-In-One Optoelectronic Neuristor Based on Full-vdW Two-Terminal Ferroelectric p–n Heterojunction. Adv. Funct. Mater. 2024, 34, 2305822. [Google Scholar] [CrossRef]
- Wang, S.; Wang, Q.; Li, M.; Fang, Y.; Shao, S.; Xie, T.; Zhao, C.; Liang, L.; Zhao, J. Roll-to-roll gravure printed large-area flexible carbon nanotube synaptic photogating transistor arrays for image recognitions. Nano Energy 2023, 115, 108698. [Google Scholar] [CrossRef]
- Du, J.; Xie, D.; Zhang, Q.; Zhong, H.; Meng, F.; Fu, X.; Sun, Q.; Ni, H.; Li, T.; Guo, E.j. A robust neuromorphic vision sensor with optical control of ferroelectric switching. Nano Energy 2021, 89, 106439. [Google Scholar] [CrossRef]
- Han, S.; Ma, T.; Li, H.; Wu, J.; Liu, R.; Cao, R.; Li, F.; Li, H.; Chen, C. Photoferroelectric perovskite synapses for neuromorphic computing. Adv. Funct. Mater. 2024, 34, 2309910. [Google Scholar] [CrossRef]
- Ci, W.; Wang, P.; Xue, W.; Liu, T.; Qu, J.; Xu, X. Polarization-Modulated Multi-Mode Optoelectronic Synaptic Transistor for Sensing-Memory-Logic Computing and Optical Wireless Communication. Adv. Funct. Mater. 2025, 2424926. [Google Scholar] [CrossRef]
- Li, Q.; Wang, T.; Fang, Y.; Hu, X.; Tang, C.; Wu, X.; Zhu, H.; Ji, L.; Sun, Q.Q.; Zhang, D.W. Ultralow power wearable organic ferroelectric device for optoelectronic neuromorphic computing. Nano Lett. 2022, 22, 6435–6443. [Google Scholar] [CrossRef]
- Schegolev, A.E.; Klenov, N.V.; Gubochkin, G.I.; Kupriyanov, M.Y.; Soloviev, I.I. Bio-inspired design of superconducting spiking neuron and synapse. Nanomaterials 2023, 13, 2101. [Google Scholar] [CrossRef]
- Tang, Y.; Nyengaard, J.R.; De Groot, D.M.; Gundersen, H.J.G. Total regional and global number of synapses in the human brain neocortex. Synapse 2001, 41, 258–273. [Google Scholar] [CrossRef] [PubMed]
- Sporns, O. Networks of the Brain; MIT Press: Cambridge, MA, USA, 2016. [Google Scholar]
- Pereda, A.E. Electrical synapses and their functional interactions with chemical synapses. Nat. Rev. Neurosci. 2014, 15, 250–263. [Google Scholar] [CrossRef] [PubMed]
- Cohen, L. Changes in neuron structure during action potential propagation and synaptic transmission. Physiol. Rev. 1973, 53, 373–418. [Google Scholar] [CrossRef]
- Lai, Q.; Zhang, L.; Li, Z.; Stickle, W.F.; Williams, R.S.; Chen, Y. Ionic/electronic hybrid materials integrated in a synaptic transistor with signal processing and learning functions. Adv. Mater. 2010, 22, 2448–2453. [Google Scholar] [CrossRef]
- Meijer, M.; Rehbach, K.; Brunner, J.W.; Classen, J.A.; Lammertse, H.C.; van Linge, L.A.; Schut, D.; Krutenko, T.; Hebisch, M.; Cornelisse, L.N. A single-cell model for synaptic transmission and plasticity in human iPSC-derived neurons. Cell Rep. 2019, 27, 2199–2211.e6. [Google Scholar] [CrossRef]
- Ohno, T.; Hasegawa, T.; Tsuruoka, T.; Terabe, K.; Gimzewski, J.K.; Aono, M. Short-term plasticity and long-term potentiation mimicked in single inorganic synapses. Nat. Mater. 2011, 10, 591–595. [Google Scholar] [CrossRef] [PubMed]
- Rotman, Z.; Deng, P.-Y.; Klyachko, V.A. Short-term plasticity optimizes synaptic information transmission. J. Neurosci. 2011, 31, 14800–14809. [Google Scholar] [CrossRef]
- Reymann, K.G.; Frey, J.U. The late maintenance of hippocampal LTP: Requirements, phases, ‘synaptic tagging’, ‘late-associativity’ and implications. Neuropharmacology 2007, 52, 24–40. [Google Scholar] [CrossRef]
- Yang, R.; Wang, Y.; Li, S.; Hu, D.; Chen, Q.; Zhuge, F.; Ye, Z.; Pi, X.; Lu, J. All-optically controlled artificial synapse based on full oxides for low-power visible neural network computing. Adv. Funct. Mater. 2024, 34, 2312444. [Google Scholar] [CrossRef]
- Huynh, H.Q.; Trung, T.Q.; Bag, A.; Do, T.D.; Sultan, M.J.; Kim, M.; Lee, N.E. Bio-inspired artificial fast-adaptive and slow-adaptive mechanoreceptors with synapse-like functions. Adv. Funct. Mater. 2023, 33, 2303535. [Google Scholar] [CrossRef]
- Yu, H.; Gong, J.; Wei, H.; Huang, W.; Xu, W. Mixed-halide perovskite for ultrasensitive two-terminal artificial synaptic devices. Mater. Chem. Front. 2019, 3, 941–947. [Google Scholar] [CrossRef]
- Jiang, C.; Liu, J.; Yang, L.; Gong, J.; Wei, H.; Xu, W. A flexible artificial sensory nerve enabled by nanoparticle-assembled synaptic devices for neuromorphic tactile recognition. Adv. Sci. 2022, 9, 2106124. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.Q.; Xu, W.; Liu, N.T.; Li, Y.K.; Deng, X.; Guan, Z.; Zheng, Y.F.; Yang, S.; Huang, R.; Yue, F.Y. Artificial Optoelectronic Synapses Based on Light-Controllable Ferroelectric Semiconductor Memristor. Adv. Opt. Mater. 2024, 12, 2302887. [Google Scholar] [CrossRef]
- Wang, Y.; Yin, L.; Huang, W.; Li, Y.; Huang, S.; Zhu, Y.; Yang, D.; Pi, X. Optoelectronic synaptic devices for neuromorphic computing. Adv. Intell. Syst. 2021, 3, 2000099. [Google Scholar] [CrossRef]
- Chen, X.; Chen, B.; Jiang, B.; Gao, T.; Shang, G.; Han, S.T.; Kuo, C.C.; Roy, V.A.; Zhou, Y. Nanowires for UV-vis-IR optoelectronic synaptic devices. Adv. Funct. Mater. 2023, 33, 2208807. [Google Scholar] [CrossRef]
- Jiao, H.; Wang, X.; Wu, S.; Chen, Y.; Chu, J.; Wang, J. Ferroelectric field effect transistors for electronics and optoelectronics. Appl. Phys. Rev. 2023, 10, 011310. [Google Scholar] [CrossRef]
- Dai, S.; Zhao, Y.; Wang, Y.; Zhang, J.; Fang, L.; Jin, S.; Shao, Y.; Huang, J. Recent advances in transistor-based artificial synapses. Adv. Funct. Mater. 2019, 29, 1903700. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, R.; Peng, Y.; Li, H.; Li, X.; Shao, Y.; Yan, X.; Kou, L.; Xia, C. Two-dimensional ferroelectric semiconductor floating-gate transistor with light-tunable field effect for memory and photo-synapse. Appl. Phys. Lett. 2024, 125, 102107. [Google Scholar] [CrossRef]
- Eom, D.; Kim, H.; Lee, W.; Park, C.; Park, J.; Lee, H.; Kim, T.; Nam, S.; Kim, Y.-H.; Kim, H. Temperature-driven co-optimization of IGZO/HZO ferroelectric field-effect transistors for optoelectronic neuromorphic computing. Nano Energy 2025, 138, 110837. [Google Scholar] [CrossRef]
- Bai, J.; He, D.; Dang, B.; Liu, K.; Yang, Z.; Wang, J.; Zhang, X.; Wang, Y.; Tao, Y.; Yang, Y. Full van der Waals Ambipolar Ferroelectric Configurable Optical Hetero-Synapses for In-Sensor Computing. Adv. Mater. 2024, 36, 2401060. [Google Scholar] [CrossRef]
- Ding, Y.; Xu, X.; Wu, Y.; Zhang, H.; Shao, L.; Wang, Z.; Zhang, H.; Zhao, Y.; Liu, Y. Reconfigurable Dual-Gate Ferroelectric Field-Effect Transistors Based on Semiconducting Polymer for Logic Operations and Synaptic Applications. SmartMat 2025, 6, e70003. [Google Scholar] [CrossRef]
- Covi, E.; Mulaosmanovic, H.; Max, B.; Slesazeck, S.; Mikolajick, T. Ferroelectric-based synapses and neurons for neuromorphic computing. Neuromorph. Comput. Eng. 2022, 2, 012002. [Google Scholar] [CrossRef]
- Falcone, D.F.; Halter, M.; Bégon-Lours, L.; Offrein, B.J. Back-end, CMOS-compatible ferroelectric FinFET for synaptic weights. Front. Electron. Mater. 2022, 2, 849879. [Google Scholar] [CrossRef]
- Hao, R.; Hu, X.; Luo, L.; Yang, X.; Feng, Q.; Li, Y.; Zhang, Z. Two-dimensional Optoelectronic Memristive Device Realized by Ferroelectric Regulation. IEEE Electron Device Lett. 2024, 45, 1080–1083. [Google Scholar] [CrossRef]
- Oh, S.; Kim, T.; Kwak, M.; Song, J.; Woo, J.; Jeon, S.; Yoo, I.K.; Hwang, H. HfZrOx-based ferroelectric synapse device with 32 levels of conductance states for neuromorphic applications. IEEE Electron Device Lett. 2017, 38, 732–735. [Google Scholar] [CrossRef]
- Halter, M.; Bégon-Lours, L.; Bragaglia, V.; Sousa, M.; Offrein, B.J.; Abel, S.; Luisier, M.; Fompeyrine, J. Back-end, CMOS-compatible ferroelectric field-effect transistor for synaptic weights. ACS Appl. Mater. Interfaces 2020, 12, 17725–17732. [Google Scholar] [CrossRef]
- Querlioz, D.; Bichler, O.; Vincent, A.F.; Gamrat, C. Bioinspired programming of memory devices for implementing an inference engine. Proc. IEEE 2015, 103, 1398–1416. [Google Scholar] [CrossRef]
- Guo, L.; Sun, H.; Min, L.; Wang, M.; Cao, F.; Li, L. Two-terminal perovskite optoelectronic synapse for rapid trained neuromorphic computation with high accuracy. Adv. Mater. 2024, 36, 2402253. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, L.; Jiang, J.; Hu, Y.; Chen, Z.; Jia, R.; Sun, C.; Shi, J. A Van Der Waals Photo-Ferroelectric Synapse. Adv. Electron. Mater. 2022, 8, 2200326. [Google Scholar] [CrossRef]
- Kim, S.; Heo, K.; Lee, S.; Seo, S.; Kim, H.; Cho, J.; Lee, H.; Lee, K.-B.; Park, J.-H. Ferroelectric polymer-based artificial synapse for neuromorphic computing. Nanoscale Horiz. 2021, 6, 139–147. [Google Scholar] [CrossRef]
- Tian, B.; Liu, L.; Yan, M.; Wang, J.; Zhao, Q.; Zhong, N.; Xiang, P.; Sun, L.; Peng, H.; Shen, H. A robust artificial synapse based on organic ferroelectric polymer. Adv. Electron. Mater. 2019, 5, 1800600. [Google Scholar] [CrossRef]
- Jung, T.; Shin, J.; Shin, C. Impact of depolarization electric-field and charge trapping on the coercive voltage of an Si: HfO2-based ferroelectric capacitor. Semicond. Sci. Technol. 2020, 36, 015005. [Google Scholar] [CrossRef]
- Li, Y.C.; Huang, T.; Li, X.X.; Zhu, X.N.; Zhang, D.W.; Lu, H.L. Domain switching characteristics in ga-doped HfO2 ferroelectric thin films with low coercive field. Nano Lett. 2024, 24, 6585–6591. [Google Scholar] [CrossRef]
- Guan, Z.; Hu, H.; Shen, X.; Xiang, P.; Zhong, N.; Chu, J.; Duan, C. Recent progress in two-dimensional ferroelectric materials. Adv. Electron. Mater. 2020, 6, 1900818. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, G.; Lai, Q.; Fu, J.; Zhu, W.; Zeng, H. Recent advances in layered two-dimensional ferroelectrics from material to device. Adv. Funct. Mater. 2023, 33, 2304139. [Google Scholar] [CrossRef]
- Gao, W.; Chang, L.; Ma, H.; You, L.; Yin, J.; Liu, J.; Liu, Z.; Wang, J.; Yuan, G. Flexible organic ferroelectric films with a large piezoelectric response. NPG Asia Mater. 2015, 7, e189. [Google Scholar] [CrossRef]
- Owczarek, M.; Hujsak, K.A.; Ferris, D.P.; Prokofjevs, A.; Majerz, I.; Szklarz, P.; Zhang, H.; Sarjeant, A.A.; Stern, C.L.; Jakubas, R. Flexible ferroelectric organic crystals. Nat. Commun. 2016, 7, 13108. [Google Scholar] [CrossRef] [PubMed]
- Izyumskaya, N.; Alivov, Y.; Morkoç, H. Oxides, oxides, and more oxides: High-κ oxides, ferroelectrics, ferromagnetics, and multiferroics. Crit. Rev. Solid State Mater. Sci. 2009, 34, 89–179. [Google Scholar] [CrossRef]
- Kim, M.K.; Lee, J.S. Synergistic improvement of long-term plasticity in photonic synapses using ferroelectric polarization in hafnia-based oxide-semiconductor transistors. Adv. Mater. 2020, 32, 1907826. [Google Scholar] [CrossRef]
- Kim, M.K.; Lee, J.-S. Ferroelectric analog synaptic transistors. Nano Lett. 2019, 19, 2044–2050. [Google Scholar] [CrossRef]
- Maity, K.; Dayen, J.F.; Doudin, B.; Gumeniuk, R.; Kundys, B. Single Wavelength Operating Neuromorphic Device Based on a Graphene–Ferroelectric Transistor. ACS Appl. Mater. Interfaces 2023, 15, 55948–55956. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Malič, B.; Li, J.F.; Rödel, J. Lead-free ferroelectric materials: Prospective applications. J. Mater. Res. 2021, 36, 985–995. [Google Scholar] [CrossRef]
- Bell, A.J.; Deubzer, O. Lead-free piezoelectrics—The environmental and regulatory issues. Mrs Bull. 2018, 43, 581–587. [Google Scholar] [CrossRef]
- Schroeder, U.; Mueller, S.; Mueller, J.; Yurchuk, E.; Martin, D.; Adelmann, C.; Schloesser, T.; van Bentum, R.; Mikolajick, T. Hafnium oxide based CMOS compatible ferroelectric materials. ECS J. Solid State Sci. Technol. 2013, 2, N69. [Google Scholar] [CrossRef]
- Müller, J.; Böscke, T.; Müller, S.; Yurchuk, E.; Polakowski, P.; Paul, J.; Martin, D.; Schenk, T.; Khullar, K.; Kersch, A. Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories. In Proceedings of the IEEE International Electron Devices Meeting, Washington, DC, USA, 9–11 December 2013; IEEE: New York, NY, USA, 2013; pp. 10.18.1–10.18.4. [Google Scholar]
- Seo, S.; Lee, J.J.; Lee, R.G.; Kim, T.H.; Park, S.; Jung, S.; Lee, H.K.; Andreev, M.; Lee, K.B.; Jung, K.S. An optogenetics-inspired flexible van der Waals optoelectronic synapse and its application to a convolutional neural network. Adv. Mater. 2021, 33, 2102980. [Google Scholar] [CrossRef]
- Wang, C.; You, L.; Cobden, D.; Wang, J. Towards two-dimensional van der Waals ferroelectrics. Nat. Mater. 2023, 22, 542–552. [Google Scholar] [CrossRef]
- Xue, F.; He, J.-H.; Zhang, X. Emerging van der Waals ferroelectrics: Unique properties and novel devices. Appl. Phys. Rev. 2021, 8, 021316. [Google Scholar] [CrossRef]
- Li, S.; Wang, F.; Wang, Y.; Yang, J.; Wang, X.; Zhan, X.; He, J.; Wang, Z. Van der Waals ferroelectrics: Theories, materials, and device applications. Adv. Mater. 2024, 36, 2301472. [Google Scholar] [CrossRef]
- Zhao, C.; Gao, Z.; Hong, Z.; Guo, H.; Cheng, Z.; Li, Y.; Shang, L.; Zhu, L.; Zhang, J.; Hu, Z. Ferroelectric and Optoelectronic Coupling Effects in Layered Ferroelectric Semiconductor-Based FETs for Visual Simulation. Adv. Sci. 2025, 12, 2413808. [Google Scholar] [CrossRef]
- Zhang, K.; Li, H.; Mu, H.; Li, Y.; Wang, P.; Wang, Y.; Chen, T.; Yuan, J.; Chen, W.; Yu, W. Spatially Resolved Light-Induced Ferroelectric Polarization in α-In2Se3/Te Heterojunctions. Adv. Mater. 2024, 36, 2405233. [Google Scholar] [CrossRef]
- Lin, B.; Chaturvedi, A.; Di, J.; You, L.; Lai, C.; Duan, R.; Zhou, J.; Xu, B.; Chen, Z.; Song, P. Ferroelectric-field accelerated charge transfer in 2D CuInP2S6 heterostructure for enhanced photocatalytic H2 evolution. Nano Energy 2020, 76, 104972. [Google Scholar] [CrossRef]
- Yevych, R.; Liubachko, V.; Vysochanskii, Y. Intrinsic role of Cu+ and In3+ cations in the nature of ferrielectric ordering in CuInP2S6 ferroics. In Proceedings of the 8th International Materials Science Conference HighMatTech-2023 Meeting, Kyiv, Ukraine, 2–6 October 2023; p. 112. [Google Scholar]
- Shang, Z.; Liu, L.; Wang, G.; Xu, H.; Cui, Y.; Deng, J.; Lou, Z.; Yan, Y.; Deng, J.; Han, S.-T. Ferroelectric Polarization Enhanced Optoelectronic Synaptic Response of a CuInP2S6 Transistor Structure. ACS Nano 2024, 18, 30530–30539. [Google Scholar] [CrossRef]
- Guo, F.; Song, M.; Wong, M.C.; Ding, R.; Io, W.F.; Pang, S.Y.; Jie, W.; Hao, J. Multifunctional optoelectronic synapse based on ferroelectric van der Waals heterostructure for emulating the entire human visual system. Adv. Funct. Mater. 2022, 32, 2108014. [Google Scholar] [CrossRef]
- Wang, P.; Li, J.; Xue, W.; Ci, W.; Jiang, F.; Shi, L.; Zhou, F.; Zhou, P.; Xu, X. Integrated In-Memory Sensor and Computing of Artificial Vision Based on Full-vdW Optoelectronic Ferroelectric Field-Effect Transistor. Adv. Sci. 2024, 11, 2305679. [Google Scholar] [CrossRef]
- Park, Y.J.; Bae, I.s.; Kang, S.J.; Chang, J.; Park, C. Control of thin ferroelectric polymer films for non-volatile memory applications. IEEE Trans. Electr. Insul. 2010, 17, 1135–1163. [Google Scholar] [CrossRef]
- Lin, W.P.; Liu, S.J.; Gong, T.; Zhao, Q.; Huang, W. Polymer-based resistive memory materials and devices. Adv. Mater. 2014, 26, 570–606. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Han, X.; Shen, Q.D. PVDF-based ferroelectric polymers in modern flexible electronics. Adv. Electron. Mater. 2017, 3, 1600460. [Google Scholar] [CrossRef]
- Bae, J.-H.; Chang, S.H. PVDF-based ferroelectric polymers and dielectric elastomers for sensor and actuator applications: A review. Funct. Compos. Struct. 2019, 1, 012003. [Google Scholar] [CrossRef]
- Xia, W.; Zhang, Z. PVDF-based dielectric polymers and their applications in electronic materials. Iet Nanodielectrics 2018, 1, 17–31. [Google Scholar] [CrossRef]
- Wang, X.; Yang, S.; Qin, Z.; Hu, B.; Bu, L.; Lu, G. Enhanced multiwavelength response of flexible synaptic transistors for human sunburned skin simulation and neuromorphic computation. Adv. Mater. 2023, 35, 2303699. [Google Scholar] [CrossRef]
- Joo, Y.; Hwang, E.; Hong, H.; Cho, S.; Yang, H. Memory and synaptic devices based on emerging 2D ferroelectricity. Adv. Electron. Mater. 2023, 9, 2300211. [Google Scholar] [CrossRef]
- Chen, C.; Zhou, Y.; Tong, L.; Pang, Y.; Xu, J. Emerging 2D Ferroelectric Devices for In-Sensor and In-Memory Computing. Adv. Mater. 2025, 37, 2400332. [Google Scholar] [CrossRef] [PubMed]
- Si, M.; Saha, A.K.; Gao, S.; Qiu, G.; Qin, J.; Duan, Y.; Jian, J.; Niu, C.; Wang, H.; Wu, W. A ferroelectric semiconductor field-effect transistor. Nat. Electron. 2019, 2, 580–586. [Google Scholar] [CrossRef]
- Wen, Z.; Chen, J.; Zhang, Q.; Wang, G.; Wang, X.; Yang, F.; Liu, Q.; Luo, X.; Liu, F. 2D Van Der Waals Ferroelectric Materials and Devices for Neuromorphic Computing. Small 2025, 2412761. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Zhang, M.; Li, D.; Tang, Y.; Ren, H.; Li, J.; Liang, K.; Wang, Y.; Wen, L.; Li, W. Bidirectional synaptic phototransistor based on two-dimensional ferroelectric semiconductor for mixed color pattern recognition. ACS Nano 2023, 17, 12499–12509. [Google Scholar] [CrossRef]
- Dang, Z.; Guo, F.; Zhao, Y.; Jin, K.; Jie, W.; Hao, J. Ferroelectric modulation of ReS2-based multifunctional optoelectronic neuromorphic devices for wavelength-selective artificial visual system. Adv. Funct. Mater. 2024, 34, 2400105. [Google Scholar] [CrossRef]
- Dai, Q.; Pei, M.; Guo, J.; Wang, Q.; Hao, Z.; Wang, H.; Li, Y.; Li, L.; Lu, K.; Yan, Y. Integration of image preprocessing and recognition functions in an optoelectronic coupling organic ferroelectric retinomorphic neuristor. Mater. Horiz. 2023, 10, 3061–3071. [Google Scholar] [CrossRef]
- Lai, X.C.; Tang, Z.; Fang, J.; Feng, L.; Yao, D.J.; Zhang, L.; Jiang, Y.-P.; Liu, Q.-X.; Tang, X.-G.; Zhou, Y.-C. An adjustable multistage resistance switching behavior of a photoelectric artificial synaptic device with a ferroelectric diode effect for neuromorphic computing. Mater. Horiz. 2024, 11, 2886–2897. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, S.; Tian, J.; Lyu, F.; Liao, J.; Chen, Q. Multi-functional platform for in-memory computing and sensing based on 2D ferroelectric semiconductor α-In2Se3. Adv. Funct. Mater. 2024, 34, 2306486. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, A.; Zhang, Y.; Zhang, X.; Chai, J.; Hu, J.; Li, H.; Xu, Y.; Liu, X.; Tan, N. Multimodal 2D Ferroelectric Transistor with Integrated Perception-and-Computing-in-Memory Functions for Reservoir Computing. Nano Lett. 2024, 24, 14892–14900. [Google Scholar] [CrossRef]
- Cui, M.; Wei, Z.; Zhao, P.; Jiang, C.; Luo, C.; Lin, H.; Zhao, J.; Tang, X.; Peng, H. Optically Stimulated Artificial Synapse with Ferroelectric Assistance for a Neuromorphic Visual System. ACS Appl. Electron. Mater. 2024, 7, 193–201. [Google Scholar] [CrossRef]
- Zhang, Z.; Shi, L.; Wang, B.; Qu, J.; Wang, X.; Wang, T.; Jiang, Q.; Xue, W.; Xu, X. Epitaxial growth of full-vdW α-In2Se3/MoS2 heterostructures for all-in-one sensing and memory-computing artificial visual system. Chin. Chem. Lett. 2025, 36, 109687. [Google Scholar] [CrossRef]
- Ji, R.; Feng, G.; Jiang, C.; Tian, B.; Luo, C.; Lin, H.; Tang, X.; Peng, H.; Duan, C.G. Fully light-modulated organic artificial synapse with the assistance of ferroelectric polarization. Adv. Electron. Mater. 2022, 8, 2101402. [Google Scholar] [CrossRef]
- Das, B.; Baek, S.; Niu, J.; Jang, C.; Lee, Y.; Lee, S. Artificial visual systems fabricated with ferroelectric van der Waals heterostructure for in-memory computing applications. ACS Nano 2023, 17, 21297–21306. [Google Scholar] [CrossRef]
- Pei, M.; Wan, C.; Chang, Q.; Guo, J.; Jiang, S.; Zhang, B.; Wang, X.; Shi, Y.; Li, Y. A smarter Pavlovian dog with optically modulated associative learning in an organic ferroelectric neuromem. Research 2021, 2021, 9820502. [Google Scholar] [CrossRef] [PubMed]
- Kim, W.; Ahn, D.; Lee, M.; Lim, N.; Kim, H.; Pak, Y. From Light to Logic: Recent Advances in Optoelectronic Logic Gate. Small Sci. 2024, 4, 2400264. [Google Scholar] [CrossRef]
- Xue, F.; He, X.; Periyanagounder, D.; Ji, Z.; Li, L.-J.; He, J.-H.; Zhang, X. Optically controlled ferroelectric nanodomains for logic-in-memory photonic devices with simplified structures. IEEE Trans. Electron Devices 2021, 68, 1992–1995. [Google Scholar] [CrossRef]
- Liu, N.; Zhou, J.; Zheng, S.; Jin, F.; Fang, C.; Chen, B.; Liu, Y.; Hao, Y.; Han, G. Photoelectric In-memory Logic and Computing Achieved in HfO2-based Ferroelectric Optoelectronic Memcapacitors. IEEE Electron Device Lett. 2024, 45, 1357–1360. [Google Scholar] [CrossRef]
- Fang, J.; Tang, Z.; Lai, X.C.; Qiu, F.; Jiang, Y.P.; Liu, Q.X.; Tang, X.G.; Sun, Q.J.; Zhou, Y.C.; Fan, J.M. New-style logic operation and neuromorphic computing enabled by optoelectronic artificial synapses in an MXene/Y: HfO2 ferroelectric memristor. ACS Appl. Mater. Interfaces 2024, 16, 31348–31362. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Zhu, Y.; Chen, X.; Wan, Q. Ferroelectric-Based Optoelectronic Synapses for Visual Perception: From Materials to Systems. Nanomaterials 2025, 15, 863. https://doi.org/10.3390/nano15110863
Hu Y, Zhu Y, Chen X, Wan Q. Ferroelectric-Based Optoelectronic Synapses for Visual Perception: From Materials to Systems. Nanomaterials. 2025; 15(11):863. https://doi.org/10.3390/nano15110863
Chicago/Turabian StyleHu, Yuqing, Yixin Zhu, Xinli Chen, and Qing Wan. 2025. "Ferroelectric-Based Optoelectronic Synapses for Visual Perception: From Materials to Systems" Nanomaterials 15, no. 11: 863. https://doi.org/10.3390/nano15110863
APA StyleHu, Y., Zhu, Y., Chen, X., & Wan, Q. (2025). Ferroelectric-Based Optoelectronic Synapses for Visual Perception: From Materials to Systems. Nanomaterials, 15(11), 863. https://doi.org/10.3390/nano15110863