Stress Relaxation and Grain Growth Behaviors of (111)-Preferred Nanotwinned Copper during Annealing
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tseng, C.-F.; Liu, C.-S.; Wu, C.-H.; Yu, D. InFO (wafer level integrated fan-out) technology. In Proceedings of the 2016 IEEE 66th Electronic Components and Technology Conference (ECTC), Las Vegas, NV, USA, 31 May–3 June 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Lau, J.; Li, M.; Fan, N.; Kuah, E.; Li, Z.; Tan, K.H.; Chen, T.; Xu, I.; Li, M.; Cheung, Y. Fan-out wafer-level packaging (FOWLP) of large chip with multiple redistribution layers (RDLs). J. Microelectron. Electron. Packag. 2017, 14, 123–131. [Google Scholar] [CrossRef]
- Murarka, S.P. Multilevel interconnections for ULSI and GSI era. Mater. Sci. Eng. R Rep. 1997, 19, 87–151. [Google Scholar] [CrossRef]
- Andricacos, P.C. Copper on-chip interconnections: A breakthrough in electrodeposition to make better chips. Electrochem. Soc. Interface 1999, 8, 32. [Google Scholar] [CrossRef]
- Lim, K. The many faces of absorptive capacity: Spillovers of copper interconnect technology for semiconductor chips. Ind. Corp. Chang. 2009, 18, 1249–1284. [Google Scholar] [CrossRef]
- Ghosh, S. Electroless copper deposition: A critical review. Thin Solid Film. 2019, 669, 641–658. [Google Scholar] [CrossRef]
- Zhang, X.; Lin, J.K.; Wickramanayaka, S.; Zhang, S.; Weerasekera, R.; Dutta, R.; Chang, K.F.; Chui, K.-J.; Li, H.Y.; Wee Ho, D.S. Heterogeneous 2.5 D integration on through silicon interposer. Appl. Phys. Rev. 2015, 2, 021308. [Google Scholar] [CrossRef]
- Shie, K.-C.; Hsu, P.-N.; Li, Y.-J.; Tran, D.-P.; Chen, C. Failure Mechanisms of Cu–Cu Bumps under Thermal Cycling. Materials 2021, 14, 5522. [Google Scholar] [CrossRef] [PubMed]
- Ong, J.-J.; Tran, D.-P.; Yang, S.-C.; Shie, K.-C.; Chen, C. Shearing characteristics of Cu-Cu joints fabricated by two-step process using highly <111>-oriented nanotwinned Cu. Metals 2021, 11, 1864. [Google Scholar] [CrossRef]
- Li, B.; Sullivan, T.D.; Lee, T.C.; Badami, D. Reliability challenges for copper interconnects. Microelectron. Reliab. 2004, 44, 365–380. [Google Scholar] [CrossRef]
- Liu, Y.; Li, M.; Kim, D.W.; Gu, S.; Tu, K.-N. Synergistic effect of electromigration and Joule heating on system level weak-link failure in 2.5 D integrated circuits. J. Appl. Phys. 2015, 118, 135304. [Google Scholar] [CrossRef]
- Li, B.; Christiansen, C.; Badami, D.; Yang, C.-C. Electromigration challenges for advanced on-chip Cu interconnects. Microelectron. Reliab. 2014, 54, 712–724. [Google Scholar] [CrossRef]
- Tseng, I.-H.; Hsu, P.-N.; Lu, T.-L.; Tu, K.; Chen, C. Electromigration failure mechanisms of <111>-oriented nanotwinned Cu redistribution lines with polyimide capping. Results Phys. 2021, 24, 104154. [Google Scholar] [CrossRef]
- Tran, D.-P.; Li, H.-H.; Tseng, I.-H.; Chen, C. Enhancement of electromigration lifetime of copper lines by eliminating nanoscale grains in highly <111>-oriented nanotwinned structures. J. Mater. Res. Technol. 2021, 15, 6690–6699. [Google Scholar] [CrossRef]
- Tseng, I.-H.; Hsu, P.-N.; Hsu, W.-Y.; Tran, D.-P.; Lin, B.T.-H.; Chang, C.-C.; Tu, K.; Chen, C. Effect of oxidation on electromigration in 2-µm Cu redistribution lines capped with polyimide. Results Phys. 2021, 31, 105048. [Google Scholar] [CrossRef]
- Shen, F.-C.; Huang, C.-Y.; Lo, H.-Y.; Hsu, W.-Y.; Wang, C.-H.; Chen, C.; Wu, W.-W. Atomic-Scale Investigation of Electromigration with Different Directions of Electron Flow into High-Density Nanotwinned Copper through In Situ HRTEM. Acta Mater. 2021, 219, 117250. [Google Scholar] [CrossRef]
- Cheng, H.-Y.; Tran, D.-P.; Tu, K.; Chen, C. Effect of deposition temperature on mechanical properties of nanotwinned Cu fabricated by rotary electroplating. Mater. Sci. Eng. A 2021, 811, 141065. [Google Scholar] [CrossRef]
- Tran, D.-P.; Chen, K.-J.; Tu, K.; Chen, C.; Chen, Y.-T.; Chung, S. Electrodeposition of slanted nanotwinned Cu foils with high strength and ductility. Electrochim. Acta 2021, 389, 138640. [Google Scholar] [CrossRef]
- Hung, Y.-W.; Tran, D.-P.; Chen, C. Effect of Cu ion concentration on microstructures and mechanical properties of nanotwinned Cu foils fabricated by rotary electroplating. Nanomaterials 2021, 11, 2135. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-J.; Tu, K.-N.; Chen, C. Tensile properties and thermal stability of unidirectionally <111>-oriented nanotwinned and <110>-oriented microtwinned copper. Materials 2020, 13, 1211. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.-J.; Tu, K.-N.; Chen, C. Tensile properties of <111>-oriented nanotwinned Cu with different columnar grain structures. Materials 2020, 13, 1310. [Google Scholar] [CrossRef]
- Li, Y.-J.; Hsu, C.-W.; Ting, Y.-H.; Tsou, N.-T.; Lo, Y.-C.; Wu, W.-W.; Tu, K.-N.; Chen, C. Deformation induced columnar grain rotation in nanotwinned metals. Mater. Sci. Eng. A 2020, 797, 140045. [Google Scholar] [CrossRef]
- Hu, X.; Ni, Y.; Zhang, Z. Atomistic study of interactions between intrinsic kink defects and dislocations in twin boundaries of nanotwinned copper during nanoindentation. Nanomaterials 2020, 10, 221. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Wan, P.; Zhao, Q.; Zhou, H. Constitutive Description of Extra Strengthening in Gradient Nanotwinned Metals. Nanomaterials 2021, 11, 2375. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-H.; Lin, E.-J.; Wang, J.-Y.; Lin, Y.-X.; Wu, C.-Y.; Chiu, C.-Y.; Yeh, C.-Y.; Huang, B.-R.; Fu, K.-L.; Liu, C.-Y. Effect of De-Twinning on Tensile Strength of Nano-Twinned Cu Films. Nanomaterials 2021, 11, 1630. [Google Scholar] [CrossRef]
- Lu, L.; Chen, X.; Huang, X.; Lu, K. Revealing the maximum strength in nanotwinned copper. Science 2009, 323, 607–610. [Google Scholar] [CrossRef] [PubMed]
- Ma, E.; Wang, Y.; Lu, Q.; Sui, M.; Lu, L.; Lu, K. Strain hardening and large tensile elongation in ultrahigh-strength nano-twinned copper. Appl. Phys. Lett. 2004, 85, 4932–4934. [Google Scholar] [CrossRef]
- You, Z.; Li, X.; Gui, L.; Lu, Q.; Zhu, T.; Gao, H.; Lu, L. Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Mater. 2013, 61, 217–227. [Google Scholar] [CrossRef]
- Yang, G.; Li, Z.; Yuan, Y.; Lei, Q. Microstructure, mechanical properties and electrical conductivity of Cu–0.3 Mg–0.05 Ce alloy processed by equal channel angular pressing and subsequent annealing. J. Alloy. Compd. 2015, 640, 347–354. [Google Scholar] [CrossRef]
- Kang, M.; Lee, H.; Kang, T.; Kim, B. Synthesis, properties, and biological application of perfect crystal gold nanowires: A review. J. Mater. Sci. Technol. 2015, 31, 573–580. [Google Scholar] [CrossRef]
- So, S.; Hwang, I.; Yoo, J.; Mohajernia, S.; Mačković, M.; Spiecker, E.; Cha, G.; Mazare, A.; Schmuki, P. Inducing a nanotwinned grain structure within the TiO2 nanotubes provides enhanced electron transport and DSSC efficiencies > 10%. Adv. Energy Mater. 2018, 8, 1800981. [Google Scholar] [CrossRef]
- Lu, Y.; Chiang, C.-Y.; Huang, E. Vertically nanotwinned TiO2 photoanodes with enhanced charge transport for efficient solar water splitting. Appl. Mater. Today 2020, 20, 100707. [Google Scholar] [CrossRef]
- Wang, F.; Li, Q.; Xu, D. Recent progress in semiconductor-based nanocomposite photocatalysts for solar-to-chemical energy conversion. Adv. Energy Mater. 2017, 7, 1700529. [Google Scholar] [CrossRef]
- Tang, C.; Shi, J.; Bai, X.; Hu, A.; Xuan, N.; Yue, Y.; Ye, T.; Liu, B.; Li, P.; Zhuang, P. CO2 reduction on copper’s twin boundary. ACS Catal. 2020, 10, 2026–2032. [Google Scholar] [CrossRef]
- Sun, S.; Deng, D.; Kong, C.; Song, X.; Yang, Z. Twins in polyhedral 26-facet Cu7S4 cages: Synthesis, characterization and their enhancing photochemical activities. Dalton Trans. 2012, 41, 3214–3222. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, A.; Kudo, A.; Fujita, T.; Chen, M.-W.; Adschiri, T. Nano-twinned structure and photocatalytic properties under visible light for undoped nano-titania synthesised by hydrothermal reaction in water–ethanol mixture. J. Supercrit. Fluids 2011, 58, 136–141. [Google Scholar] [CrossRef]
- Liu, M.; Chen, Y.; Su, J.; Shi, J.; Wang, X.; Guo, L. Photocatalytic hydrogen production using twinned nanocrystals and an unanchored NiSx co-catalyst. Nat. Energy 2016, 1, 16151. [Google Scholar] [CrossRef]
- Wei, K.X.; Jia, F.L.; Wei, W.; Zhou, H.R.; Chu, F.Q.; Du, Q.B.; Alexandrov, I.V.; Hu, J. Flexible nanotwinned graphene/copper composites as thermal management materials. ACS Appl. Nano Mater. 2020, 3, 4810–4817. [Google Scholar] [CrossRef]
- Chan, T.-C.; Lin, Y.-M.; Tsai, H.-W.; Wang, Z.M.; Liao, C.-N.; Chueh, Y.-L. Growth of large-scale nanotwinned Cu nanowire arrays from anodic aluminum oxide membrane by electrochemical deposition process: Controllable nanotwin density and growth orientation with enhanced electrical endurance performance. Nanoscale 2014, 6, 7332–7338. [Google Scholar] [CrossRef]
- Korir, D.K.; Gwalani, B.; Joseph, A.; Kamras, B.; Arvapally, R.K.; Omary, M.A.; Marpu, S.B. Facile photochemical syntheses of conjoined nanotwin gold-silver particles within a biologically-benign chitosan polymer. Nanomaterials 2019, 9, 596. [Google Scholar] [CrossRef]
- Fan, H.-H.; Weng, W.-L.; Lee, C.-Y.; Liao, C.-N. Electrochemical cycling-induced spiky Cu x O/Cu nanowire array for glucose sensing. ACS Omega 2019, 4, 12222–12229. [Google Scholar] [CrossRef]
- Chiu, T.-C.; Yeh, E.-Y. Warpage simulation for the reconstituted wafer used in fan-out wafer level packaging. Microelectron. Reliab. 2018, 80, 14–23. [Google Scholar] [CrossRef]
- Leroy, B.; Plougonven, C. Warpage of silicon wafers. J. Electrochem. Soc. 1980, 127, 961. [Google Scholar] [CrossRef]
- Lau, J.H.; Li, M.; Tian, D.; Fan, N.; Kuah, E.; Kai, W.; Li, M.; Hao, J.; Cheung, Y.M.; Li, Z. Warpage and thermal characterization of fan-out wafer-level packaging. IEEE Trans. Compon. Packag. Manuf. Technol. 2017, 7, 1729–1738. [Google Scholar] [CrossRef]
- Kim, S.; Shim, C.; Hong, J.; Lee, H.; Han, J.; Kim, K.; Kim, Y. Copper hillock induced copper diffusion and corrosion behavior in a dual damascene process. Electrochem. Solid State Lett. 2007, 10, H193. [Google Scholar] [CrossRef]
- Filipovic, L. A method for simulating the influence of grain boundaries and material interfaces on electromigration. Microelectron. Reliab. 2019, 97, 38–52. [Google Scholar] [CrossRef]
- Lin, S.-K.; Liu, Y.-C.; Chiu, S.-J.; Liu, Y.-T.; Lee, H.-Y. The electromigration effect revisited: Non-uniform local tensile stress-driven diffusion. Sci. Rep. 2017, 7, 1–10. [Google Scholar] [CrossRef]
- Shie, K.-C.; Hsu, P.-N.; Li, Y.-J.; Tu, K.; Chen, C. Effect of Bonding Strength on Electromigration Failure in Cu–Cu Bumps. Materials 2021, 14, 6394. [Google Scholar] [CrossRef]
- Genin, F. The initial stages of the formation of holes and hillocks in thin films under equal biaxial stress. Acta Metall. Et Mater. 1995, 43, 4289–4300. [Google Scholar] [CrossRef]
- Ceric, H.; Zahedmanesh, H.; Croes, K. Analysis of electromigration failure of nano-interconnects through a combination of modeling and experimental methods. Microelectron. Reliab. 2019, 100, 113362. [Google Scholar] [CrossRef]
- Chang, Y.-W.; Cheng, Y.; Xu, F.; Helfen, L.; Tian, T.; Di Michiel, M.; Chen, C.; Tu, K.-N.; Baumbach, T. Study of electromigration-induced formation of discrete voids in flip-chip solder joints by in-situ 3D laminography observation and finite-element modeling. Acta Mater. 2016, 117, 100–110. [Google Scholar] [CrossRef]
- Flinn, P.A.; Gardner, D.S.; Nix, W.D. Measurement and interpretation of stress in aluminum-based metallization as a function of thermal history. IEEE Trans. Electron. Devices 1987, 34, 689–699. [Google Scholar] [CrossRef]
- Janssen, G.C.; Abdalla, M.; Van Keulen, F.; Pujada, B.; Van Venrooy, B. Celebrating the 100th anniversary of the Stoney equation for film stress: Developments from polycrystalline steel strips to single crystal silicon wafers. Thin Solid Film. 2009, 517, 1858–1867. [Google Scholar] [CrossRef]
- Stoney, G.G. The tension of metallic films deposited by electrolysis. Proc. R Soc. Lond. 1909, 82, 172–175. [Google Scholar] [CrossRef]
- Niu, R.; Han, K.; Su, Y.-f.; Besara, T.; Siegrist, T.M.; Zuo, X. Influence of grain boundary characteristics on thermal stability in nanotwinned copper. Sci. Rep. 2016, 6, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Niu, R.; Han, K.; Su, Y.-F.; Salters, V.J. Atomic-scale studies on the effect of boundary coherency on stability in twinned Cu. Appl. Phys. Lett. 2014, 104, 011913. [Google Scholar] [CrossRef]
- Tseng, I.-H.; Hsu, Y.-T.; Leu, J.; Tu, K.-N.; Chen, C. Effect of thermal stress on anisotropic grain growth in nano-twinned and un-twinned copper films. Acta Mater. 2021, 206, 116637. [Google Scholar] [CrossRef]
- Huang, C.-L.; Weng, W.-L.; Liao, C.-N.; Tu, K.-N. Suppression of interdiffusion-induced voiding in oxidation of copper nanowires with twin-modified surface. Nat. Commun. 2018, 9, 340. [Google Scholar] [CrossRef]
- LaGrange, T.; Reed, B.W.; Wall, M.; Mason, J.; Barbee, T.; Kumar, M. Topological view of the thermal stability of nanotwinned copper. Appl. Phys. Lett. 2013, 102, 011905. [Google Scholar] [CrossRef]
- Gan, D.; Ho, P.S.; Huang, R.; Leu, J.; Maiz, J.; Scherban, T. Isothermal stress relaxation in electroplated Cu films. I. Mass transport measurements. J. Appl. Phys. 2005, 97, 103531. [Google Scholar] [CrossRef]
- Jackson, M.; Che-Yu, L. Stress relaxation and hillock growth in thin films. Acta Metall. 1982, 30, 1993–2000. [Google Scholar] [CrossRef][Green Version]
- Sonnweber-Ribic, P.; Gruber, P.A.; Dehm, G.; Strunk, H.P.; Arzt, E. Kinetics and driving forces of abnormal grain growth in thin Cu films. Acta Mater. 2012, 60, 2397–2406. [Google Scholar] [CrossRef]
- Chen, K.-J.; Wu, J.A.; Chen, C. Effect of Reverse Currents during Electroplating on the⟨ 111⟩-Oriented and Nanotwinned Columnar Grain Growth of Copper Films. Cryst. Growth Des. 2020, 20, 3834–3841. [Google Scholar] [CrossRef]
- Grujicic, D.; Pesic, B. Iron nucleation mechanisms on vitreous carbon during electrodeposition from sulfate and chloride solutions. Electrochim. Acta 2005, 50, 4405–4418. [Google Scholar] [CrossRef]
- Zhang, Q.; Wan, J.; Shangguan, J.; Betzler, S.; Zheng, H. Influence of sub-zero temperature on nucleation and growth of copper nanoparticles in electrochemical reactions. Iscience 2021, 24, 103289. [Google Scholar] [CrossRef]
- Liu, C.-M.; Lin, H.-W.; Huang, Y.-S.; Chu, Y.-C.; Chen, C.; Lyu, D.-R.; Chen, K.-N.; Tu, K.-N. Low-temperature direct copper-to-copper bonding enabled by creep on (111) surfaces of nanotwinned Cu. Sci. Rep. 2015, 5, 1–11. [Google Scholar] [CrossRef] [PubMed]
Samples (As-Fabricated) | (111) Ratio (%) | Average Grain Size (µm) |
---|---|---|
25 °C, 4 ASD | 98.5 | 0.60 ± 0.29 |
25 °C, 8 ASD | 73.4 | 0.41 ± 0.19 |
25 °C, 12 ASD | 43.5 | 0.33 ± 0.14 |
Samples (After Annealing) | (111) Ratio (%) | Average Grain Size (µm) |
---|---|---|
25 °C, 4 ASD | 98.1 | 0.64 ± 0.25 |
25 °C, 8 ASD | 69.7 | 0.48 ± 0.21 |
25 °C, 12 ASD | 35.9 | 0.36 ± 0.15 |
Samples (As-Fabricated) | (111) Ratio (%) | Average Grain Size (µm) |
---|---|---|
35 °C, 4 ASD | 95.2 | 0.64 ± 0.38 |
35 °C, 8 ASD | 97.8 | 0.48 ± 0.33 |
35 °C, 12 ASD | 95.9 | 0.39 ± 0.29 |
Samples (After Annealing) | (111) Ratio (%) | Average Grain Size (µm) |
---|---|---|
35 °C, 4 ASD | 94.3 | 0.94 ± 0.37 |
35 °C, 8 ASD | 97.6 | 0.79 ± 0.33 |
35 °C, 12 ASD | 97.3 | 0.59 ± 0.32 |
Samples | As-Fabricated, Grain Size (µm) | After Annealing, Grain Size (µm) | Stress (MPa) |
---|---|---|---|
35 °C, 4 ASD | 0.64 ± 0.38 | 0.94 ± 0.37 | 11.7 |
35 °C, 8 ASD | 0.48 ± 0.33 | 0.79 ± 0.33 | 19.2 |
35 °C, 12 ASD | 0.39 ± 0.29 | 0.59 ± 0.32 | 20.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, J.-Y.; Tran, D.-P.; Yang, S.-C.; Tseng, I.-H.; Shie, K.-C.; Leu, J.; Chen, C. Stress Relaxation and Grain Growth Behaviors of (111)-Preferred Nanotwinned Copper during Annealing. Nanomaterials 2023, 13, 709. https://doi.org/10.3390/nano13040709
Lai J-Y, Tran D-P, Yang S-C, Tseng I-H, Shie K-C, Leu J, Chen C. Stress Relaxation and Grain Growth Behaviors of (111)-Preferred Nanotwinned Copper during Annealing. Nanomaterials. 2023; 13(4):709. https://doi.org/10.3390/nano13040709
Chicago/Turabian StyleLai, Jyun-Yu, Dinh-Phuc Tran, Shih-Chi Yang, I-Hsin Tseng, Kai-Cheng Shie, Jihperng Leu, and Chih Chen. 2023. "Stress Relaxation and Grain Growth Behaviors of (111)-Preferred Nanotwinned Copper during Annealing" Nanomaterials 13, no. 4: 709. https://doi.org/10.3390/nano13040709
APA StyleLai, J.-Y., Tran, D.-P., Yang, S.-C., Tseng, I.-H., Shie, K.-C., Leu, J., & Chen, C. (2023). Stress Relaxation and Grain Growth Behaviors of (111)-Preferred Nanotwinned Copper during Annealing. Nanomaterials, 13(4), 709. https://doi.org/10.3390/nano13040709