All-Water-Driven High-k HfO2 Gate Dielectrics and Applications in Thin Film Transistors
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of Precursor Solutions
2.3. Film Deposition and Device Fabrication
2.4. Characterizations
3. Results and Discussion
3.1. Microstructure Analysis of HfO2 Thin Films
3.2. X-ray Photoelectron Spectroscopy (XPS) Measurements for HfO2 Thin Films
3.3. AFM Analysis of HfO2 Thin Films
3.4. Thermogravimetric Analysis
3.5. U-V Analysis of HfO2 Thin Films
3.6. Areal Capacitance of WI HfO2 Thin Film
3.7. Electrical Properties of Solution-Processed of In2O3/HfO2 TFTs
Temperature (°C) | Dielectric | Solvent | µFE [cm2 v−1s−1] | References |
---|---|---|---|---|
600 | SrOx | 2-ME | 5.61 | [37] |
300 | LiOx | 2-ME | 5.69 | [38] |
500 | YbOx | 2-Methoxyethanol+N, N-dimethylformamide | 4.98 | [39] |
200 | ZrO2:B | 2-ME | 4.01 | [40] |
500 | MgO | 2ME | 5.48 | [41] |
350 | SiO2 | 2ME | 3.53 | [42] |
500 | HfO2 | H2O | 9 | Current work |
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492. [Google Scholar] [CrossRef]
- Li, X.; Li, Q.; Xin, E.; Zhang, J. Sol-Gel processed indium zinc oxide thin film and transparent thin film transistors. J. Sol-Gel Sci. Technol. 2013, 65, 130–134. [Google Scholar] [CrossRef]
- Huang, G.M.; Duan, L.; Dong, G.F.; Zhang, D.Q.; Qiu, Y. High-moblity soloution-processed tin oxide thin film transistors with high-k Alumina dielectric working in ehacement mode. ACS Appl. Mater. Interfaces 2014, 6, 20786–20794. [Google Scholar] [CrossRef]
- Fortunato, E.; Barquinha, P.; Pimentel, A.; Pereira, L.; Goncalves, G.; Martins, R. Amorphous IZO TFTs with saturation mobilities exceeding 100 cm2/Vs. Phys. Status Solidi (RRL)–Rapid Res. Lett. 2007, 1, R34–R36. [Google Scholar] [CrossRef]
- Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M. Hosono, Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. J. Sci. 2003, 300, 1269–1272. [Google Scholar]
- Lorenz, M.; Rao, M.R.; Venkatesan, T.; Fortunato, E.; Barquinha, P.; Branquinho, R.; Salgueiro, D.; Martins, R.; Carlos, E.; Liu, A. The 2016 oxide electronic materials and oxide interfaces roadmap. Appl. Phys. D 2016, 49, 433001. [Google Scholar] [CrossRef]
- Fujii, M.; Ishikawa, Y.; Ishihara, R.; van der Cingel, J.; Mofrad, M.R.; Horita, M.; Uraoka, Y. Low temperature high-mobility InZnO thin-film transistors fabricated by excimer laser annealing. Appl. Phys. Lett. 2013, 102, 122107. [Google Scholar] [CrossRef]
- Han, S.-Y.; Herman, G.S.; Chang, C.H. Low-temperature, high-performance, solution-processed indium oxide thin-film transistors. J. Am. Chem. Soc. 2011, 133, 5166–5169. [Google Scholar] [CrossRef]
- Lee, D.H.; Chang, Y.J.; Herman, G.S.; Chang, C.H. A general route to printable high-mobility transparent amorphous oxide semiconductors. Adv. Mater. 2007, 19, 843–847. [Google Scholar] [CrossRef]
- Adamopoulos, G.; Thomas, S.; Wöbkenberg, P.H.; Bradley, D.D.; McLachlan, M.A.; Anthopoulos, T.D. High-mobility low-voltage ZnO and Li-doped ZnO transistors based on ZrO2 high-k dielectric grown by spray pyrolysis in ambient air. Adv. Mater. 2011, 23, 1894–1898. [Google Scholar] [CrossRef]
- Lee, H.; Dellatore, S.M.; Miller, W.M.; Messersmith, P.B. Mussel-inspired surface chemistry for multifunctional coatings. Science 2007, 318, 426–430. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-G.; Kanatzidis, M.G.; Facchetti, A.; Marks, T.J. Low-temperature fabrication of high-performance metal oxide thin-film electronics via combustion processing. Nat. Mater. 2011, 10, 382. [Google Scholar] [CrossRef] [PubMed]
- Banger, K.; Yamashita, Y.; Mori, K.; Peterson, R.; Leedham, T.; Rickard, J.; Sirringhaus, H. Low-temperature high-performance solution-processed metal oxide thin-film transistors formed by a ‘sol–gel on chip’process. Nat. Mater. 2011, 10, 45. [Google Scholar] [CrossRef]
- Ding, X.; Yang, B.; Xu, H.; Qi, J.; Li, X.; Zhang, J. Low-Temperature Fabrication of IZO Thin Film for Flexible Transistors. Nanomaterials 2021, 11, 2552. [Google Scholar] [CrossRef]
- Nayak, P.K.; Hedhili, M.N.; Cha, D.; Alshareef, H.N. High performance In2O3 thin film transistors using chemically derived aluminum oxide dielectric. Appl. Phys. Lett. 2013, 103, 033518. [Google Scholar] [CrossRef]
- Liu, A.; Liu, G.X.; Zhu, H.H.; Xu, F.; Fortunato, E.; Martins, R.; Shan, F.K. Fully Solution-Processed Low-Voltage Aqueous In2O3 Thin-Film Transistors Using an Ultrathin ZrOx Dielectric. ACS Appl. Mater. Interfaces 2014, 6, 17364–17369. [Google Scholar] [CrossRef]
- Liu, A.; Liu, G.; Zhu, H.; Song, H.; Shin, B.; Fortunato, E.; Martins, R.; Shan, F. Water-induced scandium oxide dielectric for low-operating voltage n-and p-type metal-oxide thin-film transistors. Adv. Funct. Mater. 2015, 25, 7180–7188. [Google Scholar] [CrossRef]
- Liu, G.; Liu, A.; Zhu, H.; Shin, B.; Fortunato, E.; Martins, R.; Wang, Y.; Shan, F. Low-Temperature, Nontoxic Water-Induced Metal-Oxide Thin Films and Their Application in Thin-Film Transistors. Adv. Funct. Mater. 2015, 25, 2564–2572. [Google Scholar] [CrossRef]
- Liu, Y.; Guan, P.; Zhang, B.; Falk, M.L.; Katz, H.E. Ion dependence of gate dielectric behavior of alkali metal ion-incorporated aluminas in oxide field-effect transistors. J. Mater. Chem. 2013, 25, 3788–3796. [Google Scholar] [CrossRef]
- Lee, E.; Ko, J.; Lim, K.H.; Kim, K.; Park, S.Y.; Myoung, J.M.; Kim, Y.S. Gate Capacitance-Dependent Field-Effect Mobility in Solution-Processed Oxide Semiconductor Thin-Film Transistors. Adv. Funct. Mater. 2014, 24, 4689–4697. [Google Scholar] [CrossRef]
- Li, W.; He, G.; Zheng, C.; Liang, S.; Zhu, L.; Jiang, S. Solution-processed HfGdO gate dielectric thin films for CMOS application: Effect of annealing temperature. J. Alloys. Compd. 2018, 731, 150–155. [Google Scholar] [CrossRef]
- Zhu, L.; He, G.; Li, W.; Yang, B.; Fortunato, E.; Martins, R. Nontoxic, Eco-friendly Fully Water-Induced Ternary Zr–Gd–O Dielectric for High-Performance Transistors and Unipolar Inverters. Adv. Electro. Mater. 2018, 4, 1800100. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, G.; Liu, A.; Song, H.; Hou, Y.; Shin, B.; Shan, F. Low-temperature fabrication of high performance indium oxide thin film transistors. RSC Adv. 2015, 5, 37807–37813. [Google Scholar] [CrossRef]
- Barquinha, P.; Pereira, L.; Goncalves, G.; Martins, R.; Kuščer, D.; Kosec, M.; Fortunato, E. Performance and stability of low temperature transparent thin-film transistors using amorphous multicomponent dielectrics. J. Electrochem. Soc. 2009, 156, H824–H831. [Google Scholar] [CrossRef]
- Yoo, Y.B.; Park, J.H.; Lee, K.H.; Lee, H.W.; Song, K.M.; Lee, S.J.; Baik, H.K. Solution-processed high-k HfO2 gate dielectric processed under softening temperature of polymer substrates. J. Mater. Chem. C 2013, 1, 1651–1658. [Google Scholar] [CrossRef]
- Shimizu, H.; Sato, T.; Konagai, S.; Ikeda, M.; Takahashi, T.; Nishide, T. Temperature-Programmed Desorption Analyses of Sol–Gel Deposited and Crystallized HfO2 Films. Jpn. J. Appl. Phys. 2007, 46, 4209. [Google Scholar] [CrossRef]
- Chua, L.L.; Zaumseil, J.; Chang, J.-F.; Ou, E.C.-W.; Ho, P.K.-H.; Sirringhaus, H.; Friend, R.H. General observation of n-type field-effect behaviour in organic semiconductors. Nature 2005, 434, 194. [Google Scholar] [CrossRef]
- Weng, J.; Chen, W.; Xia, W.; Zhang, J.; Jiang, Y.; Zhu, G. Low-temperature solution-based fabrication of high-k HfO2 dielectric thin films via combustion process. J. Sol-Gel Sci. Technol. 2017, 81, 662–668. [Google Scholar] [CrossRef]
- Städter, M.; Müller, K.; Rachow, F.; Richter, M.; Schmeißer, D. Ambient pressure thermal desorption spectroscopy (AP-TDS) of NiO/SiO2 catalysts. Environ. Earth Sci. 2013, 70, 3779–3784. [Google Scholar] [CrossRef]
- Gupta, V.; Mansingh, A. Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film. J. Appl. Phys. 1996, 80, 1063–1073. [Google Scholar] [CrossRef]
- Clearfield, A.; Vaughan, P.A. The crystal structure of zirconyl chloride octahydrate and zirconyl bromide octahydrate. Acta Crystallogr. 1956, 9, 555–558. [Google Scholar] [CrossRef]
- Clearfield, A. The mechanism of hydrolytic polymerization of zirconyl soloutions. J. Mater. Res. 1990, 5, 161. [Google Scholar] [CrossRef]
- Zhang, F.; Liu, G.; Liu, A.; Shin, B.; Shan, F. Solution-processed hafnium oxide dielectric thin films for thin-film transistors applications. Ceram. Int. 2015, 41, 13218–13223. [Google Scholar] [CrossRef]
- Liu, A.; Liu, G.; Zhu, H.; Meng, Y.; Song, H.; Shin, B.; Fortunato, E.; Martins, R.; Shan, F. A water-induced high-k yttrium oxide dielectric for fully-solution-processed oxide thin-film transistors. Curr. Appl. Phys. 2015, 15, S75–S81. [Google Scholar] [CrossRef]
- Zhang, L.; Li, J.; Zhang, X.; Jiang, X.; Zhang, Z. High performance ZnO-thin-film transistor with Ta2O5 dielectrics fabricated at room temperature. Appl. Phys. Lett. 2009, 95, 072112. [Google Scholar] [CrossRef]
- Liu, A.; Zhang, Q.; Liu, G.; Shan, F.; Liu, J.; Lee, W.; Shin, B.; Bae, J. Oxygen pressure dependence of Ti-doped In-Zn-O thin film transistors. J. Electroceram. 2014, 33, 31–36. [Google Scholar] [CrossRef]
- He, J.; Teren, A.; Jia, C.; Ehrhart, P.; Urban, K.; Waser, R.; Wang, R. Microstructure and interfaces of HfO2 thin films grown on silicon substrates. J. Cryst. Growth 2004, 262, 295–303. [Google Scholar] [CrossRef]
- Modreanu, M.; Sancho-Parramon, J.; Durand, O.; Servet, B.; Stchakovsky, M.; Eypert, C.; Naudin, C.; Knowles, A.; Bridou, F.; Ravet, M.-F. Investigation of thermal annealing effects on microstructural and optical properties of HfO2 thin films. Appl. Surf. Sci. 2006, 253, 328–334. [Google Scholar] [CrossRef]
- He, G.; Liu, M.; Zhu, L.; Chang, M.; Fang, Q.; Zhang, L. Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (1 0 0). Surf. Sci. 2005, 576, 67–75. [Google Scholar] [CrossRef]
- Aarik, J.; Aidla, A.; Mändar, H.; Uustare, T.; Kukli, K.; Schuisky, M. Phase transformations in hafnium dioxide thin films grown by atomic layer deposition at high temperatures. Appl. Surf. Sci. 2001, 173, 15–21. [Google Scholar] [CrossRef]
- Park, J.H.; Yoo, Y.B.; Lee, K.H.; Jang, W.S.; Oh, J.Y.; Chae, S.S.; Lee, H.W.; Han, S.W.; Baik, H.K. Boron-doped peroxo-zirconium oxide dielectric for high-performance, low-temperature, solution-processed indium oxide thin-film transistor. ACS Appl. Mater. Interfaces 2013, 5, 8067–8075. [Google Scholar] [CrossRef] [PubMed]
- Aoki, Y.; Kunitake, T. Solution-based Fabrication of High-κ Gate Dielectrics for Next-Generation Metal-Oxide Semiconductor Transistors. Adv. Mater. 2004, 16, 118–123. [Google Scholar] [CrossRef]
- Jiang, G.X.; Liu, A.; Liu, G.X.; Zhu, C.D.; Meng, Y.; Shin, B.; Fortunato, E.; Martins, R.; Shan, F.K. Solution-processed high-k magnesium oxide for low oxide voltage thin film transistors. Appl. Phys. Lett. 2016, 109, 183508. [Google Scholar] [CrossRef]
- Claeys, C.; Srinivsasm, E.; Misra, D. Impact of the gate dielectric electrode/dielectric interface on the low-frequencey noise of the thin gate oxide n-channel metal-oxide semiconductor field effect transistors. Solid State Electron. 2007, 51, 627. [Google Scholar] [CrossRef]
Sample | Annealing Temperature | µFE [cm2 V−1 s−1] | ION/IOFF | VTH [V] | SS [V dec−1] | Dit [cm−2eV−1] |
---|---|---|---|---|---|---|
In2O3/HfO2 | 450 °C | 5.4 | 103 | −0.06 | 0.59 | 3.7 × 1013 |
In2O3/HfO2 | 500 °C | 9 | 105 | 1.1 | 0.31 | 1.2 × 1013 |
In2O3/HfO2 | 550 °C | 7.8 | 104 | 0.6 | 0.46 | 2.8 × 1013 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alam, F.; He, G.; Yan, J.; Wang, W. All-Water-Driven High-k HfO2 Gate Dielectrics and Applications in Thin Film Transistors. Nanomaterials 2023, 13, 694. https://doi.org/10.3390/nano13040694
Alam F, He G, Yan J, Wang W. All-Water-Driven High-k HfO2 Gate Dielectrics and Applications in Thin Film Transistors. Nanomaterials. 2023; 13(4):694. https://doi.org/10.3390/nano13040694
Chicago/Turabian StyleAlam, Fakhari, Gang He, Jin Yan, and Wenhao Wang. 2023. "All-Water-Driven High-k HfO2 Gate Dielectrics and Applications in Thin Film Transistors" Nanomaterials 13, no. 4: 694. https://doi.org/10.3390/nano13040694
APA StyleAlam, F., He, G., Yan, J., & Wang, W. (2023). All-Water-Driven High-k HfO2 Gate Dielectrics and Applications in Thin Film Transistors. Nanomaterials, 13(4), 694. https://doi.org/10.3390/nano13040694