Efficient Diode Performance with Improved Effective Carrier Lifetime and Absorption Using Bismuth Nanoparticles Passivated Silicon Nanowires
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, P.; Wu, J.; Liu, S.; Xiong, J.; Jagadish, C.; Wang, Z.M. Design and fabrication of silicon nanowires towards efficient solar cells. Nano Today 2016, 11, 704–737. [Google Scholar] [CrossRef]
- Peng, K.-Q.; Wang, X.; Li, L.; Hu, Y.; Lee, S.-T. Silicon nanowires for advanced energy conversion and storage. Nano Today 2013, 8, 75–97. [Google Scholar] [CrossRef]
- Naffeti, M.; Postigo, P.A.; Chtourou, R.; Zaïbi, M.A. Elucidating the Effect of Etching Time Key-Parameter toward Optically and Electrically-Active Silicon Nanowires. Nanomaterials 2020, 25, 404. [Google Scholar] [CrossRef] [Green Version]
- Jeong, H.; Song, Y.; Pak, I.K.; Kwon, K.; Jo, H.; Lee, G.Y. Jung, Enhanced light absorption of silicon nanotube arrays for organic/inorganic hybrid solar cells. Adv. Mater. 2014, 26, 3445–3450. [Google Scholar] [CrossRef]
- Priolo, F.; Gregorkiewicz, T.; Galli, M.; Krauss, T.F. Silicon nanostructures for photonics and photovoltaics. Nat. Nanotechnol. 2014, 9, 19–32. [Google Scholar] [CrossRef]
- Ingenito, A.; Isabella, O.; Zeman, M. Nano-cones on micro-pyramids: Modulated surface textures for maximal spectral response and high-efficiency solar cells. Prog. Photovolt. Res. Appl. 2015, 23, 1649–1659. [Google Scholar] [CrossRef]
- Jeong, S.; McGehee, M.; Cui, Y. All-back-contact ultra-thin silicon nanocone solar cells with 13.7% power conversion efficiency. Nat. Commun. 2013, 4, 2950. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Zhang, W.; Lu, C.; Zhang, Y.; Ni, C.; Liu, H.; Yu, W. Enhancing light harvesting in planar halide perovskite film solar cells by silicon nanorods. Ceram. Int. 2019, 45, 14880–14888. [Google Scholar] [CrossRef]
- Peng, K.Q.; Wang, X.; Li, L.; Wu, X.L.; Lee, S.T. High-performance silicon nanohole solar cells. J. Am. Chem. Soc. 2010, 132, 6872–6873. [Google Scholar] [CrossRef] [PubMed]
- Han, S.E.; Chen, G. Optical Absorption Enhancement in Silicon Nanohole Arrays for Solar Photovoltaics. Nano Lett. 2010, 10, 1012–1015. [Google Scholar] [CrossRef] [PubMed]
- Prashant, V. Kamat, Quantum Dot Solar Cells. Semiconductor Nanocrystals as Light Harvesters. J. Phys. Chem. C 2008, 112, 18737–18753. [Google Scholar] [CrossRef]
- Pudasaini, P.R.; Ruiz-Zepeda, F.; Sharma, M.; Elam, D.; Ponce, A.; Ayon, A.A. High efficiency hybrid silicon nanopillar-polymer solar cells. ACS. Appl. Mater. Interfaces 2013, 5, 9620–9627. [Google Scholar] [CrossRef] [Green Version]
- Kalem, S. Si nanopillar arrays as possible electronic device platforms. Solid-State Electron. 2021, 183, 108102. [Google Scholar] [CrossRef]
- Kashyap, V.; Kashyap, V.; Goyal, N.; Saxena, K. Fabrication and characterization of silicon nanowires with MACE method to influence the optical properties. Mater. Today Proc. 2021, 49, 3409–3413. [Google Scholar] [CrossRef]
- Kaya, A.; Polat, K.G.; Mayet, A.S.; Mao, H.; Altındal, Ş.; Islam, M.S. Manufacturing and electrical characterization of Al-doped ZnO-coated silicon nanowires. Mater. Sci. Semicon. Proc. 2018, 75, 124–129. [Google Scholar] [CrossRef]
- Chiou, A.-H.; Wu, S.-D.; Hsiao, R.-C.; Hsu, C.-Y. TiO2-silicon nanowire arrays for heterojunction diode applications. Thin Solid Film. 2016, 616, 116–121. [Google Scholar] [CrossRef]
- Amri, C.; Ouertani, R.; Hamdi, A.; Ezzaouia, H. Enhancement of silicon nanowire opto-electric properties by combining acid vapor etching and lithium pore-filling. J. Mater. Sci. Mater. Electron. 2017, 28, 13426–13435. [Google Scholar] [CrossRef]
- Zaïbi, F.; Slama, I.; Okolie, C.; Deshmukh, J.; Hawco, L.; Mastouri, M.; Bennett, C.; Mkandawire, M.; Chtourou, R. Electro-performance of Functionalized Silicon Nanowires by Conductive Polymer-coated with Gold Nanoparticles. Colloids Surf. A Physicochem. Eng. Asp. 2020, 589, 124450. [Google Scholar] [CrossRef]
- Baba Ahmed, L.; Naama, S.; Keffous, A.; Hassein-Bey, A.; Hadjersi, T. H2 sensing properties of modified silicon nanowires. Prog. Nat. Sci. 2015, 25, 101–110. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Ji, Y.; Lu, Z.; Sun, Y.; Yang, H.; Liu, J.; Zhang, Y.; Li, D.; Cao, Y.; Li, W.; et al. Enhanced device performance of Si nanowires/Si nanocrystals heterojunction solar cells with ultrathin Al2O3 passivation. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 120, 114048. [Google Scholar] [CrossRef]
- Sun, H.-T.; Zhou, J.; Qiu, J. Recent advances in bismuth activated photonic materials. Prog. Mater. Sci. 2014, 64, 1–72. [Google Scholar] [CrossRef]
- Benabdallah, I.; Boujnah, M.; El Kenz, A.; Benyoussef, A.; Abatal, M.; Bassam, A. Lead-free perovskite based bismuth for solar cells absorbers. J. Alloy. Compd. 2018, 773, 796–801. [Google Scholar] [CrossRef]
- Dong, F.; Xiong, T.; Sun, Y.; Zhao, Z.; Zhou, Y.; Feng, X.; Wu, Z. A semimetal bismuth element as a direct plasmonic photocatalyst. Chem. Commun. 2014, 50, 10386–10389. [Google Scholar] [CrossRef] [PubMed]
- Sivasubramanian, P.; Chang, J.H.; Nagendran, S.; Dong, C.D.; Shkir, M.; Kumar, M. A review on bismuth-based nanocomposites for energy and environmental applications. Chemosphere 2022, 307, 135652. [Google Scholar] [CrossRef] [PubMed]
- Ensafi, A.A.; Abarghoui, M.M.; Rezaei, B. Metal (Ni and Bi) coated porous silicon nanostructure, high-performance anode materials for lithium ion batteries with high capacity and stability. J. Alloy. Compd. 2017, 712, 233–240. [Google Scholar] [CrossRef]
- Rodil, S.E.; Garcia-Zarco, O.; Camps, E.; Estrada, H.; Lejeune, M.; Bourja, L.; Zeinert, A. Preferential orientation in bismuth thin films as a function of growth conditions. Thin Solid Film. 2017, 636, 384–391. [Google Scholar] [CrossRef]
- Xu, Y.; Li, L.; Zang, Y.; Hu, J.; Li, Z.; Chen, H.; Zhang, G.; Xia, C.; Cho, J.-H. Forward bending of silicon nanowires induced by strain distribution in asymmetric growth. Mater. Lett. 2021, 297, 129929. [Google Scholar] [CrossRef]
- Ashrafabadi, S.; Eshghi, H. Single-crystalline Si nanowires fabrication by one-step metal assisted chemical etching: The effect of etching time and resistivity of Si wafer. Superlattices Microstruct. 2018, 120, 517–524. [Google Scholar] [CrossRef]
- Rahmani, M.; Jerbi, L.; Meftah, A. Strong photoluminescence enhancement of silicon nanowires by poly(3-hexylthiophene) deposition. J. Lumin. 2020, 217, 116805. [Google Scholar] [CrossRef]
- Salman, K.A.; Omar, K.; Hassan, Z. The effect of etching time of porous silicon on solar cell performance. Superlattices Microstruct. 2011, 50, 647–658. [Google Scholar] [CrossRef]
- Dariani, R.S.; Ahmadi, Z. Study of porous silicon structure by Raman scattering. Opt. Int. J. Light Electron Opt. 2013, 124, 5353–5356. [Google Scholar] [CrossRef]
- Rani, S.; Shukla, A.K. Investigation of silver decorated silicon nanowires as ultrasensitive and cost-effective surface-enhanced Raman substrate. Thin Solid Film. 2021, 723, 138595. [Google Scholar] [CrossRef]
- Pal, A.; Ghosh, R.; Giri, P.K. Early stages of growth of Si nanowires by metal assisted chemical etching: A scaling study. Appl. Phys. Lett. 2015, 107, 072104. [Google Scholar] [CrossRef] [Green Version]
- Das, M.; Nath, P.; Sarkar, D. Influence of etching current density on microstructural, optical and electrical properties of porous silicon (PS):n-Si heterostructure. Superlattices Microstruct. 2016, 90, 77–86. [Google Scholar] [CrossRef]
- Dariani, R.S.; Zabihipour, M. Effect of electrical behavior of ZnO microparticles grown on porous silicon substrate. Appl. Phys. A 2016, 122, 1047. [Google Scholar] [CrossRef]
- Yu, L.; Fortuna, F.; O’Donnell, B.; Jeon, T.; Foldyna, M.; Picardi, G.; Roca i Cabarrocas, P. Bismuth-Catalyzed and Doped Silicon Nanowires for One-Pump-Down Fabrication of Radial Junction Solar Cells. Nano Lett. 2012, 12, 4153–4158. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.R.; Rao, K.N.; Phani, A.R. Bismuth catalyzed growth of silicon nanowires by electron beam evaporation. Mater. Lett. 2012, 82, 163–166. [Google Scholar] [CrossRef]
- Nama Manjunatha, K.; Paul, S. Carrier selective metal-oxides for self-doped silicon nanowire solar cells. Appl. Surf. Sci. 2019, 492, 856–861. [Google Scholar] [CrossRef]
- Qiu, J.; Shang, Y.; Chen, X.; Li, S.; Ma, W.; Wan, X.; Yang, J.; Lei, Y.; Chen, Z. Chen, Enhanced efficiency of graphene-silicon Schottky junction solar cell through inverted pyramid arrays texturization. J. Mater. Sci. Technol. 2018, 34, 2197–2204. [Google Scholar] [CrossRef]
- Jbira, E.; Derouiche, H.; Missaoui, K. Enhancing effect of silver nanoparticles (AgNPs) interfacial thin layer on silicon nanowires (SiNWs)/PEDOT: PSS hybrid solar cell. Sol. Energy 2020, 211, 1230–1238. [Google Scholar] [CrossRef]
- Naik, B.N.; Agarwal, L.; Tripathi, S. Microstructural and electrical characterization of Pt/Si nanowires Schottky diode grown by metal assisted chemical etching method. Int. J. Thin Film. Sci. Technol. 2017, 6, 107–111. [Google Scholar] [CrossRef]
- Cho, W.-M.; Lin, Y.-J.; Chang, H.-C.; Chen, Y.-H. Electronic transport for polymer/Si-nanowire arrays/n-type Si diodes with and without Si-nanowire surface passivation. Microelectron. Eng. 2013, 108, 24–27. [Google Scholar] [CrossRef]
- Chaliyawala, H.A.; Ray, A.; Pati, R.K.; Mukhopadhyay, I. Strong light absorption capability directed by structured profile of vertical Si nanowires. Opt. Mater. 2017, 73, 449–458. [Google Scholar] [CrossRef]
- Mussabek, G.; Lysenko, V.; Yermukhamed, D.; Sivakov, V.; Timoshenko, V.Y. Thermally induced evolution of the structure and optical properties of silicon nanowires. Results Phys. 2020, 18, 103258. [Google Scholar] [CrossRef]
Ln (I) vs. V (TE Model) | Cheung’s Functions | ||||
---|---|---|---|---|---|
Is (µA) | η | φb (eV) | RS (kΩ) | η | |
SiNWs | 0.21 | 5.91 | 0.806 | 93.65 | 3.65 |
Bi-1@SiNWs | 0.85 | 3.06 | 0.770 | 14.06 | 2.85 |
Bi-2@SiNWs | 1.94 | 1.88 | 0.748 | 8.25 | 1.96 |
Bi-3@SiNWs | 1.33 | 2.58 | 0.758 | 10.19 | 2.29 |
Samples | Effective Minority Carrier Lifetime τeff (µs) | Effective Surface Recombination Velocity Seff (cm·s−1) |
---|---|---|
Si | 8.1 | 3086.4 |
SiNWs | 6 | 4166.6 |
Bi-1@SiNWs | 8.6 | 2906.9 |
Bi-2@SiNWs | 10.7 | 2336.4 |
Bi-3@SiNWs | 10.1 | 2475.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naffeti, M.; Zaïbi, M.A.; García-Arias, A.V.; Chtourou, R.; Postigo, P.A. Efficient Diode Performance with Improved Effective Carrier Lifetime and Absorption Using Bismuth Nanoparticles Passivated Silicon Nanowires. Nanomaterials 2022, 12, 3729. https://doi.org/10.3390/nano12213729
Naffeti M, Zaïbi MA, García-Arias AV, Chtourou R, Postigo PA. Efficient Diode Performance with Improved Effective Carrier Lifetime and Absorption Using Bismuth Nanoparticles Passivated Silicon Nanowires. Nanomaterials. 2022; 12(21):3729. https://doi.org/10.3390/nano12213729
Chicago/Turabian StyleNaffeti, Mariem, Mohamed Ali Zaïbi, Alejandro Vidal García-Arias, Radhouane Chtourou, and Pablo Aitor Postigo. 2022. "Efficient Diode Performance with Improved Effective Carrier Lifetime and Absorption Using Bismuth Nanoparticles Passivated Silicon Nanowires" Nanomaterials 12, no. 21: 3729. https://doi.org/10.3390/nano12213729