Rod–Coil Block Copolymer: Fullerene Blend Water-Processable Nanoparticles: How Molecular Structure Addresses Morphology and Efficiency in NP-OPVs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Preparation of PCBM:BCP of the Blend WPNPs
2.2.2. Optical and Electrical Characterization of the PCBM:BCP = 3:1 Blend WPNPs
2.2.3. Fabrication and Characterization of the OPV Devices
2.2.4. Morphological Characterization of the PCBM:BCP = 3:1 Blend WPNPs
3. Results and Discussion
3.1. Design of the Materials and Blend Water-Processable Nanoparticle (bWPNP) Suspension Preparation
3.2. Characterization of the Blend WPNP Suspensions
3.3. Blend WPNP-Based OPV Device Characterization
3.4. The Characterization of the PCBM:BCP = 3:1 bWPNP Film
3.5. Morphological Investigation of bWPNP Suspended in Aqueous Inks
3.6. Photophysical Investigation of bWPNP-Based Films
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fukuda, K.; Yu, K.; Someya, T. The Future of Flexible Organic Solar Cells. Adv. Energy Mater. 2020, 10, 2000765. [Google Scholar] [CrossRef]
- Cui, Y.; Yao, H.; Zhang, J.; Xian, K.; Zhang, T.; Hong, L.; Wang, Y.; Xu, Y.; Ma, K.; An, C.; et al. Single-Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Adv. Energy Mater. 2020, 32, e1908205. [Google Scholar] [CrossRef]
- Gao, J.; Gao, W.; Ma, X.; Hu, Z.; Xu, C.; Wang, X.; An, Q.; Yang, C.; Zhang, X.; Zhang, F. Over 14.5% efficiency and 71.6% fill factor of ternary organic solar cells with 300 nm thick active layers. Energy Environ. Sci. 2020, 13, 958–967. [Google Scholar] [CrossRef]
- Xu, C.; Jin, K.; Xiao, Z.; Zhao, Z.; Ma, X.; Wang, X.; Li, J.; Xu, W.; Zhang, S.; Ding, L.; et al. Wide Bandgap Polymer with Narrow Photon Harvesting in Visible Light Range Enables Efficient Semitransparent Organic Photovoltaics. Adv. Funct. Mater. 2021, 31, 2107934. [Google Scholar] [CrossRef]
- Xu, W.; Ma, X.; Son, J.H.; Jeong, S.Y.; Niu, L.; Xu, C.; Zhang, S.; Zhou, Z.; Gao, J.; Woo, H.Y.; et al. Smart Ternary Strategy in Promoting the Performance of Polymer Solar Cells Based on Bulk-Heterojunction or Layer-By-Layer Structure. Small 2021, in press. [Google Scholar] [CrossRef]
- Hu, Z.; Wang, J.; Ma, X.; Gao, J.; Xu, C.; Yang, K.; Wang, Z.; Zhang, J.; Zhang, F. A critical review on semitransparent organic solar cells. Nano Energy 2020, 78, 105376. [Google Scholar] [CrossRef]
- Duan, L.; Uddin, A. Progress in Stability of Organic Solar Cells. Adv. Sci. 2020, 7, 1903259. [Google Scholar] [CrossRef] [Green Version]
- Zhao, F.; Wang, C.; Zhan, X. Morphology Control in Organic Solar Cells. Adv. Energy Mater. 2018, 8, 1703147. [Google Scholar] [CrossRef]
- Lee, S.; Jeong, D.; Kim, C.; Lee, C.; Kang, H.; Woo, H.Y.; Kim, B.J. Eco-Friendly Polymer Solar Cells: Advances in Green-Solvent Processing and Material Design. Acs Nano 2020, 14, 14493–14527. [Google Scholar] [CrossRef]
- Ma, Z.; Zhao, B.; Gong, Y.; Deng, J.; Tan, Z.a. Green-solvent-processable strategies for achieving large-scale manufacture of organic photovoltaics. J. Mater. Chem. A 2019, 7, 22826–22847. [Google Scholar] [CrossRef]
- Xu, X.; Yu, L.; Yan, H.; Li, R.; Peng, Q. Highly efficient non-fullerene organic solar cells enabled by a delayed processing method using a non-halogenated solvent. Energy Environ. Sci. 2020, 13, 4381–4388. [Google Scholar] [CrossRef]
- Du, B.; Ma, Y.; Guo, C.; Cai, J.; Li, D.; Cheng, S.; Liu, D.; Zheng, Q.; Wang, T. Hot-Casting Boosts Efficiency of Halogen-Free Solvent Processed Non-Fullerene Organic Solar Cells. Adv. Funct. Mater. 2021, 31, 2105794. [Google Scholar] [CrossRef]
- Jung, H.; Yu, G.; Kim, J.; Bae, H.; Kim, M.; Kim, K.; Kim, B.; Lee, Y. Unprecedented Long-Term Thermal Stability of 1D/2A Terpolymer-Based Polymer Solar Cells Processed with Nonhalogenated Solvent. Sol. RRL 2021, 5, 2100513. [Google Scholar] [CrossRef]
- Li, Y.; Liu, H.; Wu, J.; Tang, H.; Wang, H.; Yang, Q.; Fu, Y.; Xie, Z. Additive and High-Temperature Processing Boost the Photovoltaic Performance of Nonfullerene Organic Solar Cells Fabricated with Blade Coating and Nonhalogenated Solvents. ACS Appl. Mater. Interfaces 2021, 13, 10239–10248. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wu, J.; Zhang, Y.; Song, J.; Chen, L.; Xiao, Y.; Qu, J.; Wong, W.-Y. Achieving efficient green-solvent-processed organic solar cells by employing ortho-ortho perylene diimide dimer. Org. Electron. 2020, 83, 105732. [Google Scholar] [CrossRef]
- Cheng, X.; Li, M.; Guo, Z.; Yu, J.; Lu, G.; Bu, L.; Ye, L.; Ade, H.; Chen, Y.; Geng, Y. “Twisted” conjugated molecules as donor materials for efficient all-small-molecule organic solar cells processed with tetrahydrofuran. J. Mater. Chem. A 2019, 7, 23008–23018. [Google Scholar] [CrossRef]
- Zhao, W.; Zhang, S.; Zhang, Y.; Li, S.; Liu, X.; He, C.; Zheng, Z.; Hou, J. Environmentally Friendly Solvent-Processed Organic Solar Cells that are Highly Efficient and Adaptable for the Blade-Coating Method. Adv. Mater. 2018, 30, 1704837. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Awartani, O.M.; Gautam, B.; Liu, D.; Qin, Y.; Li, W.; Bataller, A.; Gundogdu, K.; Ade, H.; Hou, J. Efficient Charge Transfer and Fine-Tuned Energy Level Alignment in a THF-Processed Fullerene-Free Organic Solar Cell with 11.3% Efficiency. Adv. Mater. 2017, 29, 1604241. [Google Scholar] [CrossRef] [PubMed]
- Li, M.-J.; Fan, B.-B.; Zhong, W.-K.; Zeng, Z.-M.-Y.; Xu, J.-K.; Ying, L. Rational Design of Conjugated Polymers for d-Limonene Processed All-polymer Solar Cells with Small Energy Loss. Chin. J. Polym. Sci. 2020, 38, 791–796. [Google Scholar] [CrossRef]
- Lamarche, M.; Dang, M.T.; Lefebvre, J.; Wuest, J.D.; Roorda, S. Limonene as a Green Solvent for Depositing Thin Layers of Molecular Electronic Materials with Controlled Interdiffusion. ACS Sustain. Chem. Eng. 2017, 5, 5994–5998. [Google Scholar] [CrossRef]
- Reshma, L.; Santhakumar, K. Non-fullerene organic solar cells with 7% efficiency and excellent air stability through morphological and interfacial engineering. Org. Electron. 2017, 47, 35–43. [Google Scholar] [CrossRef]
- Venkatesan, S.; Chen, Q.; Ngo, E.C.; Adhikari, N.; Nelson, K.; Dubey, A.; Sun, J.; Bommisetty, V.; Zhang, C.; Galipeau, D.; et al. Polymer Solar Cells Processed Using Anisole as a Relatively Nontoxic Solvent. Energy Technol. 2014, 2, 269–274. [Google Scholar] [CrossRef]
- Joshi, D.R.; Adhikari, N. An Overview on Common Organic Solvents and Their Toxicity. J. Pharm. Res. Int. 2019, 28, 1–18. [Google Scholar] [CrossRef]
- Ulum, S.; Holmes, N.; Barr, M.; Kilcoyne, A.L.D.; Bin Gong, B.; Zhou, X.J.; Belcher, W.; Dastoor, P. The role of miscibility in polymer:fullerene nanoparticulate organic photovoltaic devices. Nano Energy 2013, 2, 897–905. [Google Scholar] [CrossRef]
- Gartner, S.; Christmann, M.; Sankaran, S.; Rohm, H.; Prinz, E.M.; Penth, F.; Putz, A.; Tureli, A.E.; Penth, B.; Baumstummler, B.; et al. Eco-Friendly Fabrication of 4% Efficient Organic Solar Cells from Surfactant-Free P3HT:ICBA Nanoparticle Dispersions. Adv. Mater. 2014, 26, 6653–6657. [Google Scholar] [CrossRef] [PubMed]
- Darwis, D.; Holmes, N.; Elkington, D.; David Kilcoyne, A.L.; Bryant, G.; Zhou, X.; Dastoor, P.; Belcher, W. Surfactant-free nanoparticulate organic photovoltaics. Sol. Energy Mater. Sol. Cells 2014, 121, 99–107. [Google Scholar] [CrossRef]
- Holmes, A.; Deniau, E.; Lartigau-Dagron, C.; Bousquet, A.; Chambon, S.; Holmes, N.P. Review of Waterborne Organic Semiconductor Colloids for Photovoltaics. ACS Nano 2021, 15, 3927–3959. [Google Scholar] [CrossRef]
- Kietzke, T.; Neher, D.; Kumke, M.; Montenegro, R.; Landfester, K.; Scherf, U. A nanoparticle approach to control the phase separation in polyfluorene photovoltaic devices. Macromolecules 2004, 37, 4882–4890. [Google Scholar] [CrossRef]
- Landfester, K.; Montenegro, R.; Scherf, U.; Güntner, R.; Asawapirom, U.; Patil, S.; Neher, D.; Kietzke, T. Semiconducting Polymer Nanospheres in Aqueous Dispersion Prepared by a Miniemulsion Process. Adv. Mater. 2002, 14, 651–655. [Google Scholar] [CrossRef]
- D′Olieslaeger, L.; Pirotte, G.; Cardinaletti, I.; D′Haen, J.; Manca, J.; Vanderzande, D.; Maes, W.; Ethirajan, A. Eco-friendly fabrication of PBDTTPD:PC71BM solar cells reaching a PCE of 3.8% using water-based nanoparticle dispersions. Org. Electron. 2017, 42, 42–46. [Google Scholar] [CrossRef]
- Xie, C.; Heumüller, T.; Gruber, W.; Tang, X.; Classen, A.; Schuldes, I.; Bidwell, M.; Späth, A.; Fink, R.H.; Unruh, T.; et al. Overcoming efficiency and stability limits in water-processing nanoparticular organic photovoltaics by minimizing microstructure defects. Nat. Commun. 2018, 9, 5335. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.; Chien, S.-C.; Yip, H.-L.; Chen, K.-S.; Zhang, Y.; Davies, J.A.; Chen, F.-C.; Lin, B.; Jen, A.K.-Y. Improved thin film morphology and bulk-heterojunction solar cell performance through systematic tuning of the surface energy of conjugated polymers. J. Mater. Chem. 2012, 22, 5587–5595. [Google Scholar] [CrossRef]
- Barr, M.G.; Chambon, S.; Fahy, A.; Jones, T.W.; Marcus, M.A.; Kilcoyne, A.L.D.; Dastoor, P.C.; Griffith, M.J.; Holmes, N.P. Nanomorphology of eco-friendly colloidal inks, relating non-fullerene acceptor surface energy to structure formation. Mater. Chem. Front. 2021, 5, 2218–2233. [Google Scholar] [CrossRef]
- Rammal, M.; Lévêque, P.; Schlatter, G.; Leclerc, N.; Hébraud, A. Recent advances in the green processing of organic photovoltaic devices from nanoparticle dispersions. Mater. Chem. Front. 2020, 4, 2904–2931. [Google Scholar] [CrossRef]
- Ferretti, A.M.; Zappia, S.; Scavia, G.; Giovanella, U.; Villafiorita-Monteleone, F.; Destri, S. Surfactant-free miniemulsion approach for low band gap rod-coil block copolymer water-processable nanoparticle fabrication: Film preparation and morphological characterization. Polymer 2019, 174, 61–69. [Google Scholar] [CrossRef]
- Zappia, S.; Scavia, G.; Ferretti, A.M.; Giovanella, U.; Vohra, V.; Destri, S. Water-Processable Amphiphilic Low Band Gap Block Copolymer:Fullerene Blend Nanoparticles as Alternative Sustainable Approach for Organic Solar Cells. Adv. Sustain. Syst. 2018, 2. [Google Scholar] [CrossRef]
- Olsen, B.; Segalman, R. Self-assembly of rod–coil block copolymers. Mater. Sci. Eng. R Rep. 2008, 62, 37–66. [Google Scholar] [CrossRef]
- Heinrich, D.; Hufnagel, M.; Singh, C.R.; Fischer, M.; Alam, S.; Hoppe, H.; Thurn-Albrecht, T.; Thelakkat, M. Nanoscale Morphology from Donor–Acceptor Block Copolymers: Formation and Functions. In Elementary Processes in Organic Photovoltaics; Springer: Berlin/Heidelberg, Germany, 2017; Volume 272, pp. 157–191. [Google Scholar] [CrossRef]
- Renaud, C.; Mougnier, S.-J.; Pavlopoulou, E.; Brochon, C.; Fleury, G.; Deribew, D.; Portale, G.; Cloutet, E.; Chambon, S.; Vignau, L.; et al. Block Copolymer as a Nanostructuring Agent for High-Efficiency and Annealing-Free Bulk Heterojunction Organic Solar Cells. Adv. Mater. 2012, 24, 2196–2201. [Google Scholar] [CrossRef] [PubMed]
- Sommer, M.; Huettner, S.; Thelakkat, M. Donor-acceptor block copolymers with nanoscale morphology for photovoltaic applications. Adv. Polym. Sci. 2010, 228, 123–153. [Google Scholar] [CrossRef]
- Segalman, R.A.; McCulloch, B.; Kirmayer, S.; Urban, J.J. Block Copolymers for Organic Optoelectronics. Macromolecules 2009, 42, 9205–9216. [Google Scholar] [CrossRef]
- Zappia, S.; Di Mauro, A.E.; Mastria, R.; Rizzo, A.; Curri, M.L.; Striccoli, M.; Destri, S. Rod-coil block copolymer as nanostructuring compatibilizer for efficient CdSe NCs/PCPDTBT hybrid solar cells. Eur. Polym. J. 2016, 78, 352–363. [Google Scholar] [CrossRef]
- Zappia, S.; Mendichi, R.; Battiato, S.; Scavia, G.; Mastria, R.; Samperi, F.; Destri, S. Characterization of amphiphilic block-copolymers constituted of a low band gap rigid segment (PCPDTBT) and P4VP based coil block synthesized by two different strategies. Polymer 2015, 80, 245–258. [Google Scholar] [CrossRef]
- Ganzer, L.; Zappia, S.; Russo, M.; Ferretti, A.M.; Vohra, V.; Diterlizzi, M.; Antognazza, M.R.; Destri, S.; Virgili, T. Ultrafast spectroscopy on water-processable PCBM: Rod–coil block copolymer nanoparticles. Phys. Chem. Chem. Phys. 2020, 22, 26583–26591. [Google Scholar] [CrossRef]
- Di Mauro, A.E.; Toscanini, M.; Piovani, D.; Samperi, F.; Curri, M.L.; Corricelli, M.; De Caro, L.; Siliqi, D.; Comparelli, R.; Agostiano, A.; et al. Segmented poly(styrene-co-vinylpyridine) as multivalent host for CdSe nanocrystal based nanocomposites. Eur. Polym. J. 2014, 60, 222–234. [Google Scholar] [CrossRef]
- Landfester, K. The Generation of Nanoparticles in Miniemulsions. Adv. Mater. 2001, 13, 765–768. [Google Scholar] [CrossRef]
- Pedersen, E.B.L.; Pedersen, M.C.; Simonsen, S.B.; Brandt, R.G.; Böttiger, A.P.L.; Andersen, T.R.; Jiang, W.; Xie, Z.Y.; Krebs, F.C.; Arleth, L.; et al. Structure and crystallinity of water dispersible photoactive nanoparticles for organic solar cells. J. Mater. Chem. A 2015, 3, 17022–17031. [Google Scholar] [CrossRef]
- Borodzinski, A.; Bonarowska, M. Relation between Crystallite Size and Dispersion on Supported Metal Catalysts. Langmuir 1997, 13, 5613–5620. [Google Scholar] [CrossRef]
- Bag, M.; Gehan, T.S.; Renna, L.A.; Algaier, D.D.; Lahti, P.M.; Venkataraman, D. Fabrication conditions for efficient organic photovoltaic cells from aqueous dispersions of nanoparticles. RSC Adv. 2014, 4, 45325–45331. [Google Scholar] [CrossRef] [Green Version]
- Fischer, F.S.U.; Trefz, D.; Back, J.; Kayunkid, N.; Tornow, B.; Albrecht, S.; Yager, K.G.; Singh, G.; Karim, A.; Neher, D.; et al. Highly Crystalline Films of PCPDTBT with Branched Side Chains by Solvent Vapor Crystallization: Influence on Opto-Electronic Properties. Adv. Mater. 2015, 27, 1223–1228. [Google Scholar] [CrossRef]
- Ameri, T.; Khoram, P.; Heumüller, T.; Baran, D.; Machui, F.; Troeger, A.; Sgobba, V.; Guldi, D.M.; Halik, M.; Rathgeber, S.; et al. Morphology analysis of near IR sensitized polymer/fullerene organic solar cells by implementing low bandgap heteroanalogue C-/Si-PCPDTBT. J. Mater. Chem. A 2014, 2, 19461–19472. [Google Scholar] [CrossRef] [Green Version]
- Herzing, A.A.; Richter, L.J.; Anderson, I.M. 3D Nanoscale Characterization of Thin-Film Organic Photovoltaic Device Structures via Spectroscopic Contrast in the TEM 1. J. Phys. Chem. C 2010, 114, 17501–17508. [Google Scholar] [CrossRef]
- Pal, R.; Bourgeois, L.; Weyland, M.; Sikder, A.K.; Saito, K.; Funston, A.M.; Bellare, J.R. Chemical fingerprinting of polyvinyl acetate and polycarbonate using electron energy-loss spectroscopy. Polym. Chem. 2020, 11, 5484–5492. [Google Scholar] [CrossRef]
- Dyck, O.; Hu, S.; Das, S.; Keum, J.; Xiao, K.; Khomami, B.; Duscher, G. Quantitative Phase Fraction Detection in Organic Photovoltaic Materials through EELS Imaging. Polymers 2015, 7, 2446–2460. [Google Scholar] [CrossRef] [Green Version]
- Virgili, T.; Grancini, G.; Molotokaite, E.; Suarez-Lopez, I.; Rajendran, S.K.; Liscio, A.; Palermo, V.; Lanzani, G.; Polli, D.; Cerullo, G. Confocal ultrafast pump-probe spectroscopy: A new technique to explore nanoscale composites. Nanoscale 2012, 4, 2219–2226. [Google Scholar] [CrossRef]
Sample | Hydrodynamic Diameter (dH) (nm) | ζ Potential (mV) |
---|---|---|
BCP2 nWPNPs | 64.6 ± 1.5 | −31.33 ± 0.37 |
BCP5 nWPNPs | 90.2 ± 22.7 | −19.05 ± 1.47 |
BCP15 nWPNPs | 110.7 ± 1.2 | −31.23 ± 1.14 |
BCP100 nWPNPs | 92.3 ± 1.2 | −26.58 ± 0.55 |
BCP2 bWPNPs | 187.0 ± 2.5 | −45.90 ± 0.60 |
BCP5 bWPNPs | 133.8 ± 9.2 | −14.75 ± 4.11 |
BCP15 bWPNPs | 146.1 ± 2.2 | −38.40 ± 1.14 |
BCP100 bWPNPs | 129.6 ± 1.7 | −34.33 ± 0.42 |
Sample | Jsc (mA∙cm−2) | Voc (mV) | FF (%) | PCE a (%) |
---|---|---|---|---|
BCP2 bWPNPs | 4.56 | 593 | 28.5 | 0.77 ± 0.03 |
BCP5 bWPNPs | 10.61 | 638 | 36.7 | 2.49 ± 0.05 |
BCP15 bWPNPs | 0.056 | 95 | 17.0 | 0.0009 ± 0.00 |
BCP100 bWPNPs | 0.053 | 79 | 25.9 | 0.0012 ± 0.00 |
Sample | Root Mean Square (RMS) (nm) |
---|---|
BCP2 bWPNPs | 14.5 |
BCP5 bWPNPs | 1.3 |
BCP15 bWPNPs | 9.6 |
BCP100 bWPNPs | 17.0 |
Sample | Mean Diameter (dm) (nm) | Std Dev (nm) | Min Diameter (nm) | Max Diameter (nm) |
---|---|---|---|---|
BCP2 nWPNPs | 35.9 | 21.3 | 11.9 | 144.7 |
BCP2 bWPNPs | 149.4 | 44.8 | 74.0 | 368.1 |
BCP5 nWPNPs | 51.5 | 36.7 | 16.2 | 287.9 |
BCP5 bWPNPs | 58.2 | 21.4 | 23.3 | 166.0 |
BCP15 nWPNPs | 68.8 | 31.9 | 6.2 | 202.9 |
BCP15 bWPNPs | 99.2 | 48.7 | 31 | 275 |
BCP100 nWPNPs | 48.7 87.1 | 23.7 30.0 | 13.6 | 158.4 |
BCP100 bWPNPs | 202.2 | 81.7 | 75.0 | 328.2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferretti, A.M.; Diterlizzi, M.; Porzio, W.; Giovanella, U.; Ganzer, L.; Virgili, T.; Vohra, V.; Arias, E.; Moggio, I.; Scavia, G.; et al. Rod–Coil Block Copolymer: Fullerene Blend Water-Processable Nanoparticles: How Molecular Structure Addresses Morphology and Efficiency in NP-OPVs. Nanomaterials 2022, 12, 84. https://doi.org/10.3390/nano12010084
Ferretti AM, Diterlizzi M, Porzio W, Giovanella U, Ganzer L, Virgili T, Vohra V, Arias E, Moggio I, Scavia G, et al. Rod–Coil Block Copolymer: Fullerene Blend Water-Processable Nanoparticles: How Molecular Structure Addresses Morphology and Efficiency in NP-OPVs. Nanomaterials. 2022; 12(1):84. https://doi.org/10.3390/nano12010084
Chicago/Turabian StyleFerretti, Anna Maria, Marianna Diterlizzi, William Porzio, Umberto Giovanella, Lucia Ganzer, Tersilla Virgili, Varun Vohra, Eduardo Arias, Ivana Moggio, Guido Scavia, and et al. 2022. "Rod–Coil Block Copolymer: Fullerene Blend Water-Processable Nanoparticles: How Molecular Structure Addresses Morphology and Efficiency in NP-OPVs" Nanomaterials 12, no. 1: 84. https://doi.org/10.3390/nano12010084
APA StyleFerretti, A. M., Diterlizzi, M., Porzio, W., Giovanella, U., Ganzer, L., Virgili, T., Vohra, V., Arias, E., Moggio, I., Scavia, G., Destri, S., & Zappia, S. (2022). Rod–Coil Block Copolymer: Fullerene Blend Water-Processable Nanoparticles: How Molecular Structure Addresses Morphology and Efficiency in NP-OPVs. Nanomaterials, 12(1), 84. https://doi.org/10.3390/nano12010084