Lateral PbS Photovoltaic Devices for High Performance Infrared and Terahertz Photodetectors
Abstract
:1. Introduction
2. Materials and Methods
3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Corsi, C. Infrared: A key technology for security systems. Adv. Opt. Technol. 2012, 2012, 1–15. [Google Scholar] [CrossRef]
- Hamamatsu. Characteristics and Use of Infrared Detectors; Technical information SD-12; Hamamatsu Photonics: Hamamatsu City, Japan, 2004. [Google Scholar]
- Garcia-Valenzuela, J.A.; Baez-Gaxiola, M.R.; Sotelo-Lerma, M. Chemical bath deposition of PbS thin films on float glass substrates using a Pb(CH3COO)2–NaOH–(NH2)2CS–N(CH2CH2OH)3–CH3CH2OH definite aqueous system and their structural, optical, and electrical/photoelectrical characterization. Thin Solid Films 2013, 534, 126–131. [Google Scholar] [CrossRef]
- Seghaier, S.; Kamoun, N.; Brini, R.; Amara, A.B. Structural and optical properties of PbS thin films deposited by chemical bath deposition. Mater. Chem. Phys. 2006, 97, 71–80. [Google Scholar] [CrossRef]
- Slonopas, A.; Alijabbari, N.; Saltonstall, C.; Globus, T.; Norris, P. Chemically deposited nanocrystalline lead sulfide thin films with tunable properties for use in photovoltaics. Electrochim. Acta 2015, 151, 140–149. [Google Scholar] [CrossRef]
- Bai, R.; Kumar, D.; Chaudhary, S.; Pandya, D.K. Highly crystalline p-PbS thin films with tunable optical and hole transport parameters by chemical bath deposition. Acta Mater. 2017, 131, 11–21. [Google Scholar] [CrossRef]
- Motlagh, Z.A.; Araghi, M.E.A. Effect of annealing temperature on optical and electrical properties of lead sulfide thin films. Mater. Sci. Semicond. Process. 2015, 40, 701–707. [Google Scholar] [CrossRef]
- Sharon, M.; Ramaiah, K.; Kumar, M.; Neumann-Spallart, M.; Levy-Clement, C. Electrodeposition of lead sulphide in acidic medium. J. Electroanal. Chem. 1997, 436, 49–52. [Google Scholar] [CrossRef]
- Thangaraju, B.; Kaliannan, P. Spray pyrolytically deposited PbS thin films. Semicond. Sci. Technol. 2000, 15, 849–853. [Google Scholar] [CrossRef]
- Popescu, V.; Nascu, H.I.; Darvasi, E. Optical properties of PbS-CdS multilayers and mixed thin films deposited on glass substrate by spray pyrolysis. J. Optoelectron. Adv. Mater. 2006, 8, 1118–1193. [Google Scholar]
- Ni, Y.; Wang, F.; Liu, H.; Yin, G.; Hong, J.; Ma, X.; Xu, Z. A novel aqueous-phase route to prepare flower-shaped PbS micron crystals. J. Cryst. Growth 2004, 262, 399–402. [Google Scholar] [CrossRef]
- Zhao, Y.; Liao, X.-H.; Hong, J.-M.; Zhu, J.-J. Synthesis of lead sulfide nanocrystals via microwave and sonochemical methods. Mater. Chem. Phys. 2004, 87, 149–153. [Google Scholar] [CrossRef]
- Konstantatos, G.; Sargent, E.H. PbS colloidal quantum dot photoconductive photodetectors: Transport, traps, and gain. Appl. Phys. Lett. 2007, 91, 173505. [Google Scholar] [CrossRef] [Green Version]
- Rath, A.K.; Bernechea, M.; Martinez, L.M.S.; Konstantatos, G. Solution-Processed Heterojunction Solar Cells Based on p-type PbS Quantum Dots and n-type Bi2S3 Nanocrystals. Adv. Mater. 2011, 23, 3712–3717. [Google Scholar] [CrossRef]
- Safrani, T.; Kumar, T.A.; Klebanov, M.; Arad-Vosk, N.; Beach, R.; Sa’Ar, A.; Golan, Y. Chemically deposited PbS thin film photo-conducting layers for optically addressed spatial light modulators. J. Mater. Chem. C 2014, 2, 9132–9140. [Google Scholar] [CrossRef]
- Yücel, E.; Yücel, Y. Fabrication and characterization of Sr-doped PbS thin films grown by CBD. Ceram. Int. 2017, 43, 407–413. [Google Scholar] [CrossRef]
- Martyniuk, P.; Antoszewski, J.; Faraone, L.; Rogalski, A. New concepts in infrared photodetector designs. Appl. Phys. Rev. 2014, 1, 041102. [Google Scholar] [CrossRef] [Green Version]
- Dardano, P.; Ferrara, M.A. Integrated Photodetectors Based on Group IV and Colloidal Semiconductors: Current State of Affairs. Micromachines 2020, 11, 842. [Google Scholar] [CrossRef]
- Davis, J.L.; Norr, M.K. Ge-epitaxial-PbS heterojunctions. J. Appl. Phys. 1966, 37, 1670–1674. [Google Scholar] [CrossRef]
- Liu, Z.; Kim, J.H.; Fernandes, G.E.; Xu, J. Room temperature photocurrent response of PbS/InP heterojunction. Appl. Phys. Lett. 2009, 95, 231113. [Google Scholar] [CrossRef]
- Steckl, A.J.; Elabd, H.; Tam, K.Y.; Sheu, S.P.; Motamedi, M.E. The optical and detector properties of the PbS-Si heterojunction. IEEE Trans. Electron Devices 1980, 27, 126–133. [Google Scholar] [CrossRef]
- Kim, J.; Ampadu, E.K.; Oh, E.; Choi, H.; Ahn, H.-Y.; Cho, S.-H.; Choi, W.J.; Byun, J.Y. Photocurrent spectra for above and below bandgap energies from photovoltaic PbS infrared detectors with graphene transparent electrodes. Curr. Appl. Phys. 2020, 20, 445–450. [Google Scholar] [CrossRef]
- Kim, J.; Ampadu, E.K.; Choi, W.J.; Oh, E. Photocurrrent spectra from PbS photovoltaic infrared detectors using silver nanowires as plasmonic nano antenna electrodes. Nanotechnology 2019, 30, 075201. [Google Scholar] [CrossRef]
- Saran, R.; Curry, R.J. Lead sulphide nanocrystal photodetector technologies. Nat. Photonics 2016, 10, 81–92. [Google Scholar] [CrossRef]
- Konstantatos, G.; Clifford, J.P.; Levina, L.; Sargent, E.H. Sensitive solution-processed visible-wavelength photodetectors. Nat. Photonics 2007, 1, 531–534. [Google Scholar] [CrossRef]
- Ravich, Y.I. Semiconducting Lead Chalcogenides, 1st ed.; Springer: New York, NY, USA, 1970. [Google Scholar]
- Konozenko, I.D. Photoelectric and Optical Phenomena in Semiconductors; Izd. AN UkrSSR: Kiev, Ukraine, 1959; p. 240. (In Russian) [Google Scholar]
- Zhu, H.; Weng, Z.; Zhu, J.; Wu, H.; Li, N.; Dai, N. Comparison of Photoresponse of Si-Based BIB THz Detectors. IEEE Trans. Electron Devices 2017, 64, 1094–1099. [Google Scholar] [CrossRef]
- Liao, K.S.; Li, N.; Wang, C.; Li, L.; Jing, Y.L.; Wen, J.; Li, M.Y.; Wang, H.; Zhou, X.H.; Li, Z.F.; et al. Extended mode in blocked impurity band detectors for terahertz radiation detection. Appl. Phys. Lett. 2014, 105, 143501. [Google Scholar] [CrossRef]
- McIntosh, A.I.; Yang, B.; Goldup, S.; Watkinson, M.; Donnan, R.S. Terahertz spectroscopy: A powerful new tool for the chemical sciences? Chem. Soc. Rev. 2011, 41, 2072–2082. [Google Scholar] [CrossRef] [PubMed]
- Siegel, P.H.; Dengler, R.J. Terahertz heterodyne imaging part i: Introduction and techniques. Int. J. Infrared Millim. Waves 2006, 27, 465–480. [Google Scholar] [CrossRef]
- Sizov, F.; Rogalski, A. THz detectors. Prog. Quantum Electron. 2010, 34, 278–347. [Google Scholar] [CrossRef]
- Zhang, Y.; Hosono, S.; Nagai, N.; Song, S.-H.; Hirakawa, K. Fast and sensitive bolometric terahertz detection at room temperature through thermomechanical transduction. J. Appl. Phys. 2019, 125, 151602. [Google Scholar] [CrossRef]
- Ampadu, E.K.; Kim, J.; Oh, E.; Lee, D.Y.; Kim, K.S. Data for direct chemical deposition of PbS on chemical vapor deposition grown-graphene for high performance photovoltaic infrared photo-detectors. Data Brief 2020, 32, 106273. [Google Scholar] [CrossRef] [PubMed]
- Hodes, G. Chemical Solution Deposition of Semiconductor Films; Marcel Dekker, Inc.: New York, NY, USA, 2003. [Google Scholar]
- Kim, J.; Oh, E.; Xiao, R.; Ritter, S.; Yang, Y.; Yu, D.; Im, J.H.; Kim, S.H.; Choi, W.J.; Park, J.-G. Optical properties and bridge photodetector integration of lead sulfide nanowires. Nanotechnology 2017, 28, 475706. [Google Scholar] [CrossRef] [PubMed]
- Heves, E.; Gurbuz, Y. Highly responsive, solution-based Al/PbS and Au-Ti/PbS Schottky photodiodes for SWIR detection. IEEE Sens. J. 2014, 14, 816–820. [Google Scholar] [CrossRef]
- Ampadu, E.K.; Kim, J.; Oh, E.; Lee, D.Y.; Kim, K.S. Direct chemical deposition of PbS on chemical vapor deposition grown-graphene for high performance photovoltaic infrared photo-detectors. Mater. Lett. 2020, 277, 128323. [Google Scholar] [CrossRef]
- Kushnir, K.; Chen, K.; Zhou, L.; Giri, B.; Grimm, R.L.; Rao, P.M.; Titova, L.V. Dynamics of photoexcited carriers in polycrystalline PbS and at PbS/ZnO hetero-junctions: Influence of grain boundaries and interfaces. J. Phys. Chem. C 2018, 122, 11682–11688. [Google Scholar] [CrossRef]
- Hao, X.; Shenghao, W.; Sakurai, T.; Masuda, S.; Akimoto, K. Improvement of Stability for Small Molecule Organic Solar Cells by Suppressing the Trap Mediated Recombination. ACS Appl. Mater. Interfaces 2015, 7, 18379–18386. [Google Scholar] [CrossRef]
- Gibson, A.F. The Absorption Spectra of Single Crystals of Lead Sulphide, Selenide and Telluride. Proc. Phys. Soc. Sect. B 1952, 65, 378–388. [Google Scholar] [CrossRef]
- Batukova, L.M.; Karpovich, I.A. Carrier lifetime in single-crystal PbS films. Sov. Phys. J. 1970, 13, 741–743. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ampadu, E.K.; Kim, J.; Oh, E. Lateral PbS Photovoltaic Devices for High Performance Infrared and Terahertz Photodetectors. Nanomaterials 2021, 11, 1692. https://doi.org/10.3390/nano11071692
Ampadu EK, Kim J, Oh E. Lateral PbS Photovoltaic Devices for High Performance Infrared and Terahertz Photodetectors. Nanomaterials. 2021; 11(7):1692. https://doi.org/10.3390/nano11071692
Chicago/Turabian StyleAmpadu, Emmanuel K., Jungdong Kim, and Eunsoon Oh. 2021. "Lateral PbS Photovoltaic Devices for High Performance Infrared and Terahertz Photodetectors" Nanomaterials 11, no. 7: 1692. https://doi.org/10.3390/nano11071692