Effects of ZnMgO Electron Transport Layer on the Performance of InP-Based Inverted Quantum Dot Light-Emitting Diodes
Abstract
:1. Introduction
2. Experimental Method
2.1. Materials
2.2. Device Fabrication
2.3. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Won, Y.-H.; Cho, O.; Kim, T.; Chung, D.-Y.; Kim, T.; Chung, H.; Jang, H.; Lee, J.; Kim, D.; Jang, E. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes. Nature 2019, 575, 634–638. [Google Scholar] [CrossRef]
- Huang, Y.; Cao, Q.; Li, Z.; Jiang, H.; Wang, Y.; Li, G. Effect of Synthesis Atmosphere on the Microwave Dielectric Properties of ZnO Powders. J. Am. Ceram. Soc. 2009, 92, 2129–2131. [Google Scholar] [CrossRef]
- Liu, M.L.; Bin Chen, B.; Li, C.M.; Huang, C.Z. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019, 21, 449–471. [Google Scholar] [CrossRef]
- Yang, Z.; Wu, Q.; Zhou, X.; Cao, F.; Yang, X.; Zhang, J.; Li, W. A seed-mediated and double shell strategy to realize large-size ZnSe/ZnS/ZnS quantum dots for high color purity blue light-emitting diodes. Nanoscale 2021, 13, 4562–4568. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Duan, Y.; Shao, Z.; Zhang, G.; Li, H.; Huang, Y.; Yin, Z. High-Resolution Pixelated Light Emitting Diodes Based on Electrohydrodynamic Printing and Coffee-Ring-Free Quantum Dot Film. Adv. Mater. Technol. 2020, 5, 2000401. [Google Scholar] [CrossRef]
- Tang, X.; Yang, J.; Li, S.; Chen, W.; Hu, Z.; Qiu, J. CsPbBr3/CdS Core/Shell Structure Quantum Dots for Inverted Light-Emitting Diodes Application. Front. Chem. 2019, 7, 499. [Google Scholar] [CrossRef] [Green Version]
- Su, Q.; Zhang, H.; Sun, Y.; Sun, X.W.; Chen, S. Enhancing the Performance of Quantum-Dot Light-Emitting Diodes by Postmetallization Annealing. ACS Appl. Mater. Interfaces 2018, 10, 23218–23224. [Google Scholar] [CrossRef]
- Li, Z.-T.; Song, C.-J.; Qiu, Z.-Y.; Li, J.-S.; Cao, K.; Ding, X.-R.; Tang, Y. Study on the Thermal and Optical Performance of Quantum Dot White Light-Emitting Diodes Using Metal-Based Inverted Packaging Structure. IEEE Trans. Electron Devices 2019, 66, 3020–3027. [Google Scholar] [CrossRef]
- Shen, H.; Cao, W.; Shewmon, N.T.; Yang, C.; Li, L.S.; Xue, J. High-Efficiency, Low Turn-on Voltage Blue-Violet Quantum-Dot-Based Light-Emitting Diodes. Nano Lett. 2015, 15, 1211–1216. [Google Scholar] [CrossRef]
- Lim, J.; Jeong, B.G.; Park, M.; Kim, J.K.; Pietryga, J.M.; Park, Y.-S.; Klimov, V.I.; Lee, C.; Lee, D.C.; Bae, W.K. Influence of Shell Thickness on the Performance of Light-Emitting Devices Based on CdSe/Zn1-XCdXS Core/Shell Heterostructured Quantum Dots. Adv. Mater. 2014, 26, 8034–8040. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Tang, M. Research advance on cell imaging and cytotoxicity of different types of quantum Dots. J. Appl. Toxicol. 2021, 41, 342–361. [Google Scholar] [CrossRef] [PubMed]
- Chen, N.; He, Y.; Su, Y.; Li, X.; Huang, Q.; Wang, H.; Zhang, X.; Tai, R.; Fan, C. The cytotoxicity of cadmium-based quantum dots. Biomaterials 2012, 33, 1238–1244. [Google Scholar] [CrossRef]
- Paesano, L.; Marmiroli, M.; Bianchi, M.G.; White, J.C.; Bussolati, O.; Zappettini, A.; Villani, M.; Marmiroli, N. Differences in toxicity, mitochondrial function and miRNome in human cells exposed in vitro to Cd as CdS quantum dots or ionic Cd. J. Hazard. Mater. 2020, 393, 122430. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.Y.; Mude, N.N.; Lampande, R.; Eun, K.J.; Yeom, J.E.; Choi, H.S.; Sohn, S.H.; Yoo, J.M.; Kwon, J.H. Efficient Cadmium-Free Inverted Red Quantum Dot Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2019, 11, 36917–36924. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.; Li, D.; Wang, F. InP Quantum Dots: Synthesis and Lighting Applications. Small 2020, 16, e2002454. [Google Scholar] [CrossRef]
- Freymeyer, N.J.; Click, S.M.; Reid, K.R.; Chisholm, M.F.; Bradsher, C.E.; McBride, J.R.; Rosenthal, S.J. Effect of indium alloying on the charge carrier dynamics of thick-shell InP/ZnSe quantum dots. J. Chem. Phys. 2020, 152, 161104. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, Y.; Jang, H.; Min, J.H.; Oh, J.; Jang, E.; Kim, D. The effects of discrete and gradient mid-shell structures on the photoluminescence of single InP quantum dots. Nanoscale 2019, 11, 23251–23258. [Google Scholar] [CrossRef]
- Lee, T.; Hahm, D.; Kim, K.; Bae, W.K.; Lee, C.; Kwak, J. Highly Efficient and Bright Inverted Top-Emitting InP Quantum Dot Light-Emitting Diodes Introducing a Hole-Suppressing Interlayer. Small 2019, 15, e1905162. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Song, C.; He, Z.; Mai, C.; Xie, G.; Mu, L.; Cun, Y.; Li, J.; Wang, J.; Peng, J.; et al. All-Solution-Processed Pure Formamidinium-Based Perovskite Light-Emitting Diodes. Adv. Mater. 2018, 30, e1804137. [Google Scholar] [CrossRef]
- Zhang, W.; Ding, S.; Zhuang, W.; Wu, D.; Liu, P.; Qu, X.; Liu, H.; Yang, H.; Wu, Z.; Wang, K.; et al. InP/ZnS/ZnS Core/Shell Blue Quantum Dots for Efficient Light-Emitting Diodes. Adv. Funct. Mater. 2020, 30, 2005303. [Google Scholar] [CrossRef]
- Liu, P.; Lou, Y.; Ding, S.; Zhang, W.; Wu, Z.; Yang, H.; Xu, B.; Wang, K.; Sun, X.W. Green InP/ZnSeS/ZnS Core Multi-Shelled Quantum Dots Synthesized with Aminophosphine for Effective Display Applications. Adv. Funct. Mater. 2021, 31. [Google Scholar] [CrossRef]
- Yeom, J.E.; Shin, D.H.; Lampande, R.; Jung, Y.H.; Mude, N.N.; Park, J.H.; Kwon, J.H. Good Charge Balanced Inverted Red InP/ZnSe/ZnS-Quantum Dot Light-Emitting Diode with New High Mobility and Deep HOMO Level Hole Transport Layer. ACS Energy Lett. 2020, 5, 3868–3875. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Motomura, G.; Ogura, K.; Tsuzuki, T. Efficient green InP quantum dot light-emitting diodes using suitable organic electron-transporting materials. Appl. Phys. Lett. 2020, 117, 111104. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, C.; Song, C.; Wang, J.; Mu, L.; He, Z.; Zhong, Z.; Cun, Y.; Mai, C.; Wang, J.; et al. Highly Efficient All-Solution Processed Inverted Quantum Dots Based Light Emitting Diodes. ACS Nano 2018, 12, 1564–1570. [Google Scholar] [CrossRef]
- Chang, S.; Zhao, Y.; Tang, J.; Bai, Z.; Zhao, L.; Zhong, H.-Z. Balanced Carrier Injection and Charge Separation of CuInS2 Quantum Dots for Bifunctional Light-Emitting and Photodetection Devices. J. Phys. Chem. C 2020, 124, 6554–6561. [Google Scholar] [CrossRef]
- Sun, Y.; Peng, H.; Chen, S.; Zhang, S. P-117: Inverted Quantum Dot Light-Emitting Diodes with MgZnO Modified Electron Transport Layer. SID Symp. Dig. Tech. Pap. 2017, 48, 1699–1701. [Google Scholar] [CrossRef]
- Moon, H.; Lee, W.; Kim, J.; Lee, D.; Cha, S.; Shin, S.; Chae, H. Composition-tailored ZnMgO nanoparticles for electron transport layers of highly efficient and bright InP-based quantum dot light emitting diodes. Chem. Commun. 2019, 55, 13299–13302. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Kristal, B.; Wang, Y.; Feng, J.; Lu, Z.; Yu, G.; Chen, Z.; Li, Y.; Li, X.; Xu, X. Enhanced Efficiency of InP-Based Red Quantum Dot Light-Emitting Diodes. ACS Appl. Mater. Interfaces 2019, 11, 34067–34075. [Google Scholar] [CrossRef] [PubMed]
- Paulo-Mirasol, S.; Marimon, S.G.; Martinez-Ferrero, E.; Palomares, E. Inverted Hybrid Light-Emitting Diodes Using Carbon Dots as Selective Contacts: The Effect of Surface Ligands. ACS Appl. Electron. Mater. 2020, 2, 1388–1394. [Google Scholar] [CrossRef]
- Cun, Y.; Mai, C.; Luo, Y.; Mu, L.; Li, J.; Cao, L.; Yu, D.; Li, M.; Zhang, B.; Li, H.; et al. All-solution processed high performance inverted quantum dot light emitting diodes. J. Mater. Chem. C 2020, 8, 4264–4270. [Google Scholar] [CrossRef]
- Jennison, D.R.; Weightman, P.; Hannah, P.H.; Davies, M. Calculation of Mg atom-metals XPS and Auger shifts using a ΔSCF excited atom model. J. Phys. C: Solid State Phys. 1984, 17, 3701–3710. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, K.; Zhang, X.; Yuan, W.; Shi, M.; Ning, H.; Tao, R.; Liu, X.; Yao, R.; Peng, J. Effects of Annealing Temperature on Optical Band Gap of Sol-gel Tungsten Trioxide Films. Micromachines 2018, 9, 377. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Qiu, T.; Tang, B.; Zhang, G.; Yao, R.; Xu, W.; Chen, J.; Fu, X.; Ning, H.; Peng, J. Temperature-Controlled Crystal Size of Wide Band Gap Nickel Oxide and Its Application in Electrochromism. Micromachines 2021, 12, 80. [Google Scholar] [CrossRef] [PubMed]
- Orooji, Y.; Mohassel, R.; Amiri, O.; Sobhani, A.; Salavati-Niasari, M. Gd2ZnMnO6/ZnO nanocomposites: Green sol-gel auto-combustion synthesis, characterization and photocatalytic degradation of different dye pollutants in water. J. Alloys Compd. 2020, 835, 155240. [Google Scholar] [CrossRef]
- Zhang, T.; Long, M.; Qin, M.; Lu, X.; Chen, S.; Xie, F.; Gong, L.; Chen, J.; Chu, M.; Miao, Q.; et al. Stable and Efficient 3D-2D Perovskite-Perovskite Planar Heterojunction Solar Cell without Organic Hole Transport Layer. Joule 2018, 2, 2706–2721. [Google Scholar] [CrossRef] [Green Version]
P1 | P2 | P3 | τ1 (ns) | τ2 (ns) | τ3 (ns) | τavg (ns) | |
---|---|---|---|---|---|---|---|
ZnO/QDs | 18% | 75% | 7% | 48.48 | 16.56 | 4.18 | 21.62 |
ZnMgO/QDs | 11% | 64% | 25% | 60.02 | 19.25 | 7.86 | 21.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, B.; Luo, Y.; Mai, C.; Mu, L.; Li, M.; Wang, J.; Xu, W.; Peng, J. Effects of ZnMgO Electron Transport Layer on the Performance of InP-Based Inverted Quantum Dot Light-Emitting Diodes. Nanomaterials 2021, 11, 1246. https://doi.org/10.3390/nano11051246
Zhang B, Luo Y, Mai C, Mu L, Li M, Wang J, Xu W, Peng J. Effects of ZnMgO Electron Transport Layer on the Performance of InP-Based Inverted Quantum Dot Light-Emitting Diodes. Nanomaterials. 2021; 11(5):1246. https://doi.org/10.3390/nano11051246
Chicago/Turabian StyleZhang, Binbin, Yu Luo, Chaohuang Mai, Lan Mu, Miaozi Li, Junjie Wang, Wei Xu, and Junbiao Peng. 2021. "Effects of ZnMgO Electron Transport Layer on the Performance of InP-Based Inverted Quantum Dot Light-Emitting Diodes" Nanomaterials 11, no. 5: 1246. https://doi.org/10.3390/nano11051246
APA StyleZhang, B., Luo, Y., Mai, C., Mu, L., Li, M., Wang, J., Xu, W., & Peng, J. (2021). Effects of ZnMgO Electron Transport Layer on the Performance of InP-Based Inverted Quantum Dot Light-Emitting Diodes. Nanomaterials, 11(5), 1246. https://doi.org/10.3390/nano11051246