Effect of Co Doping on Electrocatalytic Performance of Co-NiS2/CoS2 Heterostructures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Synthesis of Co-NiS2/CoS2 Heterostructures
2.3. Materials Characterization
2.4. Electrochemical Measurements
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Lim, Y.; Lee, D.-K.; Kim, S.M.; Park, W.; Cho, S.Y.; Sim, U. Low Dimensional Carbon-Based Catalysts for Efficient Photocatalytic and Photo/Electrochemical Water Splitting Reactions. Materials 2019, 13, 114. [Google Scholar] [CrossRef] [Green Version]
- Rusinque, B.; Escobedo, S.; Lasa, H.D. Hydrogen Production via Pd-TiO2 Photocatalytic Water Splitting under Near-UV and Visible Light: Analysis of the Reaction Mechanism. Catalysts 2021, 11, 405–430. [Google Scholar] [CrossRef]
- Tang, C.; Gan, L.F.; Zhang, R.; Lu, W.B.; Jiang, X. Ternary FexCo1xP nanowire array as a robust hydrogen evolution reaction electrocatalyst with Pt-like activity: Experimental and theoretical insight. Nano Lett. 2016, 16, 6617–6621. [Google Scholar] [CrossRef] [PubMed]
- Zhou, G.; Shan, Y.; Wang, L.; Hu, Y.; Guo, J.; Hu, F. Photoinduced semiconductor-metal transition in ultrathin troilite fes nanosheets to trigger efficient hydrogen evolution. Nat. Commun. 2019, 10, 399–407. [Google Scholar] [CrossRef] [Green Version]
- Ayala, P.; Giesriegl, A.; Nandan, S.P.; Myakala, S.N.; Cherevan, A.S. Supplementary information_isolation strategy towards earth-abundant single-site co-catalysts for photocatalytic hydrogen evolution reaction. Catalysts 2021, 11, 417–436. [Google Scholar] [CrossRef]
- Momirlan, M.; Veziroglu, T.N. Current status of hydrogen energy. Renew. Sustain. Energy Rev. 2002, 6, 141–179. [Google Scholar] [CrossRef]
- Wang, J.; Cui, W.; Liu, Q.; Xing, Z.; Asiri, A.M.; Sun, X. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 2016, 28, 215–230. [Google Scholar] [CrossRef] [PubMed]
- Cronin, L.; Lie, J.; Yang, J.J.; Liu, T.; Yuan, R.M.; Deng, D.R. Tuning redox active polyoxometalates for efficient electron-coupled proton-buffer-mediated water splitting. Chem. A Eur. J. 2019, 25, 11432–11436. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Qian, Y.; Yang, S. Fluctuation Analysis of a Complementary Wind–Solar Energy System and Integration for Large Scale Hydrogen Production. ACS Sustain. Chem. Eng. 2020, 8, 7097–7110. [Google Scholar] [CrossRef]
- Zhu, J.; Ni, Y. Phase-controlled synthesis and the phase-dependent HER and OER performances of nickel selenide nanosheets by an electrochemical deposition route. Cryst. Eng. Commun. 2018, 20, 3344–3352. [Google Scholar] [CrossRef]
- Tian, J.; Qian, L.; Asiri, A.M.; Sun, X. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3d hydrogen-evolving cathode over the wide range of ph 0-14. J. Am. Chem. Soc. 2014, 136, 7587–7590. [Google Scholar] [CrossRef] [PubMed]
- Ma, R.G.; Zhou, Y.; Chen, Y.F.; Li, P.X.; Liu, Q. Ultrafine molybdenum carbide nanoparticles composited with carbon as a highly active hydrogen-evolution electrocatalyst. Angew. Chem. 2015, 54, 14723–14727. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y.; Gong, M.; Chou, H.L.; Pan, C.J.; Chen, H.A. Highly active and stable hybrid catalyst of cobalt-doped FeS2 nanosheets–carbon nanotubes for hydrogen evolution reaction. J. Am. Chem. Soc. 2015, 137, 1587–1592. [Google Scholar] [CrossRef]
- Faber, M.S.; Lukowski, M.A.; Ding, Q.; Kaiser, N.S.; Jin, S. Earth-abundant metal pyrites (FeS2, CoS2, NiS2, and their alloys) for highly ecient hydrogen evolution and polysulfide reduction electrocatalysis. J. Phys. Chem. C 2014, 118, 21347–21356. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Zhang, Y. Cheminform abstract: Noble metal-free hydrogen evolution catalysts for water splitting. Chem. Soc. Rev. 2015, 46, 5148–5180. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.; Li, Y.X.; Lv, F.; Lu, M.; Sun, K. Oxygen vacancies dominated NiS2/CoS2 interface porous nanowires forportable Zn-air batteries driven water splitting devices. Adv. Mater. 2017, 29, 1704681. [Google Scholar] [CrossRef] [PubMed]
- Jasion, D.; Barforoush, J.M.; Qiao, Q.; Zhu, Y.; Ren, S.; Leonard, K.C. Low-dimensional hyperthin FeS2 nanostructures for effcient and stable hydrogen evolution electrocatalysis. ACS Catal. 2015, 5, 6653–6657. [Google Scholar] [CrossRef]
- Wu, T.; Pi, M.; Wang, X. Three-dimensional metal–organic framework derived porous CoP3 concave polyhedrons as superior bifunctional electrocatalysts for the evolution of hydrogen and oxygen. Phys. Chem. Chem. Phys. 2017, 19, 2104–2110. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Q.; Zhan, X.; Wang, F.M.; Safdar, J.H. Visible light driven type II heterostructures and their enhanced photocatalysis properties: A review. Nanoscale 2013, 5, 8326–8339. [Google Scholar] [CrossRef]
- Wang, L.H.; Zhang, Z.; Chen, J.; Hu, S.; Li, Z.; Wang, J.; Liu, X.; Wang, C. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Soc. Rev. 2014, 43, 5234–5244. [Google Scholar] [CrossRef]
- Jang, J.S.; Kim, H.G.; Lee, J.S. Heterojunction semiconductors: A strategy to develop efficient photocatalytic materials for visible light water splitting. Catal. Today 2012, 185, 270–277. [Google Scholar] [CrossRef]
- Wang, W.; Li, L.; Tan, S.; Wu, K.; Zhu, G.; Liu, Y. Preparation of NiS2//MoS2 catalysts by two-step hydrothermal method and their enhanced activity for hydrodeoxygenation of p-cresol. Fuel 2016, 179, 1–9. [Google Scholar] [CrossRef]
- Akbarzadeh, R.; Dehghani, H.; Behnoudnia, F. Sodium thiosulfate-assisted synthesis of NiS2 nanostructure by using nickel(II)-Salen precursor: Optical and magnetic properties. Dalton Trans. 2014, 43, 16745–16753. [Google Scholar] [CrossRef] [PubMed]
- Tang, C.; Pu, Z.; Liu, Q.; Asiri, A.M.; Sun, X. NiS2 nanosheets array grown on carbon cloth as an efficient 3d hydrogen evolution cathode. Electrochim. Acta 2015, 153, 508–514. [Google Scholar] [CrossRef]
- Senthil, R.A.; Wang, Y.; Osman, S.; Pan, J.; Lin, Y.; Shu, X. A facile one-pot synthesis of microspherical-shaped CoS2/CNT composite as pt-free electrocatalyst for efficient hydrogen evolution reaction. Int. J. Hydrogen Energy 2019, 44, 16537–16547. [Google Scholar] [CrossRef]
- Sun, P.; Yan, M.G.; Zhang, H.Z.; Huang, Q.; Liu, P.L. Detection of heavy metal ions by differential pulse stripping voltammetry. J. Univ. Electron. Technol. China 2017, 46, 784–789. [Google Scholar] [CrossRef]
- Xia, Z.D. In situ synthesis of cos2/rgo nanocomposites with enhanced electrode performance for lithium-ion batteries. J. Alloys Compd. 2013, 579, 372–376. [Google Scholar] [CrossRef]
- Hao, J.; Yang, W.; Hou, J.; Mao, B.; Huang, Z.; Shi, W. Nitrogen doped NiS2 nanoarrays with enhanced electrocatalytic activity for water oxidation. J. Mater. Chem. A 2017, 5, 17811–17816. [Google Scholar] [CrossRef]
- An, S.; Wang, K.; Zhou, F.; Lin, S.; Song, H.; Shi, Y.; Yao, J. Ultrafine Co:FeS2/CoS2 Heterostructure Nanowires for Highly Efficient Hydrogen Evolution Reaction. ACS Appl. Energy Mater. 2019, 3, 514–520. [Google Scholar] [CrossRef] [Green Version]
- Jung, C.T.; Hon, M.-H.; Leu, I.-C. Fabrication of mesoporous CoS2 nanotube arrays as the counter electrodes of dye-sensitized solar cells. Chem. Asian J. 2015, 10, 1932–1939. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Legrand, D.; Bancroft, G.M. Interpretation of Ni2p XPS spectra of Ni conductors and Ni insulators. Phys. Chem. Miner. 2000, 27, 357–366. [Google Scholar] [CrossRef]
- Marini, C.; Joseph, B.; Caramazza, S.; Capitani, F.; Bendele, M.; Mitrano, M. Local disorder investigation in NiS2-xsex using raman and Ni k-edge x-ray absorption spectroscopies. J. Phys. Condens. Matter. 2014, 26, 452201. [Google Scholar] [CrossRef]
- Ouyang, C.; Feng, S.; Huo, J.; Wang, S. Three-dimensional hierarchical MoS2/CoS2 heterostructure arrays for highly efficient electrocatalytic hydrogen evolution. Green Energy Environ. 2017, 2, 134–141. [Google Scholar] [CrossRef]
- Dai, Y.; Niu, L.; Zou, J.; Chen, T.; Liu, H.; Zhou, Y. Preparation of core-shell magnetic Fe3O4SiO2-dithiocarbamate nanoparticle and its application for the Ni2+, Cu2+ removal. Chin. Chem. Lett. 2018, 29, 887–891. [Google Scholar] [CrossRef]
- Gao, N.; Li, W.-P.; Wang, W.-S.; Liu, D.-P.; Cui, Y.-M.; Guo, L.; Wang, G.-S. Balancing Dielectric Loss and Magnetic Loss in Fe–NiS2/NiS/PVDF Composites toward Strong Microwave Reflection Loss. ACS Appl. Mater. Interfaces 2020, 12, 14416–14424. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, X.; Ma, Y.; Yang, M.; Qi, Y. Supercapacitor Performances of the MoS2/CoS2 Nanotube Arrays in Situ Grown on Ti Plate. J. Phys. Chem. C 2017, 121, 9089–9095. [Google Scholar] [CrossRef]
- Zhao, W.-W.; Bothra, P.; Lu, Z.; Li, Y.; Mei, L.-P.; Liu, K.; Zhao, Z.; Chen, G.; Back, S.; Siahrostami, S.; et al. Improved Oxygen Reduction Reaction Activity of Nanostructured CoS2 through Electrochemical Tuning. ACS Appl. Energy Mater. 2019, 2, 8605–8614. [Google Scholar] [CrossRef]
- Liu, H.; Hengjie, L.; Jiang, H.; Lin, Y.; Zhang, Y.; Habib, M.; Chen, S.; Song, L. Electronic Structure Reconfiguration toward Pyrite NiS2 via Engineered Heteroatom Defect Boosting Overall Water Splitting. ACS Nano 2017, 11, 11574–11583. [Google Scholar] [CrossRef] [PubMed]
- Yang, M.; Yang, Y.; Wang, K.; Li, S.; Feng, F.; Lan, K.; Jiang, P.; Huang, X.; Yang, H.; Li, R. Facile synthesis of CoSe nanoparticles encapsulated in N-doped carbon nanotubes-grafted N-doped carbon nanosheets for water splitting. Electrochim. Acta 2020, 337, 135685. [Google Scholar] [CrossRef]
- Lyapin, S.G.; Utyuzh, A.N.; Petrova, A.E.; Novikov, A.P.; Lograsso, T.A.; Stishov, S.M. Raman studies of nearly half-metallic ferromagnetic CoS2. J. Physics Condens. Matter 2014, 26, 396001. [Google Scholar] [CrossRef] [Green Version]
- Soofivand, F.; Esmaeili, E.; Sabet, M.; Salavati-Niasari, M. Simple synthesis, characterization and investigation of photocatalytic activity of NiS2 nanoparticles using new precursors by hydrothermal method. J. Mater. Sci. Mater. Electron. 2018, 29, 858–865. [Google Scholar] [CrossRef]
- Faber, M.S.; Dziedzic, R.; Lukowski, M.A.; Kaiser, N.S.; Ding, Q.; Jin, S. High-Performance Electrocatalysis Using Metallic Cobalt Pyrite (CoS2) Micro-and Nanostructures. J. Am. Chem. Soc. 2014, 136, 10053–10061. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Guo, W.; Yan, S.; Song, H.; Shi, Y. Hierarchical Co–FeS2/CoS2 heterostructures as a superior bifunctional electrocatalyst. RSC Adv. 2018, 8, 28684–28691. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, Z.; Lou, S.; Gao, Y.; Kong, L.; Yan, S.; Wang, K.; Song, H. Effect of Co Doping on Electrocatalytic Performance of Co-NiS2/CoS2 Heterostructures. Nanomaterials 2021, 11, 1245. https://doi.org/10.3390/nano11051245
Peng Z, Lou S, Gao Y, Kong L, Yan S, Wang K, Song H. Effect of Co Doping on Electrocatalytic Performance of Co-NiS2/CoS2 Heterostructures. Nanomaterials. 2021; 11(5):1245. https://doi.org/10.3390/nano11051245
Chicago/Turabian StylePeng, Zehui, Shuai Lou, Yuan Gao, Lijun Kong, Shancheng Yan, Ka Wang, and Haizeng Song. 2021. "Effect of Co Doping on Electrocatalytic Performance of Co-NiS2/CoS2 Heterostructures" Nanomaterials 11, no. 5: 1245. https://doi.org/10.3390/nano11051245
APA StylePeng, Z., Lou, S., Gao, Y., Kong, L., Yan, S., Wang, K., & Song, H. (2021). Effect of Co Doping on Electrocatalytic Performance of Co-NiS2/CoS2 Heterostructures. Nanomaterials, 11(5), 1245. https://doi.org/10.3390/nano11051245