Study of the Stability of Citrate Capped AgNPs in Several Environmental Water Matrices by Asymmetrical Flow Field Flow Fractionation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation
2.3. Analysis of Dispersions of AgNPs Diluted with Different Aqueous Matrices
3. Results and Discussion
3.1. Characterization of Several Batches of Citrate Capped AgNPs
3.2. Behaviour of the Dispersions in Function of Environmental Water Used as Diluent
3.3. Characterizing Information: AF4 vs. Static DLS and UV-Vis Spectroscopy
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Contera, S.; Bernardino de la Serna, J.; Tetley, T.D. Biotechnology, nanotechnology and medicine. Emerg. Top. Life Sci. 2020, 4, 551–554. [Google Scholar]
- Willets, K.A.; Van Duyne, R.P. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 2007, 58, 267–298. [Google Scholar] [CrossRef] [Green Version]
- Stewart, M.E.; Anderton, C.R.; Thompson, L.B.; Maria, J.; Gray, S.K.; Rogers, J.A.; Nuzzo, R.G. Nanostructured plasmonic sensors. Chem. Rev. 2008, 108, 494–521. [Google Scholar] [CrossRef]
- Vollath, D. Nanoparticles—Nanocomposites—Nanomaterials; Wiley-VCH Verlag GmbH & Co. KGaA: Hoboken, NJ, USA, 2013. [Google Scholar]
- Fischer, F.D.; Waitz, T.; Vollath, D.; Simha, N.K. On the role of surface energy and surface stress in phase-transforming nanoparticles. Prog. Mater. Sci. 2008, 53, 481–527. [Google Scholar] [CrossRef]
- Yao, Y.; Wei, Y.; Chen, S. Size effect of the surface energy density of nanoparticles. Surf. Sci. 2015, 636, 19–24. [Google Scholar] [CrossRef]
- Zhang, W.; Yao, Y.; Sullivan, N.; Chen, Y. Modeling the primary size effects of citrate-coated silver nanoparticles on their ion release kinetics. Environ. Sci. Technol. 2011, 45, 4422–4428. [Google Scholar] [CrossRef] [PubMed]
- Tejamaya, M.; Römer, I.; Merrifield, R.C.; Lead, J.R. Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ. Sci. Technol. 2012, 46, 7011–7017. [Google Scholar] [CrossRef] [PubMed]
- Ahamed, M.; AlSalhi, M.S.; Siddiqui, M.K.J. Silver nanoparticle applications and human health. Clin. Chim. Acta 2010, 411, 23–24. [Google Scholar] [CrossRef] [PubMed]
- Gallo-Cordova, A.; Lemus, J.; Palomares, F.J.; Morales, M.P.; Mazarío, E. Superparamagnetic nanosorbent for water purification: Assessment of the adsorptive removal of lead and methyl orange from aqueous solutions. Sci. Total Environ. 2020, 711, 134644. [Google Scholar] [CrossRef] [PubMed]
- Kumari, P.; Alam, M.; Siddiqi, W.A. Usage of nanoparticles as adsorbents for waste water treatment: An emerging trend. Sustain. Mater. Technol. 2019, 22, 00128. [Google Scholar] [CrossRef]
- Pradeep, T. Anshup Noble metal nanoparticles for water purification: A critical review. Thin Solid Films 2009, 517, 6441–6478. [Google Scholar] [CrossRef]
- Jornet-Martínez, N.; Hakobyan, L.; Argente-García, A.I.; Molins-Legua, C.; Campíns-Falcó, P. Nylon-Supported Plasmonic Assay Based on the Aggregation of Silver Nanoparticles: In Situ Determination of Hydrogen Sulfide-like Compounds in Breath Samples as a Proof of Concept. ACS Sensors 2019, 4, 2164–2172. [Google Scholar] [CrossRef]
- Fırat Ayyıldız, M.; Selin Fındıkoğlu, M.; Selali Chormey, D.; Bakırdere, S. A simple and efficient preconcentration method based on vortex assisted reduced graphene oxide magnetic nanoparticles for the sensitive determination of endocrine disrupting compounds in different water and baby food samples by GC-FID. J. Food Compos. Anal. 2020, 88, 103431. [Google Scholar] [CrossRef]
- Jornet-Martínez, N.; González-Béjar, M.; Moliner-Martínez, Y.; Campíns-Falcó, P.; Pérez-Prieto, J. Sensitive and selective plasmonic assay for spermine as biomarker in human urine. Anal. Chem. 2014, 86, 1347–1351. [Google Scholar] [CrossRef] [PubMed]
- León-Janampa, N.; Zimic, M.; Shinkaruk, S.; Quispe-Marcatoma, J.; Gutarra, A.; Le Bourdon, G.; Gayot, M.; Changanaqui, K.; Gilman, R.H.; Fouquet, E.; et al. Synthesis, characterization and bio-functionalization of magnetic nanoparticles to improve the diagnosis of tuberculosis. Nanotechnology 2020, 31, 175101. [Google Scholar] [CrossRef] [PubMed]
- Aygun, A.; Gülbagca, F.; Ozer, L.Y.; Ustaoglu, B.; Altunoglu, Y.C.; Baloglu, M.C.; Atalar, M.N.; Alma, M.H.; Sen, F. Biogenic platinum nanoparticles using black cumin seed and their potential usage as antimicrobial and anticancer agent. J. Pharm. Biomed. Anal. 2020, 179, 112961. [Google Scholar] [CrossRef]
- Singh, N.; Manshian, B.; Jenkins, G.J.S.; Griffiths, S.M.; Williams, P.M.; Maffeis, T.G.G.; Wright, C.J.; Doak, S.H. NanoGenotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials 2009, 30, 3891–3914. [Google Scholar] [CrossRef]
- Jia, Y.P.; Ma, B.Y.; Wei, X.W.; Qian, Z.Y. The in vitro and in vivo toxicity of gold nanoparticles. Chin. Chem. Lett. 2017, 28, 691–702. [Google Scholar] [CrossRef]
- Turan, N.B.; Erkan, H.S.; Engin, G.O.; Bilgili, M.S. Nanoparticles in the aquatic environment: Usage, properties, transformation and toxicity—A review. Process Saf. Environ. Prot. 2019, 130, 238–249. [Google Scholar] [CrossRef]
- Simonin, M.; Colman, B.P.; Anderson, S.M.; King, R.S.; Ruis, M.T.; Avellan, A.; Bergemann, C.M.; Perrotta, B.G.; Geitner, N.K.; Ho, M.; et al. Engineered nanoparticles interact with nutrients to intensify eutrophication in a wetland ecosystem experiment. Ecol. Appl. 2018, 28, 1435–1449. [Google Scholar] [CrossRef] [Green Version]
- Levard, C.; Hotze, E.M.; Lowry, G.V.; Brown, G.E., Jr. Environmental transformations of silver nanoparticles: Impact on stability and toxicity. Environ. Sci. Technol. 2012, 46, 6900–6914. [Google Scholar] [CrossRef]
- González-Fuenzalida, R.A.; Moliner-Martínez, Y.; Molins-Legua, C.; Parada-Artigues, V.; Verdú-Andrés, J.; Campins-Falcó, P. New Tools for Characterizing Metallic Nanoparticles: AgNPs, A Case Study. Anal. Chem. 2016, 88, 1485–1493. [Google Scholar] [CrossRef]
- González-Fuenzalida, R.A.; Sanjuan-Navarro, L.; Moliner-Martínez, Y.; Campíns-Falcó, P. Quantitative study of the capture of silver nanoparticles by several kinds of soils. Sci. Total Environ. 2018, 630, 1226–1236. [Google Scholar] [CrossRef]
- González-Fuenzalida, R.A.; Moliner-Martínez, Y.; Molins-Legua, C.; Campíns-Falcó, P. Miniaturized liquid chromatography coupled on-line to in-tube solid-phase microextraction for characterization of metallic nanoparticles using plasmonic measurements. A tutorial. Anal. Chim. Acta 2019, 1045, 23–41. [Google Scholar] [CrossRef]
- Hassellöv, M.; Lyvén, B.; Haraldsson, C.; Sirinawin, W. Determination of continuous size and trace element distribution of colloidal material in natural water by on-line coupling of flow field-flow fractionation with ICPMS. Anal. Chem. 1999, 71, 3497–3502. [Google Scholar] [CrossRef]
- Mitrano, D.M.; Barber, A.; Bednar, A.; Westerhoff, P.; Higgins, C.P.; Ranville, J.F. Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS). J. Anal. At. Spectrom. 2012, 27, 1131–1142. [Google Scholar] [CrossRef]
- Novak, J.P.; Nickerson, C.; Franzen, S.; Feldheim, D.L. Purification of molecularly bridged metal nanoparticle arrays by centrifugation and size exclusion chromatography. Anal. Chem. 2001, 73, 5758–5761. [Google Scholar] [CrossRef] [PubMed]
- Al-Somali, A.M.; Krueger, K.M.; Falkner, J.C.; Colvin, V.L. Recycling size exclusion chromatography for the analysis and separation of nanocrystalline gold. Anal. Chem. 2004, 76, 5903–5910. [Google Scholar] [CrossRef]
- Liu, F.K.; Ko, F.H.; Huang, P.W.; Wu, C.H.; Chu, T.C. Studying the size/shape separation and optical properties of silver nanoparticles by capillary electrophoresis. J. Chromatogr. A 2005, 1062, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Chung, K.; Man, C.P.; Xiao, D.; Choi, M.M.F. Capillary electrophoresis, mass spectrometry, and UV-visible absorption studies on electrolyte-induced fractionation of gold nanoclusters. Anal. Chem. 2008, 80, 2439–2446. [Google Scholar]
- Cervantes-Aviles, P.; Huang, Y.; Keller, A.A. Multi-technique approach to study the stability of silver nanoparticles at predicted environmental concentrations in wastewater. Water Res. 2019, 166, 115072. [Google Scholar] [CrossRef]
- Meisterjahn, B.; Wagner, S.; Kammer, F.; Hennecke, D.; Hofmann, T. Silver and gold nanoparticles separation using asymmetrical flow-field flow fractionation: Influence of run conditions and of particle membrane charges. J. Chromatogr. A 2016, 1440, 150–159. [Google Scholar] [CrossRef]
- Malik, M.I.; Pasch, H. Field-flow fractionation: New and exciting perspectives in polymer analysis. Prog. Polym. Sci. 2016, 63, 42–85. [Google Scholar] [CrossRef]
- Sanjuan-Navarro, L.; Boughbina-Portolés, A.; Moliner-Martínez, Y.; Campíns-Falcó, P. Aqueous Dilution of Noble NPs Bulk Dispersions: Modeling Instability due to Dissolution by AF4 and Stablishing Considerations for Plasmonic Assays. Nanomaterials 2020, 10, 1802. [Google Scholar] [CrossRef] [PubMed]
- Horinek, D. DLVO Theory. Encyclopedia of Applied Electrochemistry; Kreysa, G., Ota, K., Savinell, R.F., Eds.; Springer: New York, NY, USA, 2014; pp. 343–346. [Google Scholar]
- Franco-Ulloa, S.; Tatulli, G.; Bore, S.L.; Moglianetti, M.; Pompa, P.P.; Cascella, M.; De Vivo, M. Dispersio state phase diagram of citrate-coated metallic nanoparticles in saline solutions. Nat. Commun. 2020, 11, 5422. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, M.G.; Hinks, M.L.; Mendoza, A.M.; Pullman, D.P.; Peterson, K.I. Kinetics of halide-induced decomposition and aggregation of silver nanoparticles. J. Phys. Chem. C 2012, 116, 8305–8313. [Google Scholar] [CrossRef]
- Li, X.; Lenhart, J.J.; Walker, H.W. Dissolution-accompanied aggregation kinetics of silver nanoparticles. Langmuir 2010, 26, 16690–16698. [Google Scholar] [CrossRef]
- Henglein, A. Colloidal Silver Nanoparticles: Photochemical Preparation and Interaction with O2, CCl4, and Some Metal Ions. Chem. Mater. 1998, 10, 444–450. [Google Scholar] [CrossRef]
- Yin, Y.; Li, Z.Y.; Zhong, Z.; Gates, B.; Xia, Y.; Venkateswaran, S. Synthesis and characterization of stable aqueous dispersions of silver nanoparticles through the Tollens process. J. Mater. Chem. 2002, 12, 522–527. [Google Scholar] [CrossRef]
- Baalousha, M.; Nur, Y.; Römer, I.; Tejamaya, M.; Lead, J.R. Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. Sci. Total Environ. 2013, 454–455, 119–131. [Google Scholar] [CrossRef]
- El Badawy, A.M.; Scheckel, K.G.; Suidan, M.; Tolaymat, T. The impact of stabilization mechanism on the aggregation kinetics of silver nanoparticles. Sci. Total Environ. 2012, 429, 325–331. [Google Scholar] [CrossRef]
- Hsu, J.-P.; Liu, B.-T. Effect of Particle Size on Critical Coagulation Concentration. J. Colloid Interface Sci. 1998, 198, 186–189. [Google Scholar] [CrossRef] [Green Version]
- Hiemenz, P.C.; Rajagopalan, R. Principles of Colloid and Surface Chemistry; Marcel Dekker: New York, NY, USA, 1997. [Google Scholar]
- António, D.C.; Cascio, C.; Jurašin, D.; Lyons, D.M.; Nogueira, A.J.A.; Rossi, F.; Calzolai, L. Assessing silver nanoparticles behaviour in artificial seawater by mean of AF4 and spICP-MS. Mar. Environ. Res. 2015, 111, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Burgess, R.M.; Cantwell, M.G.; Portis, L.M.; Perron, M.M.; Wu, F.; Ho, K.T. Stability and aggregation of silver and titanium dioxide nanoparticles in seawater: Role of salinity and dissolved organic carbon. Environ. Toxicol. Chem. 2014, 33, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hurt, R.H. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 2010, 44, 2169–2175. [Google Scholar] [CrossRef]
- Delay, M.; Dolt, T.; Woellhaf, A.; Sembritzki, R.; Frimmel, F.H. Interactions and stability of silver nanoparticles in the aqueous phase: Influence of natural organic matter (NOM) and ionic strength. J. Chromatogr. A 2011, 1218, 4206–4212. [Google Scholar] [CrossRef] [PubMed]
Time, min | Direct Flow, mL·min−1 | Crossflow, mL·min−1 | Focus Flow, mL·min−1 | |
---|---|---|---|---|
Focus | 7 | 0.2 | 1.0 (0.2) * | 1.3 |
Transitional | 0.5 | 0.2 to 1.5 | 1.0 (0.2) * | 1.3 to 0 |
Fractionation | 35 | 1.5 to 0.5 | 1.0 (0.2) * to 0 | 0 |
10 | 0.5 | 0 | 0 |
Batch | λ SPB (nm) | Width SPB1/2 (nm) | εmáx (mM−1·cm−1) | DH (nm) |
---|---|---|---|---|
M1 | 398 ± 2 | 50.2 ± 0.1 | 15.43 ± 0.02 | 22 ± 2 |
M2 | 396 ± 1 | 42.9 ± 0.1 | 16.58 ± 0.02 | 22 ± 3 |
O1 | 393 ± 2 | 42.7 ± 0.2 | 16.83 ± 0.05 | 21 ± 3 |
O2 | 393 ± 2 | 42.8 ± 0.2 | 17.05 ± 0.03 | 20 ± 3 |
Water Matrix | Abbreviation | pH | CE (μS·cm−1) | Potential (mV) | ʒ-Potential of AgNPs: M/O (mV) |
---|---|---|---|---|---|
Ultrapure water | UPW | 6.0 ± 0.2 | 6.2 ± 0.1 | 250 ± 10 | −41.27/−42.97 |
Bottled water | BW2 | 7.37 ± 0.15 | 272 ± 4 | 190 ± 30 | −15.87/−17.67 |
Bottled water | BW1 | 7.52 ± 0.04 | 570 ± 30 | 300 ± 60 | −14.06/−14.83 |
Tap water | TW | 7.39 ± 0.18 | 10903 ± 40 | 630 ± 30 | −14.36/−14.76 |
Transitional water | TrW | 7.67 ± 0.17 | (13.4 ± 0.2) × 103 | 220 ± 60 | −8.86/−10.41 |
Sea water | SW | 7.99 ± 0.07 | (58 ± 3) × 103 | 150 ± 30 | −5.42/−5.92 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boughbina-Portolés, A.; Sanjuan-Navarro, L.; Moliner-Martínez, Y.; Campíns-Falcó, P. Study of the Stability of Citrate Capped AgNPs in Several Environmental Water Matrices by Asymmetrical Flow Field Flow Fractionation. Nanomaterials 2021, 11, 926. https://doi.org/10.3390/nano11040926
Boughbina-Portolés A, Sanjuan-Navarro L, Moliner-Martínez Y, Campíns-Falcó P. Study of the Stability of Citrate Capped AgNPs in Several Environmental Water Matrices by Asymmetrical Flow Field Flow Fractionation. Nanomaterials. 2021; 11(4):926. https://doi.org/10.3390/nano11040926
Chicago/Turabian StyleBoughbina-Portolés, Aaron, Lorenzo Sanjuan-Navarro, Yolanda Moliner-Martínez, and Pilar Campíns-Falcó. 2021. "Study of the Stability of Citrate Capped AgNPs in Several Environmental Water Matrices by Asymmetrical Flow Field Flow Fractionation" Nanomaterials 11, no. 4: 926. https://doi.org/10.3390/nano11040926
APA StyleBoughbina-Portolés, A., Sanjuan-Navarro, L., Moliner-Martínez, Y., & Campíns-Falcó, P. (2021). Study of the Stability of Citrate Capped AgNPs in Several Environmental Water Matrices by Asymmetrical Flow Field Flow Fractionation. Nanomaterials, 11(4), 926. https://doi.org/10.3390/nano11040926