Transport Properties of Natural and Artificial Smart Fabrics Impregnated by Graphite Nanomaterial Stacks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Production of Graphite Stacks–Acetone-Based Suspensions and Development of an Impregnation Method
2.2.1. Production of Graphite Stacks–Acetone-Based Suspensions
2.2.2. Textiles Impregnation
2.3. Characterization Techniques
2.3.1. Granulometric Analysis
2.3.2. Thermogravimetric Analysis
2.3.3. Electrical Conductivity
2.3.4. Thermal Conductivity
2.4. Mathematical Models for the Prediction of Thermal Conductivity
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, H.; Abdala, A.A.; MacOsko, C.W. Graphene/polymer nanocomposites. Macromolecules 2010, 43, 6515–6530. [Google Scholar] [CrossRef]
- Esposito Corcione, C.; Fasiello, A.; Maffezzoli, A. Synthesis and characterization of boehmite reinforced epoxy nanocomposites. J. Nanostruct. Polym. Nanocompos. 2007, 3, 82–89. [Google Scholar]
- Esposito Corcione, C.; Prinari, P.; Cannoletta, D.; Mensitieri, G.; Maffezzoli, A. Synthesis and characterization of clay-nanocomposite solvent-based polyurethane adhesives. Int. J. Adhes. Adhes. 2008, 28, 91–100. [Google Scholar] [CrossRef]
- Greco, A.; Esposito Corcione, C.; Cavallo, A.; Maffezzoli, A. Structural and thermal characterization of clay nanocomposites based on amorphous PET. J. Appl. Polym. Sci. 2011, 122, 942–947. [Google Scholar]
- Esposito Corcione, C.; Frigione, M.; Maffezzoli, A.; Malucelli, G. Photo—DSC and real time—FT-IR kinetic study of a UV curable epoxy resin containing o-Boehmites. Eur. Polym. J. 2008, 44, 2010–2023. [Google Scholar] [CrossRef]
- Esposito Corcione, C.; Frigione, M.; Acierno, D. Rheological characterization of UV-curable epoxy systems: Effects of o-Boehmite nanofillers and a hyperbranched polymeric modifier. J. Appl. Polym. Sci. 2009, 112, 1302–1310. [Google Scholar] [CrossRef]
- Esposito Corcione, C.; Mensitieri, G.; Maffezzoli, A. Analysis of the structure and mass transport properties of nanocomposite polyurethane. Polym. Eng. Sci. 2009, 49, 1708–1718. [Google Scholar] [CrossRef]
- Esposito Corcione, C.; Maffezzoli, A. Glass transition in thermosetting clay-nanocomposite polyurethanes. Thermochim. Acta 2009, 485, 43–48. [Google Scholar] [CrossRef]
- Esposito Corcione, C.; Manera, M.G.; Maffezzoli, A.; Rella, R. Synthesis and characterization of optically transparent epoxy matrix nanocomposites. Mater. Sci. Eng. C 2009, 29, 1798–1802. [Google Scholar] [CrossRef]
- Greco, A.; Esposito Corcione, C.; Strafella, A.; Maffezzoli, A. Analysis of the structure and mass transport properties of clay nanocomposites based on amorphous PET. J. Appl. Polym. Sci. 2010, 118, 3666–3672. [Google Scholar] [CrossRef]
- Indennidate, L.; Cannoletta, D.; Lionetto, F.; Greco, A.; Maffezzoli, A. Nanofilled polyols for viscoelastic polyurethane foams. Polym. Int. 2009, 59, 486–491. [Google Scholar] [CrossRef]
- Esposito Corcione, C.; Cavallo, A.; Re, M.; Greco, A.; Maffezzoli, A. Evaluation of the degree of dispersion of nanofillers by mechanical, rheological and permeability analysis. Polym. Eng. Sci. 2011, 51, 1280–1285. [Google Scholar] [CrossRef]
- Terenzi, A.; Vedova, C.; Lelli, G.; Mijovic, J.; Torre, L.; Valentini, L.; Kenny, J.M. Chemorheological behaviour of double-walled carbon nanotube-epoxy nanocomposites. Compos. Sci. Technol. 2008, 68, 1862–1868. [Google Scholar] [CrossRef]
- Rahatekar, S.; Zammarano, M.; Matko, S.; Koziol, K.; Windle, A.; Nyden, M.; Kashiwagi, T.; Gilman, J. Effect of carbon nanotubes and montmorillonite on the flammability of epoxy nanocomposites. Polym. Degrad. Stab. 2010, 95, 870–879. [Google Scholar] [CrossRef]
- Yasmin, A.; Daniel, I.M. Mechanical and thermal properties of graphite platelet/epoxy composites. Polymer 2004, 45, 8211–8219. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Xu, C.; Zhang, M.; Shang, X. Preparation of graphene/poly(vinyl alcohol) nanocomposites with enhanced mechanical properties and water resistance. Polym. Int. 2011, 60, 816–822. [Google Scholar] [CrossRef]
- Nguyen, D.A.; Lee, Y.R.; Raghu, A.V.; Jeong, H.; Shin, C.M.; Kim, B.K. Morphological and physical properties of a thermoplastic polyurethane reinforced with functionalized graphene sheet. Polym. Int. 2009, 58, 412–417. [Google Scholar] [CrossRef]
- Jancar, J. Structure-Property Relationships in Thermoplastic Matrices. In Mineral Fillers in Thermoplastics I. Advances in Polymer Science; Jancar, J., Ed.; Springer: Berlin/Heidelberg, Germany, 1999; p. 139. [Google Scholar]
- Nie, Y.; Hübert, T. Effect of carbon nanofiber (CNF) silanization on the properties of CNF/epoxy nanocomposites. Polym. Int. 2011, 60, 1574–1580. [Google Scholar] [CrossRef]
- Di Berardinino, M.F.; Pearson, R.A. Fracture Behavior of Epoxy-Based, Hybrid Particulate Composites. MRS Proc. 1998, 515, 239. [Google Scholar] [CrossRef]
- Chan, C.M.; Wu, J.; Li, J.X.; Cheung, Y.K. Polypropylene/calcium carbonate nanocomposites. Polymer 2002, 43, 2981–2992. [Google Scholar] [CrossRef]
- Sumita, M.; Tsukumo, Y.; Miyasaka, K.; Ishikawa, K. Tensile yield stress of polypropylene composites filled with ultrafine particles. J. Mater. Sci. 1983, 18, 1758–1764. [Google Scholar] [CrossRef]
- Komarneni, S. Nanocornposites. J. Mater. Chem. 1992, 2, 1219–1230. [Google Scholar] [CrossRef]
- Kojima, Y.; Usuki, A.; Kawasumi, M.; Okada, A.; Fukushima, Y.; Kurauchi, T.; Kamigaito, O. Mechanical properties of nylon 6-clay hybrid. J. Mater. Res. 1993, 8, 1185–1189. [Google Scholar] [CrossRef]
- Giannelis, E.P. Polymer Layered Silicate Nanocomposites. Adv. Mater. 1996, 8, 29–35. [Google Scholar] [CrossRef]
- Chen, C.; Curliss, D. Resin matrix composites: Organoclay-aerospace nanocomposites, Part II. Sampe J. 2001, 37, 11–18. [Google Scholar]
- Wang, Z.; Massan, J.; Pinnavia, T.J. Epoxy-clay nanocomposite. In Polymer—Clay Nanocomposite; Pinnavia, T.J., Beall, G.W., Eds.; Wiley: New York, NY, USA, 2000. [Google Scholar]
- Yasmin, A.; Luo, J.J.; Abot, J.L.; Daniel, I.M. Mechanical and thermal behavior of clay/epoxy nanocomposites. Compos. Sci. Technol. 2006, 66, 2415–2422. [Google Scholar] [CrossRef]
- Abot, J.L.; Yasmin, A.; Daniel, I.M. Mechanical and thermoviscoelastic behavior of clay/epoxy nanocomposites. Mater. Res. Soc. Symp. Proc. 2003, 740, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Yasmin, A.; Abot, J.L.; Daniel, I.M. Processing of nanoclay/epoxy composites with a three-roll mill. In Proceedings of the Materials Research Society Symposium, Boston, MA, USA, 1–5 December 2003; pp. 75–80. [Google Scholar]
- Bhattacharjee, S.; Macintyre, C.R.; Wen, X.; Bahl, P.; Kumar, U.; Chughtai, A.A.; Joshi, R. Nanoparticles incorporated graphene-based durable cotton fabrics. Carbon 2020, 166, 148–163. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, J.; Huang, Z.; Zheng, G.; Dai, K.; Liu, C.; Shen, C. Flexible electrically resistive-type strain sensors based on reduced graphene oxide-decorated electrospun polymer fibrous mats for human motion monitoring. Carbon 2018, 126, 360–371. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Joshi, R.K.; Chughtai, A.A.; Macintyre, C.R. Graphene Modified Multifunctional Personal Protective Clothing. Adv. Mater. Interfaces 2019, 6, 1900622. [Google Scholar] [CrossRef] [Green Version]
- Huang, G.; Hou, C.; Shao, Y.; Zhu, B.; Jia, B.; Wang, H.; Zhang, Q.; Li, Y. High-performance all-solid-state yarn supercapacitors based on porous graphene ribbons. Nano Energy 2015, 12, 26–32. [Google Scholar] [CrossRef]
- Kowalczyk, D.; Fortuniak, W.; Mizerska, U.; Kaminska, I.; Makowski, T.; Brzezinski, S.; Piorkowska, E. Modification of cotton fabric with graphene and reduced graphene oxide using sol–gel method. Cellulose 2017, 24, 4057–4068. [Google Scholar] [CrossRef]
- Zhao, J.; Deng, B.; Lv, M.; Li, J.; Zhang, Y.; Jiang, H.; Peng, C.; Li, J.; Shi, J.; Huang, Q.; et al. Graphene Oxide-Based Antibacterial Cotton Fabrics. Adv. Healthc. Mater. 2013, 2, 1259–1266. [Google Scholar] [CrossRef]
- Cai, G.; Xu, Z.; Yang, M.; Tang, B.; Wang, X. Functionalization of cotton fabrics through thermal reduction of graphene oxide. Appl. Surf. Sci. 2017, 393, 441–448. [Google Scholar] [CrossRef]
- Stan, M.; Badea, M.A.; Pircalabioru, G.G.; Chifiriuc, M.C.; Diamandescu, L.; Dumitrescu, I.; Trica, B.; Lambert, C.; Dinischiotu, A. Designing cotton fibers impregnated with photocatalytic graphene oxide/Fe, N-doped TiO2 particles as prospective industrial self-cleaning and biocompatible textiles. Mater. Sci. Eng. C 2019, 94, 318–332. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Xiao, X.; Liu, Y.; Wang, J.; Qi, S.; Huan, C.; Liu, H.; Zhu, Y.; Xu, G. Achieving multifunctional smart textile with long afterglow and thermo-regulation via coaxial electrospinning. J. Alloys Compd. 2020, 812, 152144. [Google Scholar] [CrossRef]
- Pan, N.; Liu, Y.; Ren, X.; Huang, T.-S. Fabrication of cotton fabrics through in-situ reduction of polymeric N-halamine modified graphene oxide with enhanced ultraviolet-blocking, self-cleaning, and highly efficient, and monitorable antibacterial properties. Colloids Surf. A Physicochem. Eng. Asp. 2018, 555, 765–771. [Google Scholar] [CrossRef]
- Corcione, C.E.; Freuli, F.; Maffezzoli, A. The Aspect Ratio of Epoxy Matrix Nanocomposites Reinforced with Graphene Stacks. Polym. Eng. Sci. 2013, 53, 531–539. [Google Scholar] [CrossRef]
- Bourdo, S.E.; Warford, B.A.; Viswanathan, T. Electrical and thermal properties of graphite/polyaniline composites. Polym. Eng. Sci. 2013, 196, 531–539. [Google Scholar] [CrossRef]
- Striani, R.; Stasi, E.; Giuri, A.; Seiti, M.; Ferraris, E.; Esposito Corcione, C. Development of an innovative and green method to obtain nanoparticles from carbon-based waste ashes. Nanomaterials 2021, 11, 577. [Google Scholar] [CrossRef]
- Flynn, J.H.; Levin, D.M.A. A method for the determination of thermal conductivity of sheet materials by DSC. Thermochim. Acta 1988, 126, 93–100. [Google Scholar] [CrossRef]
- Militký, J.; Křemenáková, D.A. Simple Methods for Prediction of Textile Fabrics Thermal Conductivity—Paper number: PJ4. In Proceedings of the 5th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, Sun City, South Africa, 1–4 July 2007. [Google Scholar]
- Tai, H. Equivalent Thermal Conductivity of Two- and Three-Dimensional Orthogonally Fiber-Reinforced Composites in One-Dimensional Heat Flow. J. Compos. Technol. Res. 1996, 18, 221–227. [Google Scholar]
- Krach, A.; Advani, S. Influence of void shape, void volume and matrix anisotropy on effective thermal conductivity of a three-phase composite. J. Compos. Mater. 1996, 30, 933–946. [Google Scholar] [CrossRef]
- Militký, J.; Křemenáková, D. Prediction of textile fabric thermal conductivity. In Proceedings of the 5th HEFAT Conference, Sun City, South Africa, 18 April 2007. [Google Scholar]
- Hashin, Z. The elastic moduli of heterogeneous materials. J. Appl. Mech. 1962, 29, 143–150. [Google Scholar] [CrossRef]
- Al Sulaiman, F.A.; Al-Nassar, Y.N.; Mokheimer, E.M.A. Numerical prediction of thermal conductivity of fibres. Heat Mass Transf. 2006, 42, 449–461. [Google Scholar] [CrossRef]
- Militký, J.; Trávníčková, M.; Bajzík, V. Air Permeability and Light Transmission of Weaves, Fibres and Textiles. Int. J. Cloth. Sci. Technol. 1999, 11, 116–125. [Google Scholar] [CrossRef]
Sample | Solid Residue (%) | Weight Fraction (%) | Volume Fraction (%) |
---|---|---|---|
C_NT | 4.23 | − | |
C_EGS1h | 7.93 | 3.7 | 4.03 |
C_EGS2h | 6.81 | 2.58 | 2.81 |
C_EGS3h | 8.45 | 4.22 | 4.60 |
C_EGSbm | 5.16 | 0.93 | 1.00 |
C_EGSnm | 4.88 | 0.65 | 0.67 |
L_NT | 10.93 | − | |
L_EGS1h | 13.78 | 2.85 | 2.37 |
L_EGS2h | 12.11 | 1.18 | 0.98 |
L_EGS3h | 14.91 | 3.98 | 3.31 |
Material | |
---|---|
Cotton | 0.06 |
Air | 0.024 |
Lycra® | 0.065 |
EG | 3 |
Treated cotton filament (Equation (13)) | 0.116 |
Lycra® single filament (Equation (13)) | 0.138 |
Material | Porosity (%) | ||||
---|---|---|---|---|---|
Cotton | 4000 | 3000 | 15 | 30 | 20 |
Lycra | 5000 | 4000 | 15 | 30 | 53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esposito Corcione, C.; Ferrari, F.; Striani, R.; Greco, A. Transport Properties of Natural and Artificial Smart Fabrics Impregnated by Graphite Nanomaterial Stacks. Nanomaterials 2021, 11, 1018. https://doi.org/10.3390/nano11041018
Esposito Corcione C, Ferrari F, Striani R, Greco A. Transport Properties of Natural and Artificial Smart Fabrics Impregnated by Graphite Nanomaterial Stacks. Nanomaterials. 2021; 11(4):1018. https://doi.org/10.3390/nano11041018
Chicago/Turabian StyleEsposito Corcione, Carola, Francesca Ferrari, Raffaella Striani, and Antonio Greco. 2021. "Transport Properties of Natural and Artificial Smart Fabrics Impregnated by Graphite Nanomaterial Stacks" Nanomaterials 11, no. 4: 1018. https://doi.org/10.3390/nano11041018
APA StyleEsposito Corcione, C., Ferrari, F., Striani, R., & Greco, A. (2021). Transport Properties of Natural and Artificial Smart Fabrics Impregnated by Graphite Nanomaterial Stacks. Nanomaterials, 11(4), 1018. https://doi.org/10.3390/nano11041018