Numerical Evaluation of the Effect of Geometric Tolerances on the High-Frequency Performance of Graphene Field-Effect Transistors
Abstract
:1. Introduction
2. GFET Simulation Design
2.1. Input Parameter Space
2.2. Output Regression Model
- A first-order model, including only the linear dependence on the factors (main effects model):
- A first-order model with interactions, including a small curvature in the response by means of the mixed product terms:
- A second order model, including quadratic terms (response surface model):
2.3. Response Variables
2.4. Simulation Environment Setup
2.5. Validation of the Simulated GFET Behaviour
3. Tolerance Analysis Results
3.1. fT Sensitivity
3.2. fMAX Sensitivity
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Passlack, M.; Zurcher, P.; Rajagopalan, K.; Droopad, R.; Abrokwah, J.; Tutt, M.; Park, Y.B.; Johnson, E.; Hartin, O.; Zlotnicka, A.; et al. High mobility III-V MOSFETs for RF and digital applications. In Proceedings of the 2007 IEEE International Electron Devices Meeting, Washington, DC, USA, 10–12 December 2007; pp. 621–624. [Google Scholar]
- Barratt, C.A. III-V Semiconductors, a History in RF Applications. ECS Trans. 2009, 19, 79. [Google Scholar] [CrossRef]
- Saravanan, M.; Parthasarathy, E. A review of III-V Tunnel Field Effect Transistors for future ultra low power digital/analog applications. Microelectron. J. 2021, 114, 105102. [Google Scholar] [CrossRef]
- Ajayan, J.; Nirmal, D. A review of InP/InAlAs/InGaAs based transistors for high frequency applications. Superlattices Microstruct. 2015, 86, 1–19. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Bonaccorso, F.; Fal’ko, V.; Novoselov, K.S.; Roche, S.; Bøggild, P.; Borini, S.; Koppens, F.H.L.; Palermo, V.; Pugno, N.; et al. Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 2015, 7, 4598–4810. [Google Scholar] [CrossRef] [Green Version]
- Schwierz, F. Graphene transistors. Nat. Nanotechnol. 2010, 5, 487–496. [Google Scholar] [CrossRef]
- Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S.K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779. [Google Scholar] [CrossRef] [PubMed]
- Fiori, G.; Neumaier, D.; Szafranek, B.N.; Iannaccone, G. Bilayer graphene transistors for analog electronics. IEEE Trans. Electron Devices 2014, 61, 729–733. [Google Scholar] [CrossRef]
- Neumaier, D.; Zirath, H. High frequency graphene transistors: Can a beauty become a cash cow? 2D Mater. 2015, 2, 030203. [Google Scholar] [CrossRef]
- Lemme, M.C.; Echtermeyer, T.J.; Baus, M.; Kurz, H. A graphene field-effect device. IEEE Electron Device Lett. 2007, 28, 282–284. [Google Scholar] [CrossRef] [Green Version]
- Meric, I.; Han, M.Y.; Young, A.F.; Ozyilmaz, B.; Kim, P.; Shepard, K.L. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nat. Nanotechnol. 2008, 3, 654–659. [Google Scholar] [CrossRef]
- Meric, I.; Dean, C.; Young, A.; Hone, J.; Kim, P.; Shepard, K.L. Graphene field-effect transistors based on boron nitride gate dielectrics. In Proceedings of the Technical Digest-International Electron Devices Meeting, IEDM, San Francisco, CA, USA, 6–8 December 2010. [Google Scholar]
- Peng, S.; Jin, Z.; Ma, P.; Yu, G.; Shi, J.; Zhang, D.; Chen, J.; Liu, X.; Ye, T. Heavily p-type doped chemical vapor deposition graphene field-effect transistor with current saturation. Appl. Phys. Lett. 2013, 103, 223505. [Google Scholar] [CrossRef]
- Szafranek, B.N.; Fiori, G.; Schall, D.; Neumaier, D.; Kurz, H. Current saturation and voltage gain in bilayer graphene field effect transistors. Nano Lett. 2012, 12, 1324–1328. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.-M.; Jenkins, K.A.; Valdes-Garcia, A.; Small, J.P.; Farmer, D.B.; Avouris, P. Operation of graphene transistors at gigahertz frequencies. Nano Lett. 2008, 9, 422–426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Y.; Lin, Y.M.; Bol, A.A.; Jenkins, K.A.; Xia, F.; Farmer, D.B.; Zhu, Y.; Avouris, P. High-frequency, scaled graphene transistors on diamond-like carbon. Nature 2011, 472, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Meric, I.; Dean, C.R.; Han, S.J.; Wang, L.; Jenkins, K.A.; Hone, J.; Shepard, K.L. High-frequency performance of graphene field effect transistors with saturating IV-characteristics. In Proceedings of the Technical Digest-International Electron Devices Meeting, IEDM, Washington, DC, USA, 5–7 December 2011. [Google Scholar]
- Rawat, B.; Paily, R. Analysis of graphene tunnel field-effect transistors for analog/RF applications. IEEE Trans. Electron Devices 2015, 62, 2663–2669. [Google Scholar] [CrossRef]
- Lyu, H.; Lu, Q.; Liu, J.; Wu, X.; Zhang, J.; Li, J.; Niu, J.; Yu, Z.; Wu, H.; Qian, H. Deep-submicron graphene field-effect transistors with state-of-art fmax. Sci. Rep. 2016, 6, 35717. [Google Scholar] [CrossRef] [Green Version]
- Bonmann, M.; Asad, M.; Yang, X.; Generalov, A.; Vorobiev, A.; Banszerus, L.; Stampfer, C.; Otto, M.; Neumaier, D.; Stake, J. Graphene field-effect transistors with high extrinsic fT and fmax. IEEE Electron Device Lett. 2019, 40, 131–134. [Google Scholar] [CrossRef] [Green Version]
- Vorobiev, A.; Bonmann, M.; Asad, M.; Yang, X.; Stake, J.; Banszerus, L.; Stampfer, C.; Otto, M.; Neumaier, D. Graphene field-effect transistors for millimeter wave amplifiers. In Proceedings of the 2019 44th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Paris, France, 1–6 September 2019. [Google Scholar] [CrossRef] [Green Version]
- Liao, L.; Lin, Y.-C.; Bao, M.; Cheng, R.; Bai, J.; Liu, Y.; Qu, Y.; Wang, K.L.; Huang, Y.; Duan, X. High-speed graphene transistors with a self-aligned nanowire gate. Nature 2010, 467, 305–308. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Jenkins, K.A.; Valdes-Garcia, A.; Farmer, D.B.; Zhu, Y.; Bol, A.A.; Dimitrakopoulos, C.; Zhu, W.; Xia, F.; Avouris, P.; et al. State-of-the-art graphene high-frequency electronics. Nano Lett. 2012, 12, 3062–3067. [Google Scholar] [CrossRef]
- Guo, Z.; Dong, R.; Chakraborty, P.S.; Lourenco, N.; Palmer, J.; Hu, Y.; Ruan, M.; Hankinson, J.; Kunc, J.; Cressler, J.D.; et al. Record maximum oscillation frequency in C-face epitaxial graphene transistors. Nano Lett. 2013, 13, 942–947. [Google Scholar] [CrossRef] [Green Version]
- Giubileo, F.; Di Bartolomeo, A. The role of contact resistance in graphene field-effect devices. Prog. Surf. Sci. 2017, 92, 143–175. [Google Scholar] [CrossRef] [Green Version]
- Giubileo, F.; Di Bartolomeo, A.; Martucciello, N.; Romeo, F.; Iemmo, L.; Romano, P.; Passacantando, M. Contact resistance and channel conductance of graphene field-effect transistors under low-energy electron irradiation. Nanomaterials 2016, 6, 206. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farmer, D.B.; Valdes-Garcia, A.; Dimitrakopoulos, C.; Avouris, P. Impact of gate resistance in graphene radio frequency transistors. Appl. Phys. Lett. 2012, 101, 143503. [Google Scholar] [CrossRef]
- Wu, Y.; Zou, X.; Sun, M.; Cao, Z.; Wang, X.; Huo, S.; Zhou, J.; Yang, Y.; Yu, X.; Kong, Y.; et al. 200 GHz maximum oscillation frequency in CVD graphene radio frequency transistors. ACS Appl. Mater. Interfaces 2016, 8, 25645–25649. [Google Scholar] [CrossRef]
- Wang, H.; Hsu, A.L.; Palacios, T. Graphene electronics for RF applications. IEEE Microw. Mag. 2012, 13, 114–125. [Google Scholar] [CrossRef]
- Zhang, C.X.; Wang, B.; Duan, G.X.; Zhang, E.X.; Fleetwood, D.M.; Alles, M.L.; Schrimpf, R.D.; Rooney, A.P.; Khestanova, E.; Auton, G.; et al. Total ionizing dose effects on hBN encapsulated graphene devices. IEEE Trans. Nucl. Sci. 2014, 61, 2868–2873. [Google Scholar] [CrossRef]
- Paddubskaya, A.; Batrakov, K.; Khrushchinsky, A.; Kuten, S.; Plyushch, A.; Stepanov, A.; Remnev, G.; Shvetsov, V.; Baah, M.; Svirko, Y.; et al. Outstanding radiation tolerance of supported graphene: Towards 2D Sensors for the space millimeter radioastronomy. Nanomaterials 2021, 11, 170. [Google Scholar] [CrossRef]
- Childres, I.; Jauregui, L.A.; Foxe, M.; Tian, J.; Jalilian, R.; Jovanovic, I.; Chen, Y.P. Effect of electron-beam irradiation on graphene field effect devices. Appl. Phys. Lett. 2010, 97, 173109. [Google Scholar] [CrossRef] [Green Version]
- Perruisseau-Carrier, J. Graphene for antenna applications: Opportunities and challenges from microwaves to THz. In Proceedings of the 2012 Loughborough Antennas & Propagation Conference (LAPC), Loughborough, UK, 12–13 November 2012. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Vorobiev, A.; Yang, J.; Jeppson, K.; Stake, J. A Linear-Array of 300-GHz Antenna Integrated GFET Detectors on a Flexible Substrate. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 554–557. [Google Scholar] [CrossRef]
- Han, S.-J.J.; Garcia, A.V.; Oida, S.; Jenkins, K.A.; Haensch, W. Graphene radio frequency receiver integrated circuit. Nat. Commun. 2014, 5, 1–6. [Google Scholar] [CrossRef]
- Bonmann, M.; Andersson, M.A.; Zhang, Y.; Yang, X.; Vorobiev, A.; Stake, J. An Integrated 200-GHz Graphene FET Based Receiver. In Proceedings of the International Conference on Infrared, Millimeter, and Terahertz Waves, IRMMW-THz, Nagoya, Japan, 9–14 September 2018; Volume 2018. [Google Scholar]
- Saeed, M.; Hamed, A.; Wang, Z.; Shaygan, M.; Neumaier, D.; Negra, R. Graphene integrated circuits: New prospects towards receiver realisation. Nanoscale 2018, 10, 93–99. [Google Scholar] [CrossRef]
- Sensale-Rodriguez, B.; Fang, T.; Yan, R.; Kelly, M.M.; Jena, D.; Liu, L.; Xing, H. Unique prospects for graphene-based terahertz modulators. Appl. Phys. Lett. 2011, 99, 113104. [Google Scholar] [CrossRef] [Green Version]
- Sensale-Rodriguez, B.; Yan, R.; Kelly, M.M.; Fang, T.; Tahy, K.; Hwang, W.S.; Jena, D.; Liu, L.; Xing, H.G. Broadband graphene terahertz modulators enabled by intraband transitions. Nat. Commun. 2012, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Phare, C.T.; Daniel Lee, Y.-H.; Cardenas, J.; Lipson, M. Graphene electro-optic modulator with 30 GHz bandwidth. Nat. Photonics 2015, 9, 511–514. [Google Scholar] [CrossRef]
- Habibpour, O.; He, Z.S.; Strupinski, W.; Rorsman, N.; Ciuk, T.; Ciepielewski, P.; Zirath, H. Graphene FET gigabit ON-OFF keying demodulator at 96 GHz. IEEE Electron Device Lett. 2016, 37, 333–336. [Google Scholar] [CrossRef]
- Dalir, H.; Xia, Y.; Wang, Y.; Zhang, X. Athermal broadband graphene optical modulator with 35 GHz Speed. ACS Photonics 2016, 3, 1564–1568. [Google Scholar] [CrossRef]
- Ahmadivand, A.; Gerislioglu, B.; Ramezani, Z. Gated graphene island-enabled tunable charge transfer plasmon terahertz metamodulator. Nanoscale 2019, 11, 8091–8095. [Google Scholar] [CrossRef]
- Hong, S.K.; Kim, K.Y.; Kim, T.Y.; Kim, J.H.; Park, S.W.; Kim, J.H.; Cho, B.J. Electromagnetic interference shielding effectiveness of monolayer graphene. Nanotechnology 2012, 23, 455704. [Google Scholar] [CrossRef]
- Han, S.J.; Jenkins, K.A.; Valdes Garcia, A.; Franklin, A.D.; Bol, A.A.; Haensch, W. High-frequency graphene voltage amplifier. Nano Lett. 2011, 11, 3690–3693. [Google Scholar] [CrossRef]
- Hanna, T.; Deltimple, N.; Khenissa, M.S.; Pallecchi, E.; Happy, H.; Frégonèse, S. 2.5 GHz integrated graphene RF power amplifier on SiC substrate. Solid. State. Electron. 2017, 127, 26–31. [Google Scholar] [CrossRef]
- Hamed, A.; Asad, M.; Wei, M.-D.; Vorobiev, A.; Stake, J.; Negra, R. Integrated 10-GHz Graphene FET Amplifier. IEEE J. Microw. 2021, 1, 821–826. [Google Scholar] [CrossRef]
- Yu, C.; He, Z.; Song, X.; Gao, X.; Liu, Q.; Zhang, Y.; Yu, G.; Han, T.; Liu, C.; Feng, Z.; et al. Field effect transistors and low noise amplifier MMICs of monolayer graphene. IEEE Electron Device Lett. 2021, 42, 268–271. [Google Scholar] [CrossRef]
- Wang, H.; Hsu, A.; Wu, J.; Kong, J.; Palacios, T. Graphene-based ambipolar RF mixers. IEEE Electron Device Lett. 2010, 31, 906–908. [Google Scholar] [CrossRef]
- Habibpour, O.; Cherednichenko, S.; Vukusic, J.; Yhland, K.; Stake, J. A subharmonic graphene FET mixer. IEEE Electron Device Lett. 2012, 33, 71–73. [Google Scholar] [CrossRef] [Green Version]
- Andersson, M.A.; Zhang, Y.; Stake, J. A 185-215-GHz subharmonic resistive graphene FET integrated mixer on silicon. IEEE Trans. Microw. Theory Tech. 2017, 65, 165–172. [Google Scholar] [CrossRef] [Green Version]
- Schall, D.; Otto, M.; Neumaier, D.; Kurz, H. Integrated ring oscillators based on high-performance graphene inverters. Sci. Rep. 2013, 3, 1–5. [Google Scholar] [CrossRef]
- Guerriero, E.; Polloni, L.; Bianchi, M.; Behnam, A.; Carrion, E.; Rizzi, L.G.; Pop, E.; Sordan, R. Gigahertz integrated graphene ring oscillators. ACS Nano 2013, 7, 5588–5594. [Google Scholar] [CrossRef]
- Safari, A.; Dousti, M. Ring oscillators based on monolayer graphene FET. Analog Integr. Circuits Signal Process. 2020, 102, 637–644. [Google Scholar] [CrossRef]
- Coletti, C.; Romagnoli, M.; Giambra, M.A.; Mišeikis, V.; Pezzini, S.; Marconi, S.; Montanaro, A.; Fabbri, F.; Sorianello, V.; Ferrari, A.C. Wafer-scale integration of graphene-based photonic devices. ACS Nano 2021, 15, 3171–3187. [Google Scholar] [CrossRef]
- Neumaier, D.; Pindl, S.; Lemme, M.C. Integrating graphene into semiconductor fabrication lines. Nat. Mater. 2019, 18, 525–529. [Google Scholar] [CrossRef] [Green Version]
- Paul, B.C.; Fujita, S.; Okajima, M.; Lee, T.H.; Wong, H.S.P.; Nishi, Y. Impact of a process variation on nanowire and nanotube device performance. IEEE Trans. Electron Devices 2007, 54, 2369–2376. [Google Scholar] [CrossRef]
- Taguchi, G. System of Experimental Design: Engineering Methods to Optimize Quality and Minimize Costs; UNIPUB/Kraus International Publications: New York, NY, USA, 1987; ISBN 978-0527916213. [Google Scholar]
- Hinkelmann, K. Design and Analysis of Experiments; American Psychological Association: Washington, DC, USA, 2012; Volume 3. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments, 9th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017; ISBN 9781119113478. [Google Scholar]
- Pasadas, F.; Jiménez, D. Large-signal model of graphene field-effect transistors-part I: Compact modeling of GFET intrinsic capacitances. IEEE Trans. Electron Devices 2016, 63, 2936–2941. [Google Scholar] [CrossRef] [Green Version]
- Lamberti, P.; La Mura, M.; Pasadas, F.; Jiménez, D.; Tucci, V. Tolerance analysis of a GFET transistor for aerospace and aeronautical application. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Salerno, Italy, 2–4 September 2020; Volume 1024. [Google Scholar]
- Spinelli, G.; Lamberti, P.; Tucci, V.; Pasadas, F.; Jiménez, D. Sensitivity analysis of a graphene field-effect transistors by means of design of experiments. Math. Comput. Simul. 2020, 183, 187–197. [Google Scholar] [CrossRef]
- Jmai, B.; Silva, V.; Mendes, P.M. 2D electronics based on graphene field effect transistors: Tutorial for modelling and simulation. Micromachines 2021, 12, 979. [Google Scholar] [CrossRef] [PubMed]
- Cabral, P.D.; Domingues, T.; Machado, G.; Chicharo, A.; Cerqueira, F.; Fernandes, E.; Athayde, E.; Alpuim, P.; Borme, J. Clean-room lithographical processes for the fabrication of graphene biosensors. Materials 2020, 13, 5728. [Google Scholar] [CrossRef]
- Gupta, A.; Fang, P.; Song, M.; Lin, M.R.; Wollesen, D.; Chen, K.; Hu, C. Accurate determination of ultrathin gate oxide thickness and effective polysilicon doping of CMOS devices. IEEE Electron Device Lett. 1997, 18, 580–582. [Google Scholar] [CrossRef]
- La Mura, M.; Bagolini, A.; Lamberti, P.; Savoia, A.S. Impact of the variability of microfabrication process parameters on CMUTs performance. In Proceedings of the IEEE International Ultrasonics Symposium, IUS, Las Vegas, NV, USA, 7–11 September 2020. [Google Scholar]
- Lamberti, P.; Sarto, M.S.; Tucci, V.; Tamburrano, A. Robust design of high-speed interconnects based on an MWCNT. IEEE Trans. Nanotechnol. 2012, 11, 799–807. [Google Scholar] [CrossRef]
- Lamberti, P.; Tucci, V. Impact of the variability of the process parameters on CNT-based nanointerconnects performances: A comparison between SWCNTs bundles and MWCNT. IEEE Trans. Nanotechnol. 2012, 11, 924–933. [Google Scholar] [CrossRef]
- Pasadas, F.; Jiménez, D. Large-signal model of graphene field-effect transistors-part II: Circuit performance benchmarking. IEEE Trans. Electron Devices 2016, 63, 2942–2947. [Google Scholar] [CrossRef] [Green Version]
- Pozar, D.M. Microwave Engineering, 4th ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2012; pp. 1–756. [Google Scholar]
- Fiori, G.; Iannaccone, G. Multiscale modeling for graphene-based nanoscale transistors. Proc. IEEE 2013, 101, 1653–1669. [Google Scholar] [CrossRef]
- Thiele, S.A.; Schaefer, J.A.; Schwierz, F. Modeling of graphene metal-oxide-semiconductor field-effect transistors with gapless large-area graphene channels. J. Appl. Phys. 2010, 107. [Google Scholar] [CrossRef]
- Rodriguez, S.; Vaziri, S.; Smith, A.; Fregonese, S.; Ostling, M.; Lemme, M.C.; Rusu, A. A comprehensive graphene FET model for circuit design. IEEE Trans. Electron Devices 2014, 61, 1199–1206. [Google Scholar] [CrossRef]
- Asad, M.; Bonmann, M.; Yang, X.; Vorobiev, A.; Jeppson, K.; Banszerus, L.; Otto, M.; Stampfer, C.; Neumaier, D.; Stake, J. The dependence of the high-frequency performance of graphene field-effect transistors on channel transport properties. IEEE J. Electron Devices Soc. 2020, 8, 457–464. [Google Scholar] [CrossRef]
- Fregonese, S.; Magallo, M.; Maneux, C.; Happy, H.; Zimmer, T. Scalable electrical compact modeling for graphene FET transistors. IEEE Trans. Nanotechnol. 2013, 12, 539–546. [Google Scholar] [CrossRef]
- Landauer, G.M.; Jimenez, D.; Gonzalez, J.L. An accurate and verilog-a compatible compact model for graphene field-effect transistors. IEEE Trans. Nanotechnol. 2014, 13, 895–904. [Google Scholar] [CrossRef]
- Aguirre-Morales, J.D.; Fregonese, S.; Mukherjee, C.; Wei, W.; Happy, H.; Maneux, C.; Zimmer, T. A Large-signal monolayer graphene field-effect transistor compact model for RF-circuit applications. IEEE Trans. Electron Devices 2017, 64, 4302–4309. [Google Scholar] [CrossRef]
- Han, S.J.; Reddy, D.; Carpenter, G.D.; Franklin, A.D.; Jenkins, K.A. Current saturation in submicrometer graphene transistors with thin gate dielectric: Experiment, simulation, and theory. ACS Nano 2012, 6, 5220–5226. [Google Scholar] [CrossRef]
- Parrish, K.N.; Akinwande, D. Impact of contact resistance on the transconductance and linearity of graphene transistors. Appl. Phys. Lett. 2011, 98, 183505. [Google Scholar] [CrossRef]
- Chauhan, J.; Liu, L.; Lu, Y.; Guo, J. A computational study of high-frequency behavior of graphene field-effect transistors. J. Appl. Phys. 2012, 111. [Google Scholar] [CrossRef]
Factor | Minimum | Nominal [45] | Maximum | |
---|---|---|---|---|
x1 | W (μm) | 27 | 30 | 33 |
x2 | tOX (nm) | 3.6 | 4 | 4.4 |
x3 | L (μm) | 0.45 | 0.5 | 0.55 |
Coded | −1 | 0 | −1 |
Parameter | Value [70] | Description |
---|---|---|
L | 0.5 μm | Channel length |
W | 30 μm | Channel width |
tox | 4 nm | Top oxide thickness |
εtop | 12 | Top oxide relative permittivity |
VGS0 | 0.613 V | Top gate voltage offset |
Δ | 0.095 eV | Electrostatic potential inhomogeneity due to electron-hole puddles |
ℏω | 0.12 eV | Effective energy of substrate optical phonon emission |
μ | 4500 cm2/Vs | Effective carrier mobility |
Simulated | Measured [45] | Computed | |
---|---|---|---|
fT (GHz) | 9.3 | 8.2 | 7.2 |
fMAX (GHz) | 6.1 | 6.2 | 4.0 |
x1 (W) | x2 (tOX) | x3 (L) | |
---|---|---|---|
x1 (W) | ME1 = 0.557 | IE12 = −0.166 | IE13 = −0.575 |
x2 (tOX) | ME2 = 0.549 | IE23 = −0.570 | |
x3 (L) | ME3 = −7.11 |
x1 (W) | x2 (tOX) | x3 (L) | |
---|---|---|---|
x1(W) | ME1 = 0.356 | IE12 ≈ 0 | IE13 = 0.042 |
x2(tOX) | ME2 = 0.615 | IE23 = −0.263 | |
x3(L) | ME3 = −3.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
La Mura, M.; Lamberti, P.; Tucci, V. Numerical Evaluation of the Effect of Geometric Tolerances on the High-Frequency Performance of Graphene Field-Effect Transistors. Nanomaterials 2021, 11, 3121. https://doi.org/10.3390/nano11113121
La Mura M, Lamberti P, Tucci V. Numerical Evaluation of the Effect of Geometric Tolerances on the High-Frequency Performance of Graphene Field-Effect Transistors. Nanomaterials. 2021; 11(11):3121. https://doi.org/10.3390/nano11113121
Chicago/Turabian StyleLa Mura, Monica, Patrizia Lamberti, and Vincenzo Tucci. 2021. "Numerical Evaluation of the Effect of Geometric Tolerances on the High-Frequency Performance of Graphene Field-Effect Transistors" Nanomaterials 11, no. 11: 3121. https://doi.org/10.3390/nano11113121
APA StyleLa Mura, M., Lamberti, P., & Tucci, V. (2021). Numerical Evaluation of the Effect of Geometric Tolerances on the High-Frequency Performance of Graphene Field-Effect Transistors. Nanomaterials, 11(11), 3121. https://doi.org/10.3390/nano11113121