Functionalized Magnetic Nanomaterials in Agricultural Applications
Abstract
:1. Introduction
2. Agricultural Wastewater Treatment Using Magnetic Nanomaterials
2.1. MNP-Mediated Removal of Toxic Metal Ions
2.2. MNP-Mediated Removal of Pesticides and Antibiotics
3. Magneto-Assisted Soil Restoration, Soil Fertility and Smart Plant-Treatment Delivery Systems
3.1. Magneto-Assisted Soil Restoration-Metal Ion Removal
3.2. Magneto-Assisted Soil Restoration-Removal of Organic Contaminants
3.3. Soil Fertility and Smart Treatment Delivery Systems in Plants
4. Magnetic NPs as Gene Transfection Agents in Plants
5. Biosensing
6. Magnetic NPs in Seed Priming
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Ioannou, A.; Gohari, G.; Papaphilippou, P.; Panahirad, S.; Akbari, A.; Dadpour, M.R.; Krasia-Christoforou, T.; Fotopoulos, V. Advanced nanomaterials in agriculture under a changing climate: The way to the future? Environ. Exp. Bot. 2020, 176, 104048. [Google Scholar] [CrossRef]
- Zhu, K.; Ju, Y.; Xu, J.; Yang, Z.; Gao, S.; Hou, Y. Magnetic nanomaterials: Chemical design, synthesis, and potential applications. Chem. Res. 2018, 51, 404–413. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.; Shahid, M.; Bibi, I.; Sarwar, T.; Shah, A.; Niazi, N. A Review of Environmental Contamination and Health Risk Assessment of Wastewater Use for Crop Irrigation with a Focus on Low and High-Income Countries. Environ. Res. Public Health 2018, 15, 895. [Google Scholar] [CrossRef] [Green Version]
- Lu, F.; Astruc, D. Nanomaterials for removal of toxic elements from water. Coord. Chem. Rev. 2018, 356, 147–164. [Google Scholar] [CrossRef]
- Kumari, P.; Alam, M.; Siddiqi, W.A. Usage of nanoparticles as adsorbents for wastewater treatment: An emerging trend. Sustain. Mater. Technol. 2019, 22, e00128. [Google Scholar]
- Brar, S.K.; Verma, M.; Tyagi, R.D.; Surampalli, R.Y. Engineered nanoparticles in wastewater and wastewater sludge—Evidence and impacts. Waste Manag. 2010, 30, 504–520. [Google Scholar] [CrossRef]
- Jain, K.; Patel, A.S.; Pardhi, V.P.; Flora, S.J.S. Nanotechnology in Wastewater Management: A New Paradigm Towards Wastewater Treatment. Molecules 2021, 26, 1797. [Google Scholar] [CrossRef]
- Dawn, S.S.; Vishwakarma, V. Recovery and recycle of wastewater contaminated with heavy metals using adsorbents incorporated from waste resources and nanomaterials—A review. Chemosphere 2021, 273, 129677. [Google Scholar]
- Wang, T.; Ai, S.; Zhou, Y.; Luo, Z.; Dai, C.; Yang, Y.; Zhang, J.; Huang, H.; Luo, S.; Luo, L. Adsorption of agricultural wastewater contaminated with antibiotics, pesticides and toxic metals by functionalized magnetic nanoparticles. J. Environ. Chem. Eng. 2018, 6, 6468–6478. [Google Scholar] [CrossRef]
- Ul-Islam, M.; Ullah, M.W.; Khan, S.; Manan, S.; Khattak, W.A.; Ahmad, W.; Shah, N.; Park, J.K. Current advancements of magnetic nanoparticles in adsorption and degradation of organic pollutants. Environ. Sci. Pollut. Res. 2017, 24, 12713–12722. [Google Scholar] [CrossRef]
- Ramazani, A.; Oveisi, M.; Sheikhi, M.; Gouranlou, F.; Hanifehpour, Y.; Joo, S.W.; Aghahosseini, H. A Review on the Destruction of Environmentally Hazardous Chlorinated Aromatic Compounds in the Presence (or without) of Nanophotocatalysts. Curr. Org. Chem. 2018, 22, 1554–1572. [Google Scholar] [CrossRef]
- Paris, E.C.; Malafatti, J.O.D.; Sciena, C.R.; Junior, L.F.N.; Zenatti, A.; Escote, M.T.; Moreira, A.J.; Freschi, G.P.G. Nb2O5 nanoparticles decorated with magnetic ferrites for wastewater photocatalytic remediation. Environ. Sci. Pollut. Res. 2020, 28, 23731–23741. [Google Scholar] [CrossRef]
- Paswan, S.K.; Kumar, P.; Singh, R.K.; Shukla, S.K.; Kumar, L. Spinel Ferrite Magnetic Nanoparticles–An alternative for Wastewater treatment. In Pollutants and Water Management: Resources, Stategies and Scarcity; Singh, P., Singh, R., Singh, V.K., Bhadouria, R., Eds.; John Wiley & Sons: Hoboken, NJ, USA, 2021; pp. 273–305. [Google Scholar]
- Farahbakhsh, J.; Vatanpour, V.; Ganjali, M.R.; Saeb, M.R. Magnetic nanoparticles in wastewater treatment. In Magnetic Nanoparticle-Based Hybrid Materials: Fundamentals and Applications; Ehrmann, A., Nguyen, T.A., Ahmadi, M., Farmani, A., Nguyen-Tri, P., Eds.; Woodhead Publishing: Cambridge, UK, 2021; pp. 547–589. [Google Scholar]
- Marcelo, L.R.; de Gois, J.S.; da Silva, A.A.; Cesar, D.V. Synthesis of iron-based magnetic nanocomposites and applications in adsorption processes for water treatment: A review. Environ. Chem. Lett. 2020, 19, 1229–1274. [Google Scholar] [CrossRef]
- Li, X.; Wang, C.; Zhang, J.; Liu, J.; Liu, B.; Chen, G. Preparation and application of magnetic biochar in water treatment: A critical review. Sci. Total Environ. 2020, 711, 134847. [Google Scholar] [CrossRef]
- Kaur, R.; Hasan, A.; Iqbal, N.; Alam, S.; Saini, M.K.; Raza, S.K. Synthesis and surface engineering of magnetic nanoparticles for environmental cleanup and pesticide residue analysis: A review. J. Sep. Sci. 2014, 37, 1805–1825. [Google Scholar] [CrossRef]
- Peralta, M.E.; Ocampo, S.; Funes, I.G.; Onaga Medina, F.; Parolo, M.E.; Carlos, L. Nanomaterials with Tailored Magnetic Properties as Adsorbents of Organic Pollutants from Wastewaters. Inorganics 2020, 8, 24. [Google Scholar] [CrossRef] [Green Version]
- Shah, N.; Claessyns, F.; Rimmer, S.; Balal Arain, M.; Rehan, T.; Wazwaz, A.; Ahmad, W.; Ul-Islam, M. Effective Role of Magnetic Core-Shell Nanocomposites in Removing Organic and Inorganic Wastes from Water. Recent Pat. Nanotechnol. 2016, 10, 202–212. [Google Scholar] [CrossRef] [PubMed]
- Janet Joshiba, G.; Senthil Kumar, P.; Christopher, F.C.; Govindaraj, B.B. Insights of CMNPs in water pollution control. IET Nanobiotechnol. 2019, 13, 553–559. [Google Scholar] [CrossRef]
- Fu, F.; Wang, Q. Removal of heavy metal ions from wastewaters: A review. J. Environ. Manag. 2011, 92, 407–418. [Google Scholar] [CrossRef] [PubMed]
- Carolin, C.F.; Kumar, P.S.; Saravanan, A.; Joshiba, G.J.; Naushad, M. Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. J. Environ. Chem. Eng. 2017, 5, 2782–2799. [Google Scholar] [CrossRef]
- Almomani, F.; Bhosale, R.; Khraisheh, M.; Kumar, A.; Almomani, T. Heavy metal ions removal from industrial wastewater using magnetic nanoparticles (MNP). Appl. Surf. Sci. 2020, 506, 144924. [Google Scholar] [CrossRef]
- Wadhawan, S.; Jain, A.; Nayyar, J.; Mehta, S.K. Role of nanomaterials as adsorbents in heavy metal ion removal from waste water: A review. J. Water Process. Eng. 2020, 33, 101038. [Google Scholar] [CrossRef]
- Hao, Y.-M.; Man, C.; Hu, Z.-B. Effective removal of Cu (II) ions from aqueous solution by amino-functionalized magnetic nanoparticles. J. Hazard. Mater. 2010, 184, 392–399. [Google Scholar] [CrossRef]
- Yuwei, C.; Jianlong, W. Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu(II) removal. Chem. Eng. J. 2011, 168, 286–292. [Google Scholar] [CrossRef]
- Al-Jabri, M.T.K.; Devi, M.G.; Al Abri, M. Synthesis, characterization and application of magnetic nanoparticles in the removal of copper from aqueous solution. Appl. Water Sci. 2018, 8, 223. [Google Scholar] [CrossRef] [Green Version]
- Peng, Q.; Liu, Y.; Zeng, G.; Xu, W.; Yang, C.; Zhang, J. Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution. J. Hazard. Mater. 2010, 177, 676–682. [Google Scholar] [CrossRef]
- Ojemaye, M.O.; Okoh, O.O.; Okoh, A.I. Adsorption of Cu2+ from aqueous solution by a novel material; azomethine functionalized magnetic nanoparticles. Sep. Purif. Technol. 2017, 183, 204–215. [Google Scholar] [CrossRef]
- Yi, I.-G.; Kang, J.-K.; Lee, S.-C.; Lee, C.-G.; Kim, S.-B. Synthesis of an oxidized mesoporous carbon-based magnetic composite and its application for heavy metal removal from aqueous solutions. Microporous Mesoporous Mater. 2019, 279, 45–52. [Google Scholar] [CrossRef]
- Panneerselvam, P.; Morad, N.; Tan, K.A. Magnetic nanoparticle (Fe3O4) impregnated onto tea waste for the removal of nickel(II) from aqueous solution. J. Hazard. Mater. 2011, 186, 160–168. [Google Scholar] [CrossRef]
- Gautam, R.K.; Gautam, P.K.; Banerjee, S.; Soni, S.; Singh, S.K.; Chattopadhyaya, M.C. Removal of Ni(II) by magnetic nanoparticles. J. Mol. Liq. 2015, 204, 60–69. [Google Scholar] [CrossRef]
- Singh, D.; Singh, S.K.; Atar, N.; Krishna, V. Amino acid functionalized magnetic nanoparticles for removal of Ni(II) from aqueous solution. J. Taiwan Inst. Chem. Eng. 2016, 67, 148–160. [Google Scholar] [CrossRef]
- Chen, J.; Hao, Y.; Chen, M. Rapid and efficient removal of Ni2+ from aqueous solution by the one-pot synthesized EDTA-modified magnetic nanoparticles. Environ. Sci. Pollut. Res. 2013, 21, 1671–1679. [Google Scholar] [CrossRef] [PubMed]
- Ghasemi, N.; Ghasemi, M.; Moazeni, S.; Ghasemi, P.; Alharbi, N.S.; Gupta, V.K.; Agarwal, S.; Burakova, I.V.; Tkachev, A.G. Zn (II) removal by amino-functionalized magnetic nanoparticles: Kinetics, isotherm, and thermodynamic aspects of adsorption. J. Ind. Eng. Chem. 2018, 62, 302–310. [Google Scholar] [CrossRef]
- Emadi, M.; Shams, E.; Amini, M.K. Removal of Zinc from Aqueous Solutions by Magnetite Silica Core-Shell Nanoparticles. J. Chem. 2012, 2013, 787682. [Google Scholar] [CrossRef]
- Wang, J.; Xu, W.; Chen, L.; Huang, X.; Liu, J. Preparation and evaluation of magnetic nanoparticles impregnated chitosan beads for arsenic removal from water. Chem. Eng. J. 2014, 251, 25–34. [Google Scholar] [CrossRef]
- Bangari, S.R.; Singh, A.K.; Namsani, S.; Singh, J.K.; Sinha, N. Magnetite-Coated Boron Nitride Nanosheets for the Removal of Arsenic(V) from Water. Appl. Mater. Interfaces 2019, 11, 19017–19028. [Google Scholar] [CrossRef]
- Chowdhury, S.R.; Yanful, E.K. Arsenic removal from aqueous solutions by adsorption on magnetite nanoparticles. Water Environ. J. 2010, 25, 429–437. [Google Scholar] [CrossRef]
- Singh, D.; Gautam, R.K.; Kumar, R.; Shukla, B.K.; Shankar, V.; Krishna, V. Citric acid coated magnetic nanoparticles: Synthesis, characterization and application in removal of Cd(II) ions from aqueous solution. J. Water Process. Eng. 2014, 4, 233–241. [Google Scholar] [CrossRef]
- Guyo, U.; Makawa, T.; Moyo, M.; Nharingo, T.; Nyamunda, B.C.; Mugadza, T. Application of response surface methodology for Cd(II) adsorption on maize tassel-magnetite nanohybrid adsorbent. J. Environ. Chem. Eng. 2015, 3, 2472–2483. [Google Scholar] [CrossRef]
- Bahrami, M.; Broomand Nasab, S.; Kashkooli, H.; Farrokhian Firouzi, A.; Babaei, A. Synthesis of Magnetite Nanoparticles (Fe3O4) and its Efficiency in Cadmium Removal from Aqueous Solutions. J. Water Wastewater 2013, 24, 54–62. [Google Scholar]
- Wang, S.X.; Liu, F.; Lu, J.H.; Zhang, P.; Zhou, Y.H. Adsorption kinetics of Cd (II) from aqueous solution by magnetite. Desalination Water Treat. 2011, 36, 203–209. [Google Scholar] [CrossRef]
- Ahmad Nazri, N.A.; Azis, R.S.; Mustaffa, M.S.; Shaari, A.H.; Ismail, I.; Che Man, H.; Mohd Saiden, N.; Abdullah, N.H. Magnetite Nanoparticles (MNPs) Used as Cadmium Metal Removal from the Aqueous Solution from Mill Scales Waste Sources. Sains Malays. 2020, 49, 847–858. [Google Scholar] [CrossRef]
- Nazri, N.A.A.; Azis, R.S.; Man, H.C.; Shaari, A.H.; Saiden, N.M.; Ismail, I. Equilibrium studies and dynamic behaviour of cadmium adsorption by magnetite nanoparticles extracted from mill scales waste. Desalination Water Treat. 2019, 171, 115–131. [Google Scholar] [CrossRef]
- Mola ali abasiyan, S.; Mahdavinia, G.R. Polyvinyl alcohol-based nanocomposite hydrogels containing magnetic laponite RD to remove cadmium. Environ. Sci. Pollut. Res. 2018, 25, 14977–14988. [Google Scholar] [CrossRef] [PubMed]
- Shan, C.; Ma, Z.; Tong, M.; Ni, J. Removal of Hg(II) by poly(1-vinylimidazole)-grafted Fe3O4@SiO2 magnetic nanoparticles. Water Res. 2015, 69, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Anirudhan, T.S.; Shainy, F. Effective removal of mercury(II) ions from chlor-alkali industrial wastewater using 2-mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose composite. J. Colloid Interface Sci. 2015, 456, 22–31. [Google Scholar] [CrossRef]
- Anirudhan, T.S.; Shainy, F.; Deepa, J.R. Effective removal of Cobalt(II) ions from aqueous solutions and nuclear industry wastewater using sulfhydryl and carboxyl functionalised magnetite nanocellulose composite: Batch adsorption studies. Chem. Ecol. 2018, 35, 235–255. [Google Scholar] [CrossRef]
- Adeli, M.; Yamini, Y.; Faraji, M. Removal of copper, nickel and zinc by sodium dodecyl sulphate coated magnetite nanoparticles from water and wastewater samples. Arab. J. Chem. 2017, 10, S514–S521. [Google Scholar] [CrossRef] [Green Version]
- Badruddoza, A.Z.M.; Shawon, Z.B.Z.; Rahman, M.T.; Hao, K.W.; Hidajat, K.; Uddin, M.S. Ionically modified magnetic nanomaterials for arsenic and chromium removal from water. Chem. Eng. J. 2013, 225, 607–615. [Google Scholar] [CrossRef]
- Jiryaei Sharahi, F.; Shahbazi, A. Melamine-based dendrimer amine-modified magnetic nanoparticles as an efficient Pb(II) adsorbent for wastewater treatment: Adsorption optimization by response surface methodology. Chemosphere 2017, 189, 291–300. [Google Scholar] [CrossRef]
- Jafarinejad, S.; Faraji, M.; Jafari, P.; Mokhtari-Aliabad, J. Removal of lead ions from aqueous solutions using novel-modified magnetic nanoparticles: Optimization, isotherm, and kinetics studies. Desalination Water Treat. 2017, 92, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Mahdavi, M.; Ahmad, M.B.; Haron, M.J.; Gharayebi, Y.; Shameli, K.; Nadi, B. Fabrication and Characterization of SiO2/(3-Aminopropyl)triethoxysilane-Coated Magnetite Nanoparticles for Lead(II) Removal from Aqueous Solution. J. Inorg. Organomet. Polym. Mater. 2013, 23, 599–607. [Google Scholar] [CrossRef]
- Mousavi, S.M.; Hashemi, S.A.; Amani, A.M.; Esmaeili, H.; Ghasemi, Y.; Babapoor, A.; Mojoudi, F.; Arjomand, O. Pb(II) Removal from Synthetic Wastewater Using Kombucha Scoby and Graphene Oxide/Fe3O4. Phys. Chem. Res. 2018, 6, 759–771. [Google Scholar]
- Xu, P.; Zeng, G.M.; Huang, D.L.; Yan, M.; Chen, M.; Lai, C.; Jiang, H.; Wu, H.P.; Chen, G.M.; Wan, J. Fabrication of reduced glutathione functionalized iron oxide nanoparticles for magnetic removal of Pb(II) from wastewater. J. Taiwan Inst. Chem. Eng. 2017, 71, 165–173. [Google Scholar] [CrossRef]
- Wang, J.; Guo, M.; Luo, Y.; Shao, D.; Ge, S.; Cai, L.; Xia, C.; Lam, S.S. Production of magnetic sodium alginate polyelectrolyte nanospheres for lead ions removal from wastewater. J. Environ. Manag. 2021, 289, 112506. [Google Scholar] [CrossRef] [PubMed]
- Hassan, A.M.; Wan Ibrahim, W.A.; Bakar, M.B.; Sanagi, M.M.; Sutirman, Z.A.; Nodeh, H.R.; Mokhter, M.A. New effective 3-aminopropyltrimethoxysilane functionalized magnetic sporopollenin-based silica coated graphene oxide adsorbent for removal of Pb(II) from aqueous environment. J. Environ. Manag. 2020, 253, 109658. [Google Scholar] [CrossRef]
- Fu, M.; Li, J. One-Pot Solvothermal Synthesis and Adsorption Property of Pb(II) of Superparamagnetic Monodisperse Fe3O4/Graphene Oxide Nanocomposite. Nanosci. Nanotechnol. Lett. 2014, 6, 1116–1122. [Google Scholar] [CrossRef]
- Mousavi, S.V.; Bozorgian, A.; Mokhtari, N.; Gabris, M.A.; Rashidi Nodeh, H.; Wan Ibrahim, W.A. A novel cyanopropylsilane-functionalized titanium oxide magnetic nanoparticle for the adsorption of nickel and lead ions from industrial wastewater: Equilibrium, kinetic and thermodynamic studies. Microchem. J. 2019, 145, 914–920. [Google Scholar] [CrossRef]
- Ali, I.; Peng, C.; Lin, D.; Saroj, D.P.; Naz, I.; Khan, Z.M.; Sultan, M.; Ali, M. Encapsulated green magnetic nanoparticles for the removal of toxic Pb2+ and Cd2+ from water: Development, characterization and application. J. Environ. Manag. 2019, 234, 273–289. [Google Scholar] [CrossRef]
- Melnyk, I.V.; Pogorilyi, R.P.; Zub, Y.L.; Vaclavikova, M.; Gdula, K.; Dąbrowski, A.; Seisenbaeva, G.A.; Kessler, V.G. Protection of Thiol Groups on the Surface of Magnetic Adsorbents and Their Application for Wastewater Treatment. Sci. Rep. 2018, 8, 8592. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Li, Y.; Liu, R.; Si, C.; Ni, Y. Green mussel-inspired lignin magnetic nanoparticles with high adsorptive capacity and environmental friendliness for chromium(III) removal. Int. J. Biol. Macromol. 2019, 132, 478–486. [Google Scholar] [CrossRef]
- Maponya, T.; Ramohlola, K.; Kera, N.; Modibane, K.; Maity, A.; Katata-Seru, L.; Hato, M. Influence of Magnetic Nanoparticles on Modified Polypyrrole/m-Phenylediamine for Adsorption of Cr(VI) from Aqueous Solution. Polymers 2020, 12, 679. [Google Scholar] [CrossRef] [Green Version]
- Feitoza, N.C.; Gonçalves, T.D.; Mesquita, J.J.; Menegucci, J.S.; Santos, M.-K.M.S.; Chaker, J.A.; Cunha, R.B.; Medeiros, A.M.M.; Rubim, J.C.; Sousa, M.H. Fabrication of glycine-functionalized maghemite nanoparticles for magnetic removal of copper from wastewater. J. Hazard. Mater. 2014, 264, 153–160. [Google Scholar] [CrossRef]
- Zhu, H.; Fu, Y.; Jiang, R.; Yao, J.; Xiao, L.; Zeng, G. Optimization of Copper(II) Adsorption onto Novel Magnetic Calcium Alginate/Maghemite Hydrogel Beads Using Response Surface Methodology. Ind. Eng. Chem. Res. 2014, 53, 4059–4066. [Google Scholar] [CrossRef]
- Devatha, C.P.; Shivani, S. Novel application of maghemite nanoparticles coated bacteria for the removal of cadmium from aqueous solution. J. Environ. Manag. 2020, 258, 110038. [Google Scholar] [CrossRef]
- Majidnia, Z.; Idris, A. Combination of maghemite and titanium oxide nanoparticles in polyvinyl alcohol-alginate encapsulated beads for cadmium ions removal. Korean J. Chem. Eng. 2015, 32, 1094–1100. [Google Scholar] [CrossRef]
- Hu, J.; Chen, G.; Lo, I.M.C. Removal and recovery of Cr(VI) from wastewater by maghemite nanoparticles. Water Res. 2005, 39, 4528–4536. [Google Scholar] [CrossRef]
- Jiang, W.; Pelaez, M.; Dionysiou, D.D.; Entezari, M.H.; Tsoutsou, D.; O’Shea, K. Chromium(VI) removal by maghemite nanoparticles. Chem. Eng. J. 2013, 222, 527–533. [Google Scholar] [CrossRef]
- Majidnia, Z.; Idris, A. Evaluation of cesium removal from radioactive waste water using maghemite PVA–alginate beads. Chem. Eng. J. 2015, 262, 372–382. [Google Scholar] [CrossRef]
- Panneerselvam, P.; Morad, N.; Lim, Y.L. Separation of Ni (II) Ions from Aqueous Solution onto Maghemite Nanoparticle (γ-Fe3O4) Enriched with Clay. Sep. Sci. Technol. 2013, 48, 2670–2680. [Google Scholar] [CrossRef]
- Majidnia, Z.; Idris, A.; Majid, M.; Zin, R.; Ponraj, M. Efficiency of barium removal from radioactive waste water using the combination of maghemite and titania nanoparticles in PVA and alginate beads. Appl. Radiat. Isot. 2015, 105, 105–113. [Google Scholar] [CrossRef]
- Chávez-Guajardo, A.E.; Medina-Llamas, J.C.; Maqueira, L.; Andrade, C.A.S.; Alves, K.G.B.; de Melo, C.P. Efficient removal of Cr (VI) and Cu (II) ions from aqueous media by use of polypyrrole/maghemite and polyaniline/maghemite magnetic nanocomposites. Chem. Eng. J. 2015, 281, 826–836. [Google Scholar] [CrossRef]
- Roy, A.; Bhattacharya, J. Removal of Cu(II), Zn(II) and Pb(II) from water using microwave-assisted synthesized maghemite nanotubes. Chem. Eng. J. 2012, 211-212, 493–500. [Google Scholar] [CrossRef]
- Idris, A.; Ismail, N.S.M.; Hassan, N.; Misran, E.; Ngomsik, A.-F. Synthesis of magnetic alginate beads based on maghemite nanoparticles for Pb(II) removal in aqueous solution. J. Ind. Eng. Chem. 2012, 18, 1582–1589. [Google Scholar] [CrossRef]
- Nodeh, R.H.; Shakiba, M.; Gabris, M.A.; Esmaeili Bid Hendi, M.; Shahabuddin, S.; Khanam, R. Spherical iron oxide methyltrimethoxysilane nanocomposite for the efficient removal of lead(II) ions from wastewater: Kinetic and equilibrium studies. Desalination Water Treat. 2020, 192, 297–305. [Google Scholar] [CrossRef]
- Misato, T.; Ko, K.; Yamaguchi, I. Use of Antibiotics in Agriculture. Adv. Appl. Microbiol. 1977, 21, 53–88. [Google Scholar]
- Pan, L.; Feng, X.; Cao, M.; Zhang, S.; Huang, Y.; Xu, T.; Jing, J.; Zhang, H. Determination and distribution of pesticides and antibiotics in agricultural soils from northern China. RSC Adv. 2019, 9, 15686–15693. [Google Scholar] [CrossRef] [Green Version]
- Rajmohan, K.S.; Chandrasekaran, R.; Varjani, S. A Review on Occurrence of Pesticides in Environment and Current Technologies for Their Remediation and Management. Indian J. Microbiol. 2020, 60, 125–138. [Google Scholar] [CrossRef]
- El-Said, W.A.; Fouad, D.M.; Ali, M.H.; El-Gahami, M.A. Green synthesis of magnetic mesoporous silica nanocomposite and its adsorptive performance against organochlorine pesticides. Int. J. Environ. Sci. Technol. 2017, 15, 1731–1744. [Google Scholar] [CrossRef]
- Ranjbar Bandforuzi, S.; Hadjmohammadi, M.R. Modified magnetic chitosan nanoparticles based on mixed hemimicelle of sodium dodecyl sulfate for enhanced removal and trace determination of three organophosphorus pesticides from natural waters. Anal. Chim. Acta 2019, 1078, 90–100. [Google Scholar] [CrossRef]
- Xie, H.; Xu, W. Enhanced Activation of Persulfate by Meso-CoFe2O4/SiO2 with Ultrasonic Treatment for Degradation of Chlorpyrifos. ACS Omega 2019, 4, 17177–17185. [Google Scholar] [CrossRef] [Green Version]
- Singh, J.; Sharma, S.; Aanchal; Basu, S. Synthesis of Fe2O3/TiO2 monoliths for the enhanced degradation of industrial dye and pesticide via photo-Fenton catalysis. J. Photochem. Photobiol. A Chem. 2019, 376, 32–42. [Google Scholar] [CrossRef]
- Salazar, S.; Guerra, D.; Yutronic, N.; Jara, P. Removal of Aromatic Chlorinated Pesticides from Aqueous Solution Using β-Cyclodextrin Polymers Decorated with Fe3O4 Nanoparticles. Polymers 2018, 10, 1038. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rezgui, S.; Amrane, A.; Fourcade, F.; Assadi, A.; Monser, L.; Adhoum, N. Electro-Fenton Catalyzed with Magnetic Chitosan Beads for the Removal of Chlordimeform Insecticide. Appl. Catal. B Environ. 2018, 226, 346–359. [Google Scholar] [CrossRef]
- Tian, H.; Li, J.; Shen, Q.; Wang, H.; Hao, Z.; Zou, L.; Hu, Q. Using shell-tunable mesoporous Fe3O4@HMS and magnetic separation to remove DDT from aqueous media. J. Hazard. Mater. 2009, 171, 459–464. [Google Scholar] [CrossRef]
- Sharma, R.K.; Arora, B.; Sharma, S.; Dutta, S.; Sharma, A.; Yadav, S.; Solanki, K. In situ hydroxyl radical generation using the synergism of the Co–Ni bimetallic centres of a developed nanocatalyst with potent efficiency for degrading toxic water pollutants. Mater. Chem. Front. 2020, 4, 605–620. [Google Scholar] [CrossRef]
- Yi, X.; Liu, C.; Liu, X.; Wang, P.; Zhou, Z.; Liu, D. Magnetic partially carbonized cellulose nanocrystal-based magnetic solid phase extraction for the analysis of triazine and triazole pesticides in water. Microchim. Acta 2019, 186, 825. [Google Scholar] [CrossRef]
- Rezaei, S.S.; Dehghanifard, E.; Noorisepehr, M.; Ghadirinejad, K.; Kakavandi, B.; Esfahani, A.R. Efficient clean-up of waters contaminated with diazinon pesticide using photo-decomposition of peroxymonosulfate by ZnO decorated on a magnetic core/shell structure. J. Environ. Manag. 2019, 250, 109472. [Google Scholar] [CrossRef]
- Maddah, B.; Alidadi, S.; Hasanzadeh, M. Extraction of organophosphorus pesticides by carbon-coated Fe3O4 nanoparticles through response surface experimental design. J. Sep. Sci. 2015, 39, 256–263. [Google Scholar] [CrossRef]
- Wang, X.; Wang, H.; Lu, M.; Teng, R.; Du, X. Facile synthesis of phenyl-modified magnetic graphene/mesoporous silica with hierarchical bridge-pore structure for efficient adsorption of pesticides. Mater. Chem. Phys. 2017, 198, 393–400. [Google Scholar] [CrossRef]
- Hao, L.; Wang, Y.; Wang, C.; Wu, Q.; Wang, Z. A magnetic covalent aromatic polymer as an efficient and recyclable adsorbent for phenylurea herbicides. Microchim. Acta 2019, 186, 431. [Google Scholar] [CrossRef] [PubMed]
- Belaroui, L.S.; Ouali, A.; Bengueddach, A.; Lopez Galindo, A.; Peña, A. Adsorption of linuron by an Algerian palygorskite modified with magnetic iron. Appl. Clay Sci. 2018, 164, 26–33. [Google Scholar] [CrossRef]
- Li, X.; Ma, X.; Huang, R.; Xie, X.; Guo, L.; Zhang, M. Synthesis of a molecularly imprinted polymer on mSiO2@Fe3O4 for the selective adsorption of atrazine. J. Sep. Sci. 2018, 41, 2837–2845. [Google Scholar] [CrossRef] [PubMed]
- Hajighasemkhan, A.; Taghavi, L.; Moniri, E.; Hassani, A.H.; Panahi, H.A. Adsorption kinetics and isotherms study of 2,4-dichlorophenoxyacetic acid by 3 dimensional/graphene oxide/magnetic from aquatic solutions. Int. J. Environ. Anal. Chem. 2020. [Google Scholar] [CrossRef]
- Yazdani, F.; Panahi, H.A.; Morovati, A. Modification of magnetic nanoparticles for sorption and removal of clodinafop-propargyl herbicide from aqueous solution. Desalination Water Treat. 2017, 75, 183–188. [Google Scholar] [CrossRef]
- Xue, J.; Xiang, H.; Wang, K.; Zhang, X.; Wang, S.; Wang, X.; Cao, H. The preparation of carbon-encapsulated Fe/Co nanoparticles and their novel applications as bifunctional catalysts to promote the redox reaction for p-nitrophenol. J. Mater. Sci. 2011, 47, 1737–1744. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, X.; Li, S.; Jiang, Z.; Guo, X. Magnetic solid-phase extraction based on carbon nanosphere@Fe3O4for enantioselective determination of eight triazole fungicides in water samples. Electrophoresis 2019, 40, 1306–1313. [Google Scholar] [CrossRef]
- Ma, J.; Li, S.; Wu, G.; Arabi, M.; Tan, F.; Guan, Y.; Li, J.; Chen, L. Preparation of magnetic metal-organic frameworks with high binding capacity for removal of two fungicides from aqueous environments. J. Ind. Eng. Chem. 2020, 90, 178–189. [Google Scholar] [CrossRef]
- Santiago, D.E.; Pastrana-Martinez, L.M.; Pulido-Melian, E.; Arana, J.; Faria, J.L.; Silva, A.M.T.; Gonzalez-Diaz, O.; Dona-Rodriguez, J.M. TiO2-based (Fe3O4, SiO2, reduced graphene oxide) magnetically recoverable photocatalysts for imazalil degradation in a synthetic wastewater. Environ. Sci. Pollut. Res. 2018, 25, 27724–27736. [Google Scholar] [CrossRef]
- Ghafari, B.; Moniri, E.; Panahi, H.A.; Kabrassi, A.; Najafpour, S. Efficient removal of deltamethrin from polluted aquatic media by modified iron oxide magnetic nanoparticles. Desalination Water Treat. 2017, 59, 304–311. [Google Scholar]
- Chang, Q.; Wang, W.; Regev-Yochay, G.; Lipsitch, M.; Hanage, W.P. Antibiotics in Agriculture and the Risk to Human Health: How Worried Should We Be? Evol. Appl. 2014, 8, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, M.B.; Zhou, J.L.; Ngo, H.H.; Guo, W. Adsorptive Removal of Antibiotics from Water and Wastewater: Progress and Challenges. Sci. Total Environ. 2015, 532, 112–126. [Google Scholar] [CrossRef]
- Eniola, J.O.; Kumar, R.; Barakat, M.A. Adsorptive removal of antibiotics from water over natural and modified adsorbents. Environ. Sci. Pollut. Res. 2019, 26, 34775–34788. [Google Scholar] [CrossRef] [PubMed]
- Langbehn, R.K.; Michels, C.; Soares, H.M. Antibiotics in wastewater: From its occurrence to the biological removal by environmentally conscious technologies. Environ. Pollut. 2021, 275, 116603. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.; Gupta, S.C.; Chander, Y.; Singh, A.K. Antibiotic Use in Agriculture and Its Impact on the Terrestrial Environment. Adv. Agron. 2005, 87, 1–54. [Google Scholar]
- Kraemer, S.A.; Ramachandran, A.; Perron, G.G. Antibiotic Pollution in the Environment: From Microbial Ecology to Public Policy. Microorganisms 2019, 7, 180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Liu, S.-Y.; Lv, X.-J.; Ma, R.; Zhang, Z.-Q. Assembly of a Fe–pamoate porous complex on magnetic microspheres for extraction of sulfonamide antibiotics from environmental water samples. Anal. Methods 2015, 7, 4939–4946. [Google Scholar] [CrossRef]
- Zhang, B.; Zhang, H.; Li, X.; Lei, X.; Li, C.; Yin, D.; Fan, X.; Zhang, Q. Synthesis of BSA/Fe3O4 magnetic composite microspheres for adsorption of antibiotics. Mater. Sci. Eng. 2013, 33, 4401–4408. [Google Scholar] [CrossRef]
- Xu, L.; Pan, J.; Dai, J.; Li, X.; Hang, H.; Cao, Z.; Yan, Y. Preparation of thermal-responsive magnetic molecularly imprinted polymers for selective removal of antibiotics from aqueous solution. J. Hazard. Mater. 2012, 233-234, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Tolmacheva, V.V.; Apyari, V.V.; Furletov, A.A.; Dmitrienko, S.G.; Zolotov, Y.A. Facile synthesis of magnetic hypercrosslinked polystyrene and its application in the magnetic solid-phase extraction of sulfonamides from water and milk samples before their HPLC determination. Talanta 2016, 152, 203–210. [Google Scholar] [CrossRef]
- Ma, P.; Zhou, Z.; Dai, J.; Qin, L.; Ye, X.; Chen, X.; He, J.; Xie, A.; Yan, Y.; Li, C. A biomimetic Setaria viridis-inspired imprinted nanoadsorbent: Green synthesis and application to the highly selective and fast removal of sulfamethazine. RSC Adv. 2016, 6, 9619–9630. [Google Scholar] [CrossRef]
- Kong, X.; Gao, R.; He, X.; Chen, L.; Zhang, Y. Synthesis and characterization of the core–shell magnetic molecularly imprinted polymers (Fe3O4@MIPs) adsorbents for effective extraction and determination of sulfonamides in the poultry feed. J. Chromatogr. 2012, 1245, 8–16. [Google Scholar] [CrossRef]
- Kuhn, J.; Aylaz, G.; Sari, E.; Marco, M.; Yiu, H.H.P.; Duman, M. Selective binding of antibiotics using magnetic molecular imprint polymer (MMIP) networks prepared from vinyl-functionalized magnetic nanoparticles. J. Hazard. Mater. 2020, 387, 121709. [Google Scholar] [CrossRef]
- Aydin, S.; Aydin, M.E.; Beduk, F.; Ulvi, A. Removal of antibiotics from aqueous solution by using magnetic Fe3O4/red mud-nanoparticles. Sci. Total Environ. 2019, 670, 539–546. [Google Scholar] [CrossRef]
- Farhadian, N.; Rezaeian, M.S.; Aseyednezhad, S.; Haffar, F.; Fard, S.F. Removal of tetracycline antibiotic from aqueous environments using core-shell silica magnetic nanoparticles. Desalination Water Treat. 2017, 87, 348–357. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Shi, Y.; Guo, X.; Zhao, S.; Du, J.; Jia, H.; He, L.; Du, L. Determination and removal of sulfonamides and quinolones from environmental water samples using magnetic adsorbents. J. Sep. Sci. 2016, 39, 4398–4407. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Ma, F.; Han, Y.; Zhang, X.; Yu, H. Removal of sulfonamide antibiotics by oriented immobilized laccase on Fe3O4 nanoparticles with natural mediators. J. Hazard. Mater. 2014, 279, 203–211. [Google Scholar] [CrossRef]
- Yang, G.; Li, Y.; Yang, S.; Liao, J.; Cai, X.; Gao, Q.; Fang, Y.; Peng, F.; Zhang, S. Surface oxidized nano-cobalt wrapped by nitrogen-doped carbon nanotubes for efficient purification of organic wastewater. Sep. Purif. Technol. 2021, 259, 118098. [Google Scholar] [CrossRef]
- Gu, W.; Huang, X.; Tian, Y.; Cao, M.; Zhou, L.; Zhou, Y.; Lu, J.; Lei, J.; Zhou, Y.; Wang, L.; et al. High-efficiency adsorption of tetracycline by cooperation of carbon and iron in a magnetic Fe/porous carbon hybrid with effective Fenton regeneration. Appl. Surf. Sci. 2021, 538, 147813. [Google Scholar] [CrossRef]
- Yang, H.; Zhou, J.; Yang, E.; Li, H.; Wu, S.; Yang, W.; Wang, H. Magnetic Fe3O4–N-Doped Carbon Sphere Composite for Tetracycline Degradation by Enhancing Catalytic Activity for Peroxymonosulfate: A Dominant Non-Radical Mechanism. Chemosphere 2021, 263, 128011. [Google Scholar] [CrossRef]
- Zhao, W.; Tian, Y.; Chu, X.; Cui, L.; Zhang, H.; Li, M.; Zhao, P. Preparation and characteristics of a magnetic carbon nanotube adsorbent: Its efficient adsorption and recoverable performances. Sep. Purif. Technol. 2021, 257, 117917. [Google Scholar] [CrossRef]
- Wu, J.; Zhao, H.; Chen, R.; Pham-Huy, C.; Hui, X.; He, H. Adsorptive removal of trace sulfonamide antibiotics by water-dispersible magnetic reduced graphene oxide-ferrite hybrids from wastewater. J. Chromatogr. B 2016, 1029-1030, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Bao, X.; Qiang, Z.; Chang, J.-H.; Ben, W.; Qu, J. Synthesis of carbon-coated magnetic nanocomposite (Fe3O4@C) and its application for sulfonamide antibiotics removal from water. J. Environ. Sci. 2014, 26, 962–969. [Google Scholar] [CrossRef]
- Zhu, J.; Wang, L.; Shi, Y.; Zhang, B.; Tian, Y.; Zhang, Z.; Zhao, B.; Liu, G.; Zhang, H. Magnetic porous Fe-C materials prepared by one-step pyrolyzation of NaFe(III)EDTA for adsorptive removal of sulfamethoxazole. Desalination Water Treat. 2020, 207, 321–331. [Google Scholar] [CrossRef]
- Dai, K.; Wang, F.; Jiang, W.; Chen, Y.; Mao, J.; Bao, J. Magnetic Carbon Microspheres as a Reusable Adsorbent for Sulfonamide Removal from Water. Nanoscale Res. Lett. 2017, 12, 528. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Musawi, T.J.; Mahvi, A.H.; Khatibi, A.D.; Balarak, D. Effective adsorption of ciprofloxacin antibiotic using powdered activated carbon magnetized by iron(III) oxide magnetic nanoparticles. J. Porous Mater. 2021, 28, 835–852. [Google Scholar] [CrossRef]
- Liu, D.; Li, X.; Ma, J.; Li, M.; Ren, F.; Zhou, L. Metal-organic framework modified pine needle-derived N, O-doped magnetic porous carbon embedded with Au nanoparticles for adsorption and catalytic degradation of tetracycline. J. Clean. Prod. 2021, 278, 123575. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Tang, S.; Luo, X.; Xi, J.; He, Z.; Yu, J.; Wu, F. Fabrication of porphyrin-based magnetic covalent organic framework for effective extraction and enrichment of sulfonamides. Anal. Chim. Acta 2019, 1089, 66–77. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Song, W.; Guo, M. Remediation Techniques for Heavy Metal-Contaminated Soils: Principles and Applicability. Sci. Total Environ. 2018, 633, 206–219. [Google Scholar] [CrossRef]
- Fawzy, E.M. Soil remediation using in situ immobilisation techniques. Chem. Ecol. 2008, 24, 147–156. [Google Scholar] [CrossRef]
- Yang, X.; Liu, L.; Tan, W.; Liu, C.; Dang, Z.; Qiu, G. Remediation of heavy metal contaminated soils by organic acid extraction and electrochemical adsorption. Environ. Pollut. 2020, 264, 114745. [Google Scholar] [CrossRef]
- Leštan, D.; Luo, C.; Li, X. The Use of Chelating Agents in the Remediation of Metal-Contaminated Soils: A Review. Environ. Pollut. 2008, 153, 3–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mao, X.; Jiang, R.; Xiao, W.; Yu, J. Use of Surfactants for the Remediation of Contaminated Soils: A Review. J. Hazard. Mater. 2015, 285, 419–435. [Google Scholar] [CrossRef]
- Yao, Z.; Li, J.; Xie, H.; Yu, C. Review on Remediation Technologies of Soil Contaminated by Heavy Metals. Procedia Environ. Sci. 2012, 16, 722–729. [Google Scholar] [CrossRef] [Green Version]
- Dhaliwal, S.S.; Singh, J.; Taneja, P.K.; Mandal, A. Remediation Techniques for Removal of Heavy Metals from the Soil Contaminated through Different Sources: A Review. Environ. Sci. Pollut. Res. 2019, 27, 1319–1333. [Google Scholar] [CrossRef]
- Palansooriya, K.N.; Shaheen, S.M.; Chen, S.S.; Tsang, D.C.W.; Hashimoto, Y.; Hou, D.; Bolan, N.S.; Rinklebe, J.; Ok, Y.S. Soil Amendments for Immobilization of Potentially Toxic Elements in Contaminated Soils: A Critical Review. Environ. Int. 2020, 134, 105046. [Google Scholar] [CrossRef]
- Miretzky, P.; Fernandez-Cirelli, A. Phosphates for Pb Immobilization in Soils: A Review. Environ. Chem. Lett. 2008, 6, 121–133. [Google Scholar] [CrossRef]
- Lwin, C.S.; Seo, B.H.; Kim, H.U.; Owens, G.; Kim, K.R. Application of soil amendments to contaminated soils for heavy metal immobilization and improved soil quality—A critical review. Soil Sci. Plant. Nutr. 2018, 64, 156–167. [Google Scholar] [CrossRef]
- Guo, G.; Zhou, Q.; Ma, L.Q. Availability and Assessment of Fixing Additives for the In Situ Remediation of Heavy Metal Contaminated Soils: A Review. Environ. Monit. Assess. 2006, 116, 513–528. [Google Scholar] [CrossRef]
- Koptsik, G.N. Modern Approaches to Remediation of Heavy Metal Polluted Soils: A Review. Eurasian Soil Sci. 2014, 47, 707–722. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, X.; Xu, Y.; Qin, X.; Huang, Q.; Wang, L.; Sun, Y. Remediation of Heavy Metal-Polluted Agricultural Soils Using Clay Minerals: A Review. Pedosphere 2017, 27, 193–204. [Google Scholar] [CrossRef]
- Claudio, C.; Iorio, E.; Liu, Q.; Barron, V. Iron Oxide Nanoparticles in Soils: Environmental and Agronomic Importance. J. Nanosci. Nanotechnol. 2017, 17, 4449–4460. [Google Scholar] [CrossRef]
- Liu, W.; Tian, S.; Zhao, X.; Xie, W.; Gong, Y.; Zhao, D. Application of Stabilized Nanoparticles for In Situ Remediation of Metal-Contaminated Soil and Groundwater: A Critical Review. Curr. Pollut. Rep. 2015, 1, 280–291. [Google Scholar] [CrossRef] [Green Version]
- Phenrat, T.; Hongkumnerd, P.; Suk-in, J.; Khum-in, V. Nanoscale zerovalent iron particles for magnet-assisted soil washing of cadmium-contaminated paddy soil: Proof of concept. Environ. Chem. 2019, 16, 446. [Google Scholar] [CrossRef]
- Baragaño, D.; Alonso, J.; Gallego, J.R.; Lobo, M.C.; Gil-Díaz, M. Magnetite nanoparticles for the remediation of soils co-contaminated with As and PAHs. Chem. Eng. J. 2020, 399, 125809. [Google Scholar] [CrossRef]
- Tessier, A.; Campbell, P.G.C.; Bisson, M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Anal. Chem. 1979, 51, 844–851. [Google Scholar]
- Mallampati, S.R.; Mitoma, Y.; Okuda, T.; Sakita, S.; Kakeda, M. Total immobilization of soil heavy metals with nano-Fe/Ca/CaO dispersion mixtures. Environ. Chem. Lett. 2012, 11, 119–125. [Google Scholar] [CrossRef]
- Nie, X.; Zhang, Z.; Xia, X.; Yang, L.; Fan, X.; Zheng, M. Magnetic removal/immobilization of cadmium and zinc in contaminated soils using a magnetic microparticle solid chelator and its effect on rice cultivation. J. Soil Sediments 2020, 20, 2043–2052. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Wen, T.; Liu, X.; Wang, Y.; Yang, H.; Sun, J.; Feng, J.; Dong, S.; Sun, J. Highly effective remediation of Pb(II) and Hg(II) contaminated wastewater and soil by flower-like magnetic MoS2 nanohybrid. Sci. Total Environ. 2020, 699, 134341. [Google Scholar] [CrossRef]
- Trellu, C.; Mousset, E.; Pechaud, Y.; Huguenot, D.; van Hullebusch, E.D.; Esposito, G.; Oturan, M.A. Removal of hydrophobic organic pollutants from soil washing/flushing solutions: A critical review. J. Hazard. Mater. 2016, 306, 149–174. [Google Scholar] [CrossRef]
- Asgharzadeh, F.; Moradi, M.; Jonidi Jafari, A.; Esrafili, A.; Tahergorabi, M.; Rezaei kalantari, R. Enhanced Electro Kinetic- Pseudo-Fenton Degradation of Pyrene-Contaminated Soil Using Fe3O4 Magnetic Nanoparticles: A Data Set. Data Brief. 2019, 24, 103483. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wang, R.; Chen, Z. Metal-organic framework-1210(zirconium/cuprum) modified magnetic nanoparticles for solid phase extraction of benzophenones in soil samples. J. Chromatogr. A 2019, 1607, 460403. [Google Scholar] [CrossRef] [PubMed]
- Ditta, A.; Mehmood, S.; Imtiaz, M.; Rizwan, M.S.; Islam, I. Soil fertility and nutrient management with the help of nanotechnology. Nanomater. Agric. For. Appl. 2020, 273–287. [Google Scholar] [CrossRef]
- Yoon, H.; Kang, Y.-G.; Chang, Y.-S.; Kim, J.-H. Effects of Zerovalent Iron Nanoparticles on Photosynthesis and Biochemical Adaptation of Soil-Grown Arabidopsis Thaliana. Nanomaterials 2019, 9, 1543. [Google Scholar] [CrossRef] [Green Version]
- Shahrekizad, M.; Gholamalizadeh, A.A.; Mir, N. EDTA-Coated Fe3O4 Nanoparticles: A Novel Biocompatible Fertilizer for Improving Agronomic Traits of Sunflower (Helianthus annuus). J. Nanostruct. 2015, 5, 117–127. [Google Scholar]
- Rai, S.K.; Mukherjee, A.K. Optimization for production of liquid nitrogen fertilizer from the degradation of chicken feather by iron-oxide (Fe3O4) magnetic nanoparticles coupled β-keratinase. Biocatal. Agric. Biotechnol. 2015, 4, 632–644. [Google Scholar] [CrossRef]
- Tombuloglu, H.; Slimani, Y.; Tombuloglu, G.; Almessiere, M.; Sozeri, H.; Demir-Korkmaz, A.; Al Shammari, T.M.; Baykal, A.; Ercan, I.; Hakeem, K.R. Impact of calcium and magnesium substituted strontium nano-hexaferrite on mineral uptake, magnetic character, and physiology of barley (Hordeum vulgare L.). Ecotoxicol. Environ. Saf. 2019, 186, 109751. [Google Scholar] [CrossRef]
- Ju, M.; Navarreto-Lugo, M.; Wickramasinghe, S.; Milbrandt, N.B.; McWhorter, A.; Samia, A.C.S. Exploring the chelation-based plant strategy for iron oxide nanoparticle uptake in garden cress (Lepidium sativum) using magnetic particle spectrometry. Nanoscale 2019, 11, 18582–18594. [Google Scholar] [CrossRef]
- González-Melendi, P.; Fernández-Pacheco, R.; Coronado, M.; Corredor, E.; Testillano, P.; Risueño, M.; Marquina, C.; Ibarra, M.; Rubiales, D.; Pérez-de-Luque, A. Nanoparticles as Smart Treatment-delivery Systems in Plants: Assessment of Different Techniques of Microscopy for their Visualization in Plant Tissues. Ann. Bot. 2008, 101, 187–195. [Google Scholar] [CrossRef]
- Ditta, A. How Helpful Is Nanotechnology in Agriculture? Adv. Nat. Sci. Nanosci. Nanotechnol. 2012, 3, 033002. [Google Scholar] [CrossRef]
- Cardoso, V.; Francesko, A.; Ribeiro, C.; Bañobre-López, M.; Martins, P.; Lanceros-Mendez, S. Advances in magnetic nanoparticles for biomedical applications. Adv. Healthc. Mater. 2018, 7, 1700845. [Google Scholar] [CrossRef]
- Konate, A.; Wang, Y.; He, X.; Adeel, M.; Zhang, P.; Ma, Y.; Ding, Y.; Zhang, J.; Yang, J.; Kizito, S.; et al. Comparative effects of nano and bulk-Fe3O4 on the growth of cucumber (Cucumis sativus). Ecotoxicol. Environ. Saf. 2018, 165, 547–554. [Google Scholar] [CrossRef]
- Alkhatib, R.; Alkhatib, B.; Abdo, N.; AL-Eitan, L.; Creamer, R. Physio-biochemical and ultrastructural impact of (Fe3O4) nanoparticles on tobacco. BMC Plant. Biol. 2019, 19, 253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.; Zhang, P.; Adeel, M.; Guo, Z.; Chetwynd, A.; Ma, C.; Bai, T.; Hao, Y.; Rui, Y. Physiological impacts of zero valent iron, Fe3O4 and Fe2O3 nanoparticles in rice plants and their potential as Fe fertilizers. Environ. Pollut. 2021, 269, 116134. [Google Scholar] [CrossRef] [PubMed]
- Rui, M.; Ma, C.; Hao, Y.; Guo, J.; Rui, Y.; Tang, X.; Zhao, Q.; Fan, X.; Zhang, Z.; Hou, T.; et al. Iron oxide nanoparticles as a potential iron fertilizer for peanut (Arachis hypogaea). Front. Plant. Sci. 2016, 7, 815. [Google Scholar] [CrossRef] [Green Version]
- Kumari, S.; Khan, S. Effect of Fe3O4 NPs application on fluoride (F) accumulation efficiency of Prosopis juliflora. Ecotoxicol. Environ. Saf. 2018, 166, 419–426. [Google Scholar] [CrossRef]
- Briat, J.; Curie, C.; Gaymard, F. Iron Utilization and Metabolism in Plants. Curr. Opin. Plant. Biol. 2007, 10, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Shankramma, K.; Yallappa, S.; Shivanna, M.; Manjanna, J. Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl. Nanosci. 2015, 6, 983–990. [Google Scholar] [CrossRef] [Green Version]
- Duran, N.; Medina-Llamas, M.; Cassanji, J.; de Lima, R.; de Almeida, E.; Macedo, W.; Mattia, D.; Pereira de Carvalho, H. Bean Seedling Growth Enhancement Using Magnetite Nanoparticles. J. Agric. Food Chem. 2018, 66, 5746–5755. [Google Scholar] [CrossRef]
- Pariona, N.; Martínez, A.; Hernandez-Flores, H.; Clark-Tapia, R. Effect of magnetite nanoparticles on the germination and early growth of Quercus macdougallii. Sci. Total Environ. 2017, 575, 869–875. [Google Scholar] [CrossRef] [PubMed]
- Pariona, N.; Martinez, A.; Hdz-García, H.; Cruz, L.; Hernandez-Valdes, A. Effects of hematite and ferrihydrite nanoparticles on germination and growth of maize seedlings. Saudi J. Biol. Sci. 2017, 24, 1547–1554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleem, I.; Maqsood, M.; Rehman, M.; Aziz, T.; Bhatti, I.; Ali, S. Potassium ferrite nanoparticles on DAP to formulate slow release fertilizer with auxiliary nutrients. Ecotoxicol. Environ. Saf. 2021, 215, 112148. [Google Scholar] [CrossRef] [PubMed]
- de França Bettencourt, G.; Degenhardt, J.; Zevallos Torres, L.; de Andrade Tanobe, V.; Soccol, C. Green biosynthesis of single and bimetallic nanoparticles of iron and manganese using bacterial auxin complex to act as plant bio-fertilizer. Biocatal. Agric. Biotechnol. 2020, 30, 101822. [Google Scholar] [CrossRef]
- Vochita, G.; Creanga, D.; Focanici-Ciurlica, E. Magnetic Nanoparticle Genetic Impact on Root Tip Cells of Sunflower Seedlings. Water Air Soil Pollut. 2011, 223, 2541–2549. [Google Scholar] [CrossRef]
- Tombuloglu, H.; Slimani, Y.; Tombuloglu, G.; Alshammari, T.; Almessiere, M.; Korkmaz, A.; Baykal, A.; Samia, A. Engineered magnetic nanoparticles enhance chlorophyll content and growth of barley through the induction of photosystem genes. Environ. Sci. Pollut. Res. 2020, 27, 34311–34321. [Google Scholar] [CrossRef] [PubMed]
- Iannone, M.; Groppa, M.; Zawoznik, M.; Coral, D.; Fernández van Raap, M.; Benavides, M. Magnetite nanoparticles coated with citric acid are not phytotoxic and stimulate soybean and alfalfa growth. Ecotoxicol. Environ. Saf. 2021, 211, 111942. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, A.; Nangia, A.; Prasad, M. Cadmium and sodium adsorption properties of magnetite nanoparticles synthesized from Hevea brasiliensis Muell. Arg. bark: Relevance in amelioration of metal stress in rice. J. Hazard. Mater. 2019, 371, 261–272. [Google Scholar] [CrossRef]
- Li, T.; Lü, S.; Wang, Z.; Huang, M.; Yan, J.; Liu, M. Lignin-based nanoparticles for recovery and separation of phosphate and reused as renewable magnetic fertilizers. Sci. Total Environ. 2021, 765, 142745. [Google Scholar] [CrossRef]
- Tomke, P.; Rathod, V. Facile fabrication of silver on magnetic nanocomposite (Fe3O4@Chitosan–AgNP nanocomposite) for catalytic reduction of anthropogenic pollutant and agricultural pathogens. Int. J. Biol. Macromol. 2020, 149, 989–999. [Google Scholar] [CrossRef]
- Thakur, A.; Sharma, N.; Bhatti, M.; Sharma, M.; Trukhanov, A.; Trukhanov, S.; Panina, L.; Astapovich, K.; Thakur, P. Synthesis of Barium Ferrite Nanoparticles Using Rhizome Extract of Acorus Calamus: Characterization and Its Efficacy against Different Plant Phytopathogenic Fungi. Nano-Struct. Nano-Objects 2020, 24, 100599. [Google Scholar] [CrossRef]
- Cai, L.; Cai, L.; Jia, H.; Liu, C.; Wang, D.; Sun, X. Foliar exposure of Fe3O4 nanoparticles on Nicotiana Benthamiana: Evidence for nanoparticles uptake, plant growth promoter and defense response elicitor against plant virus. J. Hazard. Mater. 2020, 393, 122415. [Google Scholar] [CrossRef]
- Hao, Y.; Yuan, W.; Ma, C.; White, J.; Zhang, Z.; Adeel, M.; Zhou, T.; Rui, Y.; Xing, B. Engineered nanomaterials suppress Turnip Mosaic Virus infection in tobacco (Nicotiana benthamiana). Environ. Sci. Nano 2018, 5, 1685–1693. [Google Scholar] [CrossRef]
- Hao, Y.; Fang, P.; Ma, C.; White, J.C.; Xiang, Z.; Wang, H.; Zhang, Z.; Rui, Y.; Xing, B. Engineered nanomaterials inhibit Podosphaera pannosa infection on rose leaves by regulating phytohormones. Environ. Res. 2019, 170, 1–6. [Google Scholar] [CrossRef]
- Van Nhan, L.; Ma, C.; Rui, Y.; Cao, W.; Deng, Y.; Liu, L.; Xing, B. The effects of Fe2O3 nanoparticles on physiology and insecticide activity in non-transgenic and Bt-transgenic Cotton. Front. Plant. Sci. 2016, 6, 1263. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, S.; Minchin, T.; Kimber, S.; van Zwieten, L.; Gilbert, J.; Munroe, P.; Joseph, S.; Thomas, T. Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers. Agric. Ecosyst. Environ. 2014, 191, 73–82. [Google Scholar] [CrossRef]
- Van Zwieten, L.; Kimber, S.; Morris, S.; Chan, K.Y.; Downie, A.; Rust, J.; Joseph, S.; Cowie, S. Effects of biochar from slow pyrolysis of papermill waste on agronomic performance and soil fertility. Plant. Soil 2010, 327, 235–246. [Google Scholar] [CrossRef]
- Rawat, J.; Saxena, J.; Sanwal, P. Biochar: A Sustainable Approach for Improving Plant Growth and Soil Properties. In Biochar—An Imperative Amendment for Soil and the Environment; Abrol, V., Sharma, P., Eds.; IntechOpen: London, UK, 2019. [Google Scholar]
- Kandel, A.; Dahal, S.; Mahatara, S. A review on biochar as a potential soil fertility enhancer to agriculture. Arch. Agric. Environ. Sci. 2021, 6, 108–113. [Google Scholar] [CrossRef]
- Chen, X.C.; Chen, G.C.; Chen, L.G.; Chen, Y.X.; Lehmann, J.; McBride, M.B.; Hay, A.G. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresour. Technol. 2011, 102, 8877–8884. [Google Scholar] [CrossRef]
- Joseph, S.; Graber, E.R.; Chia, C.; Munroe, P.; Donne, S.; Thomas, T.; Nielsen, S.; Marjo, C.; Rutlidge, H.; Pan, G.X.; et al. Shifting Paradigms on Biochar: Micro/Nano-Structures and Soluble Components Are Responsible for Its Plant-Growth Promoting Ability. Carbon Manag. 2013, 4, 323–343. [Google Scholar] [CrossRef] [Green Version]
- Archanjo, B.S.; Araujo, J.R.; Silva, A.M.; Capaz, R.B.; Falcao, N.P.S.; Jorio, A.; Achete, C.A. Chemical analysis and molecular models for calcium-oxygen-carbon interactions in black carbon found in fertile Amazonian Anthrosoils. Environ. Sci. Technol. 2014, 48, 7445–7452. [Google Scholar] [CrossRef]
- Chia, C.H.; Singh, B.P.; Joseph, S.; Graber, E.R.; Munroe, P. Characterization of an Enriched Biochar. J. Anal. Appl. Pyrolysis 2014, 108, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Joseph, S.; Anawar, H.; Storer, P.; Blackwell, P.; Chia, C.; Lin, Y.; Munroe, P.; Donne, S.; Horvat, J.; Wang, J.; et al. Effects of Enriched Biochars Containing Magnetic Iron Nanoparticles on Mycorrhizal Colonisation, Plant Growth, Nutrient Uptake and Soil Quality Improvement. Pedosphere 2015, 25, 749–760. [Google Scholar] [CrossRef]
- Jhansi Rani, S.; Usha, R. Transgenic plants: Types, Benefits, Public Concerns and Future. J. Pharm. Res. 2013, 6, 879–883. [Google Scholar] [CrossRef]
- Zhao, X.; Meng, Z.; Wang, Y.; Chen, W.; Sun, C.; Cui, B.; Cui, J.; Yu, M.; Zeng, Z.; Guo, S.; et al. Pollen magnetofection for genetic modification with magnetic nanoparticles as gene carriers. Nat. Plants 2017, 3, 956–964. [Google Scholar] [CrossRef]
- Low, L.; Yang, S.; Kok, D.; Ong-Abdullah, J.; Tan, N.; Lai, K. Transgenic Plants: Gene Constructs, Vector and Transformation Method. In New Visions in Plant Science; Çelik, Ö., Ed.; IntechOpen: London, UK, 2018. [Google Scholar]
- Dobson, J. Gene Therapy Progress and Prospects: Magnetic Nanoparticle-Based Gene Delivery. Gene Ther. 2006, 13, 283–287. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Uchiyama, S. Polymers for Biosensor Construction. In State of the Art in Biosensors—General Aspects; Rinken, T., Ed.; IntechOpen: London, UK, 2013; pp. 67–86. [Google Scholar]
- Velasco-Garcia, M.N.; Mottram, T. Biosensor Technology Addressing Agricultural Problems. Biosyst. Eng. 2003, 84, 1–12. [Google Scholar] [CrossRef]
- Lu, Y.; Yang, Q.; Wu, J. Recent advances in biosensor-integrated enrichment methods for preconcentrating and detecting the low-abundant analytes in agriculture and food samples. TrAC Trends Anal. Chem. 2020, 128, 115914. [Google Scholar] [CrossRef]
- Rai, V.; Acharya, S.; Dey, N. Implications of Nanobiosensors in Agriculture. J. Biomater. Nanobiotechnol. 2012, 3, 315–324. [Google Scholar] [CrossRef] [Green Version]
- Rigi, K.; Sheikhpour, S.; Keshtehgar, A. Use of Biosensors in Agriculture. Int. J. Farming Allied Sci. 2013, 2, 1121–1123. [Google Scholar]
- Mufamadi, M.S.; Sekhejane, P.R. Nanomaterial-Based Biosensors in Agriculture Application and Accessibility in Rural Smallholding Farms: Food Security. In Nanotechnology; Prasad, R., Kumar, M., Kumar, V., Eds.; Springer: Singapore, 2017. [Google Scholar]
- Griesche, C.; Baeumner, A.J. Biosensors to support sustainable agriculture and food safety. TrAC Trends Anal. Chem. 2020, 128, 115906. [Google Scholar] [CrossRef]
- Koedrith, P.; Thasiphu, T.; Tuitemwong, K.; Boonprasert, R.; Tuitemwong, P. Recent Advances in Potential Nanoparticles and Nanotechnology for Sensing Food-Borne Pathogens and Their Toxins in Foods and Crops: Current Technologies and Limitations. Sens. Mater. 2014, 26, 711–736. [Google Scholar]
- Wang, L.; Ma, W.; Xu, L.; Chen, W.; Zhu, Y.; Xu, C.; Kotov, N.A. Nanoparticle-based environmental sensors. Mater. Sci. Eng. R Rep. 2010, 70, 265–274. [Google Scholar] [CrossRef]
- Xin, X.; Judy, J.D.; Sumerlin, B.B.; He, Z. Nano-Enabled Agriculture: From Nanoparticles to Smart Nanodelivery Systems. Environ. Chem. 2020, 17, 413. [Google Scholar] [CrossRef]
- Haun, J.B.; Yoon, T.-J.; Lee, H.; Weissleder, R. Magnetic nanoparticle biosensors. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 291–304. [Google Scholar] [CrossRef]
- Magnetic Nanostructures: Environmental and Agricultural Applications; Abd-Elsalam, K.A.; Mohamed, A.; Mohamed, M.A.; Prasad, R. (Eds.) Springer Nature: Cham, Switzerland, 2019. [Google Scholar]
- Wang, W.; Han, Z.; Liang, P.; Guo, D.; Xiang, Y.; Tian, M.; Song, Z.; Zhao, H. Co3O4/Pan Magnetic Nanoparticle-Modified Electrochemical Immunosensor for Chlorpyrifos. Dig. J. Nanomater. Biostruct. 2017, 12, 1–9. [Google Scholar]
- Mu, X.-H.; Liu, H.-F.; Tong, Z.-Y.; Du, B.; Liu, S.; Liu, B.; Liu, Z.-W.; Gao, C.; Wang, J.; Dong, H. A new rapid detection method for ricin based on tunneling magnetoresistance biosensor. Sens. Actuators B Chem. 2019, 284, 638–649. [Google Scholar] [CrossRef]
- Cao, X.; Xia, Z.; Yan, W.; He, S.; Xu, X.; Wei, Z.; Ye, Y.; Zheng, H. Colorimetric biosensing of nopaline synthase terminator using Fe3O4@Au and hemin-functionalized reduced graphene oxide. Anal. Biochem. 2020, 602, 113798. [Google Scholar] [CrossRef]
- Inamuddin; Kanchi, S.; Kashmery, H.A. Electrochemical Biosensor for the Detection of Amygdalin in Apple Seeds with a Hybrid of f-MWCNTs/CoFe2O4 Nanocomposite. Curr. Anal. Chem. 2020, 16, 660–668. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, L. Constructed ILs coated porous magnetic nickel cobaltate hexagonal nanoplates sensing materials for the simultaneous detection of cumulative toxic metals. J. Hazard. Mater. 2017, 333, 23–31. [Google Scholar] [CrossRef]
- Kim, K.T.; Yoon, S.A.; Ahn, J.; Choi, Y.; Lee, M.H.; Jung, J.H.; Park, J. Synthesis of fluorescent naphthalimide-functionalized Fe3O4 nanoparticles and their application for the selective detection of Zn2+ present in contaminated soil. Sens. Actuators B Chem. 2017, 243, 1034–1041. [Google Scholar] [CrossRef]
- Du, J.; Jing, C. Preparation of Thiol Modified Fe3O4@Ag Magnetic SERS Probe for PAHs Detection and Identification. J. Phys. Chem. C 2011, 115, 17829–17835. [Google Scholar] [CrossRef]
- Zamora-Galvez, A.; Ait-Lahcen, A.; Mercante, L.A.; Morales-Narvaes, E.; Amine, A.; Mercoci, A. Molecularly Imprinted Polymer-Decorated Magnetite Nanoparticles for Selective Sulfonamide Detection. Anal. Chem. 2016, 88, 3578–3584. [Google Scholar] [CrossRef]
- Kumar, S.; Karfa, P.; Patra, S.; Madhuri, R.; Sharma, P.K. Molecularly imprinted star polymer-modified superparamagnetic iron oxide nanoparticle for trace level sensing and separation of mancozeb. RSC Adv. 2016, 6, 36751–36760. [Google Scholar] [CrossRef]
- Jisha, K.C.; Vijayakumari, K.; Puthur, J.T. Seed Priming for Abiotic Stress Tolerance: An Overview. Acta Physiol. Plant. 2013, 35, 1381–1396. [Google Scholar] [CrossRef]
- Conrath, U. Molecular Aspects of Defense Priming. Trends Plant. Sci. 2011, 16, 524–531. [Google Scholar] [CrossRef]
- Dutta, P. Seed Priming: New Vistas and Contemporary Perspectives. In Advances in Seed Priming; Rakshit, A., Singh, H.B., Eds.; Springer: Singapore, 2018; pp. 3–22. [Google Scholar]
- Siddique, A.; Bose, B. Nitrate-hardened seeds increase germination, amylase activity and proline content in wheat seedlings at low temperature. Physiol. Mol. Biol. Plants 2007, 13, 199–207. [Google Scholar]
- Paparella, S.; Araújo, S.S.; Rossi, G.; Wijayasinghe, M.; Carbonera, D.; Balestrazzi, A. Seed Priming: State of the Art and New Perspectives. Plant Cell Rep. 2015, 34, 1281–1293. [Google Scholar] [CrossRef]
- Marthandan, V.; Geetha, R.; Kumutha, K.; Renganathan, V.G.; Karthikeyan, A.; Ramalingam, J. Seed Priming: A Feasible Strategy to Enhance Drought Tolerance in Crop Plants. Int. J. Mol. Sci. 2020, 21, 8258. [Google Scholar] [CrossRef]
- Shuai, H.; Meng, Y.; Luo, X.; Chen, F.; Qi, Y.; Yang, W.; Shu, K. The Roles of Auxin in Seed Dormancy and Germination. Yi Chuan Hered. 2016, 38, 314–322. [Google Scholar]
- Bourioug, M.; Ezzaza, K.; Bouabid, R.; Alaoui-Mhamdi, M.; Bungau, S.; Bourgeade, P.; Alaoui-Sossé, L.; Alaoui-Sossé, B.; Aleya, L. Influence of Hydro- and Osmo-Priming on Sunflower Seeds to Break Dormancy and Improve Crop Performance under Water Stress. Environ. Sci. Pollut. Res. 2020, 27, 13215–13226. [Google Scholar] [CrossRef]
- Hussain, S.; Yin, H.; Peng, S.; Khan, F.A.; Khan, F.; Sameeullah, M.; Hussain, H.A.; Huang, J.; Cui, K.; Nie, L. Comparative transcriptional profiling of primed and non-primed rice seedlings under submergence stress. Front. Plant Sci. 2016, 7, 1125. [Google Scholar] [CrossRef] [Green Version]
- Lutts, S.; Benincasa, P.; Wojtyla, L.; Kubala, S.; Pace, R.; Lechowska, K.; Quinet, M.; Garnczarska, M. Seed Priming: New Comprehensive Approaches for an Old Empirical Technique. In New Challenges in Seed Biology—Basic and Translational Research Driving Seed Technology; IntechOpen: London, UK, 2016. [Google Scholar]
- Ghassemi-Golezani, K.; Hosseinzadeh-Mahootchy, A.; Zehtab-Salmasi, S.; Tourchi, M. Improving Field Performance of Aged Chickpea Seeds by Hydro-priming under water stress. Int. J. Plant Anim. Environ. Sci. 2012, 2, 168–176. [Google Scholar]
- Mirmazloum, I.; Kiss, A.; Erdélyi, É.; Ladányi, M.; Németh, É.Z.; Radácsi, P. The Effect of Osmopriming on Seed Germination and Early Seedling Characteristics of Carum carvi L. Agriculture 2020, 10, 94. [Google Scholar] [CrossRef] [Green Version]
- Shu, K.; Liu, X.D.; Xie, Q.; He, Z.H. Two Faces of One Seed: Hormonal Regulation of Dormancy and Germination. Mol. Plant 2016, 9, 34–45. [Google Scholar] [CrossRef] [Green Version]
- McDonald, M.B. Seed Priming. In Seed Technology and its Biological Basis; Black, M., Bewley, J.D., Eds.; Sheffield Academic Press: Sheffield, UK, 2000; pp. 287–325. [Google Scholar]
- Kasote, D.M.; Lee, J.H.J.; Jayaprakasha, G.K.; Patil, B.S. Seed Priming with Iron Oxide Nanoparticles Modulate Antioxidant. Potential and Defense-Linked Hormones in Watermelon Seedlings. ACS Sustain. Chem. Eng. 2019, 7, 5142–5151. [Google Scholar] [CrossRef]
- Acharya, P.; Jayaprakasha, G.K.; Crosby, K.M.; Jifon, J.L.; Patil, B.S. Green-synthesized nanoparticles enhanced seedling growth, yield, and quality of onion (Allium cepa L.). ACS Sustain. Chem. Eng. 2019, 7, 14580–14590. [Google Scholar] [CrossRef]
- Wang, X.; Chi, N.; Tang, X. Preparation of estradiolchitosan nanoparticles for improving nasal absorption and brain targeting. Eur. J. Pharm. Biopharm. 2008, 70, 735–740. [Google Scholar] [CrossRef]
- Mahakham, W.; Sarmah, A.K.; Maensiri, S.; Theerakulpisut, P. Nanopriming technology for enhancing germination and starch metabolism of aged rice seeds using phytosynthesized silver nanoparticles. Sci. Rep. 2017, 7, 8263. [Google Scholar] [CrossRef]
- Mohammad, H.G.; Mohammad, J.M.; Mohammad, R.D.; Pieter, S.; Morteza, M. Effects of magnetite nanoparticles on soybean chlorophyll. Environ. Sci. Technol. 2013, 47, 10645–10652. [Google Scholar]
- Maswada, H.F.; Djanaguiraman, M.; Prasad, P.V.V. Seed Treatment with Nano-Iron (III) Oxide Enhances Germination, Seeding Growth and Salinity Tolerance of Sorghum. J. Agron. Crop. Sci. 2018, 204, 577–587. [Google Scholar] [CrossRef]
- Passam, H.C.; Karapanos, I.C.; Bebeli, P.J.; Savvas, D. A review of recent research on tomato nutrition, breeding and post-harvest technology with reference to fruit quality. Eur. J. Plant. Sci. Biotechnol. 2007, 1, 1–21. [Google Scholar]
- Chen, Y.; Wang, D.; Zhu, X.; Zheng, X.; Feng, L. Long-term effects of copper nanoparticles on wastewater biological nutrient removal and N2O generation in the activated sludge process. Environ. Sci. Technol. 2012, 46, 12452–12458. [Google Scholar] [CrossRef]
- Singh, A.; Singh, N.B.; Hussain, I.; Singh, H.; Yadav, V. Synthesis and characterization of copper oxide nanoparticles and its impact on germination of Vigna radiata (L.) R. Wilczek. Trop. Plant. Res. 2017, 4, 246–253. [Google Scholar] [CrossRef]
- Yasmeen, F.; Raja, N.I.; Razzaq, A.; Komatsu, S. Proteomic and physiological analyses of wheat seeds exposed to copper and iron nanoparticles. Biochim. Biophys. Acta Proteins Proteom. 2017, 1865, 28–42. [Google Scholar] [CrossRef]
- Chen, Y.-C.; Huang, X.-C.; Luo, Y.-L.; Chang, Y.-C.; Hsieh, Y.-Z.; Hsu, H.-Y. Non-metallic nanomaterials in cancer theranostics: A review of silica- and carbon-based drug delivery systems. Sci. Technol. Adv. Mater. 2013, 14, 044407. [Google Scholar] [CrossRef]
- Baz, H.; Creech, M.; Chen, J.; Gong, H.; Bradford, K.; Huo, H. Water-soluble carbon nanoparticles improve seed germination and post-germination growth of lettuce under salinity stress. Agronomy 2020, 10, 1192. [Google Scholar] [CrossRef]
- El-Serafy, R.S.; El-Sheshtawy, A.-N.A.; Atteya, A.K.G.; Al-Hashimi, A.; Abbasi, A.M.; Al-Ashkar, I. Seed priming with silicon as a potential to increase salt stress tolerance in lathyrus odoratus. Plants 2021, 10, 2140. [Google Scholar] [CrossRef]
- Pereira, A.S.; Bortolin, G.S.; Dorneles, A.O.; Meneghello, G.E.; do Amarante, L.; Mauch, C.R. Silicon seed priming attenuates cadmium toxicity in lettuce seedlings. Environ. Sci. Pollut. Res. 2021, 28, 21101–21109. [Google Scholar] [CrossRef]
- Zhao, F.; Xin, X.; Cao, Y.; Su, D.; Ji, P.; Zhu, Z.; He, Z. Use of carbon nanoparticles to improve soil fertility, crop growth and nutrient uptake by corn (Zea mays L.). Nanomaterials 2021, 11, 2717. [Google Scholar] [CrossRef]
Magnetite (Fe3O4)-Based Adsorbents | ||
---|---|---|
Metal Ion | Adsorbent Type | References |
Cu(II) | Amino-functionalized Fe3O4 NPs | [25] |
Fe3O4-chitosan NPs | [26] | |
Fe3O4 NPs | [27] | |
Saccharomyces cerevisiae-functionalized chitosan-coated Fe3O4 NPs | [28] | |
Azomethine functionalized Fe3O4 NPs | [29] | |
Oxidized mesoporous carbon-based magnetic composite | [30] | |
Ni(II) | Fe3O4 NPs | [31] |
Fe3O4 NPs | [32] | |
Amino acid functionalized Fe3O4 NPs | [33] | |
EDTA-modified Fe3O4 NPs | [34] | |
Zn(II) | Amino-functionalized magnetic nanoparticles | [35] |
Magnetite silica core-shell nanoparticles | [36] | |
As(V) | Fe3O4-NP impregnated chitosan beads | [37] |
Fe3O4-coated boron nitride nanosheets | [38] | |
Fe3O4 NPs | [39] | |
Cd(II) | Citric acid coated magnetic nanoparticles | [40] |
Maize tassel-magnetite nanohybrid adsorbent | [41] | |
Fe3O4 NPs | [42] | |
Fe3O4 NPs | [43] | |
Fe3O4 NPs | [44] | |
Fe3O4 NPs | [45] | |
Magnetic (Fe3O4) PVA/laponite nanocomposite | [46] | |
Hg(II) | Poly(1-vinylimidazole)-grafted Fe3O4@SiO2 | [47] |
2-mercaptobenzamide modified itaconic acid-grafted-magnetite nanocellulose composite | [48] | |
Co(II) | Sulfhydryl and carboxyl functionalized magnetite nanocellulose composite | [49] |
Cu(II), Ni(II), Zn(II) | Sodium dodecyl sulphate coated magnetite nanoparticles | [50] |
As(V), Cr(VI) | Ionically modified (phosphonium silane) magnetic nanoparticles | [51] |
Pb(II) | Melamine-based dendrimer amine grafted-Fe3O4 | [52] |
Sulfur-modified magnetic nanoparticle | [53] | |
SiO2/(3-aminopropyl)triethoxysilane-coated magnetite nanoparticles | [54] | |
Graphene oxide/Fe3O4 | [55] | |
Reduced glutathione-functionalized core-shell Fe3O4/SiO2 NPs | [56] | |
Magnetic sodium alginate polyelectrolyte nanospheres | [57] | |
3-aminopropyltrimethoxysilane functionalized magnetic sporopollenin (MSp@SiO2NH2) based silica-coated graphene oxide (GO) | [58] | |
Fe3O4/Graphene Oxide Nanocomposite | [59] | |
Ni(II), Pb(II) | Cyanopropylsilane-functionalized titanium oxide Fe3O4 NPs | [60] |
Cd(II), Pb(II) | Biomagnetic membrane capsules | [61] |
Ag(I), Cd(II), Hg(II), Pb(II) | Silica shell-functionalized Fe3O4 NPs bearing mercaptopropyl (monofunctional) and mercaptopropyl-and-alkyl groups (bifunctional) | [62] |
Cr(III) | Magnetic alkaline lignin−dopamine nanoparticles | [63] |
Cr(VI) | Modified polypyrrole/m-phenylediamine (PPy-mPD) composite, decorated with magnetite (Fe3O4) NPs | [64] |
Maghemite (γ-Fe2O3)-Based Adsorbents | ||
Cu(II) | Glycine-functionalized maghemite nanoparticles | [65] |
Calcium alginate/maghemite hydrogel beads | [66] | |
Cd(II) | Bacteria-coated maghemite NPs | [67] |
γ-Fe2O3/TiO2/PVA-alginate beads | [68] | |
Cr(VI) | γ-Fe2O3 NPs | [69,70] |
Cs(I) | γ-Fe2O3 PVA–alginate beads | [71] |
Ni(II) | Clay-enriched γ-Fe2O3 NPs | [72] |
Ba(II) | γ-Fe2O3/TiO2/PVA-alginate beads | [73] |
Cu(II), Cr(VI) | Polypyrrole/γ-Fe2O3 and polyaniline/γ-Fe2O3 magnetic nanocomposites | [74] |
Cu(II), Zn(II), Pb(II) | γ-Fe2O3 nanotubes | [75] |
Pb(II) | γ-Fe2O3 NPs | [76] |
Spherical iron oxide (γ-Fe2O3) methyltrimethoxysilane nanocomposite | [77] |
Removal of Pesticides | ||
---|---|---|
Adsorbent Type | Pollutant | Reference |
Mesoporous silica nanoparticles/iron oxide nanocomposite | Organochlorine pesticides | [81] |
Mixed hemimicelle SDS-coated magnetic chitosan nanoparticles | Pesticides (diazinon, phosalone, chlorpyrifos) | [82] |
Magnetic mesoporous CoFe2O4/SiO2(Meso-CoFe2O4/SiO2) composites | Chlorpyrifos | [83] |
Magnetic Fe2O3/TiO2 monolithic photocatalyst | Pesticide (Fipronil) and remazol brilliant red X-3BS (RbX) dye | [84] |
β-Cyclodextrin Polymers Decorated with Fe3O4 NPs | Pesticides (4-chlorophenoxyacetic acid (4-CPA) and 2,3,4,6-tetrachlorophenol (TCF)) | [85] |
Magnetic (Fe3O4) chitosan beads | Chlordimeform insecticide | [86] |
Core–shell structured Fe3O4/hexagonal mesoporous silica microspheres | 1,1-bis(4-chlorophenyl)-2,2,2-trichloroethane (DDT) | [87] |
Co–Ni/chitosan/Fe3O4 | 2,4-dichlorophenoxyacetic acid | [88] |
Fe3O4-functionalized partially carbonized cellulose nanocrystals | Triazine and triazole pesticides (simazine, ametryn, prometryn, terbutryn, atrazine, triadimenol, epoxiconazole, myclobutanil, triadimefon and tebuconazole) | [89] |
ZnO@SiO2@Fe3O4 NPs | Diazinon pesticide | [90] |
Carbon-coated Fe3O4 nanoparticles | Organophosphorus pesticides (fenitrothion, diazinon, and ethion) | [91] |
Phenyl-modified magnetic graphene/mesoporous silica | Avermectin, Imidacloprid, Pyridaben, Dichlorvos, Acetamiprid, Dursban, Isocarbophos and Phoxim | [92] |
Magnetic covalent aromatic polymer (Fe3O4-NH2-CAP) | Phenylurea herbicides (metoxuron, monuron, chlortoluron, isoproturon, monolinuron, buturon) | [93] |
FeO-modified palygorskite | Linuron | [94] |
Magnetic molecularly imprinted polymer (MMIP) on mesoporous silica (mSiO2)-coated Fe3O4 nanoparticles | Atrazine | [95] |
3D graphene oxide/Fe3O4 | 2,4-dichlorophenoxyacetic acid | [96] |
4-aminoacetanilide-modified magnetic NPs | Clodinafop-propargyl herbicide | [97] |
Carbon-encapsulated iron (Fe/C); carbon-encapsulated cobalt (Co/C) | p-Nitrophenol | [98] |
Fe3O4-carbon nanospheres | Triazole fungicides (penconazole, uniconazole, paclobutrazol, triazolone, tebuconazole, hexaconazole, triticonazole and epoxiconazole) | [99] |
Magnetic Zr-based metal organic frameworks (UiO-66/Fe3O4@SiO2) | Triclosan and triclocarban | [100] |
TiO2-based (Fe3O4, SiO2, reduced graphene oxide) photocatalysts | Imazalil | [101] |
Organically-modified Fe3O4 NPs | Deltamethrin | [102] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spanos, A.; Athanasiou, K.; Ioannou, A.; Fotopoulos, V.; Krasia-Christoforou, T. Functionalized Magnetic Nanomaterials in Agricultural Applications. Nanomaterials 2021, 11, 3106. https://doi.org/10.3390/nano11113106
Spanos A, Athanasiou K, Ioannou A, Fotopoulos V, Krasia-Christoforou T. Functionalized Magnetic Nanomaterials in Agricultural Applications. Nanomaterials. 2021; 11(11):3106. https://doi.org/10.3390/nano11113106
Chicago/Turabian StyleSpanos, Alexandros, Kyriakos Athanasiou, Andreas Ioannou, Vasileios Fotopoulos, and Theodora Krasia-Christoforou. 2021. "Functionalized Magnetic Nanomaterials in Agricultural Applications" Nanomaterials 11, no. 11: 3106. https://doi.org/10.3390/nano11113106
APA StyleSpanos, A., Athanasiou, K., Ioannou, A., Fotopoulos, V., & Krasia-Christoforou, T. (2021). Functionalized Magnetic Nanomaterials in Agricultural Applications. Nanomaterials, 11(11), 3106. https://doi.org/10.3390/nano11113106