Study on Localized Surface Plasmon Coupling with Many Radiators
Abstract
:1. Introduction
2. Localized Surface Plasmon Coupling to Parallel Quantum Wells
2.1. Ag NPs Hexagonal Arrays Embedded in LEDs and Their Photoluminescence (PL)
2.2. FDTD Simulation for LSP Coupling to MQWs in LED
3. Surface Plasmon Coupling to Many Non-Parallel Dipoles
3.1. Perpendicular Dipoles
3.2. Dipoles at Arbitrary Polarization Orientation
3.3. Dipoles at Different Positions
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Okamoto, K.; Funato, M.; Kawakami, Y.; Tamada, K. High-efficiency light emission by means of exciton–surface-plasmon coupling. J. Photochem. Photobiol. C Photochem. Rev. 2017, 32, 58–77. [Google Scholar] [CrossRef]
- Tsakmakidis, K.L.; Boyd, R.W.; Yablonovitch, E.; Zhang, X. Large spontaneous-emission enhancements in metallic nanostructures: Towards LEDs faster than lasers. Opt. Express 2016, 24, 17916–17927. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.P.; Ni, C.C.; Wu, R.N.; Kuo, S.Y.; Su, Y.C.; Huang, Y.Y.; Chen, J.W.; Hsu, Y.C.; Wu, S.H.; Chen, C.Y.; et al. Combined effects of surface plasmon coupling and Förster resonance energy transfer on the light color conversion behaviors of colloidal quantum dots on anInGaN/GaN quantum-well nanodisk structure. Nanotechnology 2021, 32, 135206. [Google Scholar] [CrossRef]
- Ni, C.-C.; Kuo, S.-Y.; Li, Z.-H.; Wu, S.-H.; Wu, R.-N.; Chen, C.-Y.; Yang, C.-C. Förster resonance energy transfer in surface plasmon coupled color conversion processes of colloidal quantum dots. Opt. Express 2021, 29, 4067–4081. [Google Scholar] [CrossRef] [PubMed]
- Gontijo, I.; Boroditsky, M.; Yablonovitch, E.; Keller, S.; Mishra, U.K.; DenBaars, S.P. Coupling of InGaN quantum-well photoluminescence to silver surface plasmons. Phys. Rev. B 1999, 60, 11564–11567. [Google Scholar] [CrossRef] [Green Version]
- Akselrod, G.M.; Argyropoulos, C.; Hoang, T.B.; Ciracì, C.; Fang, C.; Huang, J.; Smith, D.R.; Mikkelsen, M. Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas. Nat. Photonics 2014, 8, 835–840. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Energy, Solid-State Lighting R&D Plan. Available online: https://www.energy.gov/eere/ssl/solid-state-lighting (accessed on 2 June 2016).
- Maier, S.A. Plasmonics: Fundamentals and Applications; Springer: New York, NY, USA, 2007. [Google Scholar]
- Sun, G.; Khurgin, J.B. Comparative study of field enhancement between isolated and coupled metal nanoparticles: An analytical approach. Appl. Phys. Lett. 2010, 97, 263110. [Google Scholar] [CrossRef] [Green Version]
- Fiedler, S.; Lem, L.O.L.C.; Ton-That, C.; Phillips, M.R. The role of surface depletion layer effects on the enhancement of the UV emission in ZnO induced by a nanostructured Al surface coating. Appl. Surf. Sci. 2020, 504, 144409. [Google Scholar] [CrossRef] [Green Version]
- Su, C.-Y.; Chen, W.-H.; Kuo, Y.; Lin, C.-H.; Su, M.-Y.; Tsai, M.-C.; Chang, W.-Y.; Hsieh, C.; Tu, C.-G.; Yao, Y.-F.; et al. Enhancement of emission efficiency of deep-ultraviolet AlGaN quantum wells through surface Plasmon coupling with an Al nanograting structure. Plasmonics 2018, 13, 863–872. [Google Scholar] [CrossRef]
- Feng, Y.L.; Chen, Z.Z.; Jiang, S.; Li, C.C.; Chen, Y.F.; Zhan, J.L.; Chen, Y.; Nie, J.; Jiao, F.; Kang, X.; et al. Study on the coupling mechanism of the orthogonal dipoles with surface plasmon in green LED by cathodoluminescence. Nanomaterials 2018, 8, 244. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.-H.; Hsieh, C.; Tu, C.-G.; Kuo, Y.; Chen, H.-S.; Shih, P.-Y.; Liao, C.-H.; Kiang, Y.-W.; Yang, C.C.; Lai, C.-H.; et al. Efficiency improvement of a vertical light-emitting diode through surface plasmon coupling and grating scattering. Opt. Express 2014, 22, A842–A856. [Google Scholar] [CrossRef] [PubMed]
- Nami, M.; Feezell, D.F. Optical properties of plasmonic light-emitting diodes based on flip-chip III-nitride core-shell nanowires. Opt. Express 2014, 22, 29445–29455. [Google Scholar] [CrossRef] [PubMed]
- Su, C.-Y.; Lin, C.-H.; Yao, Y.-F.; Liu, W.-H.; Su, M.-Y.; Chiang, H.-C.; Tsai, M.-C.; Tu, C.-G.; Chen, H.-T.; Kiang, Y.-W.; et al. Dependencies of surface plasmon coupling effects on the p-GaN thickness of a thin-p-type light-emitting diode. Opt. Express 2017, 25, 21526–21536. [Google Scholar] [CrossRef] [PubMed]
- Zhu, S.C.; Yu, Z.G.; Zhao, L.X.; Wang, J.X.; Li, J.M. Enhancement of the modulation bandwidth for GaN-based light-emitting diode by surface plasmons. Opt. Express 2015, 23, 13752. [Google Scholar] [CrossRef]
- Okamoto, K.; Niki, I.; Shvartser, A.; Narukawa, Y.; Mukai, T.; Scherer, A. Surface-plasmon-enhanced light emitters based on InGaN quantum wells. Nat. Mater. 2004, 3, 601–605. [Google Scholar] [CrossRef]
- Das, N.C. Tunable infrared plasmonic absorption by metallic nanoparticles. J. Appl. Phys. 2011, 110, 046101. [Google Scholar] [CrossRef]
- Auer, S.; Wan, W.J.; Huang, X.; Ramirez, A.G.; Cao, H. Morphology-induced plasmonic resonances in silver-aluminum alloy thin films. Appl. Phys. Lett. 2011, 99, 041116. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Hu, Z.; Chen, Z.Z.; Fu, X.X.; Jiang, X.Z.; Jiao, Q.Q.; Yu, T.; Zhang, G. Resonant absorption and scattering suppression of localized surface plasmons in Ag particles on green LED. Opt. Exp. 2013, 21, 12100–12110. [Google Scholar] [CrossRef]
- Henson, J.; DiMaria, J.; Dimakis, E.; Moustakas, T.D.; Paiella, R. Plasmon-enhanced light emission based on lattice resonances of silver nanocylinder arrays. Opt. Lett. 2012, 37, 79–81. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, Z.Z.; Fu, X.X.; Jiao, Q.Q.; Feng, Y.L.; Yang, W.; Ma, J.; Li, J.; Jiang, S.; Yu, T.; et al. Fabrication and effects of Ag nanoparticles hexagonal arrays in green LEDs by nanoimprint. IEEE Photonics Technol. Lett. 2015, 27, 1363–1366. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, Z.Z.; Feng, Y.L.; Jiao, Q.Q.; Fu, X.X.; Ma, J.; Li, J.; Jiang, S.; Yu, T.; Zhang, G. The coupling behavior of multiple dipoles and localized surface plasmons in Ag nanoparticles array. Plasmonics 2016, 11, 125–130. [Google Scholar] [CrossRef]
- Lu, C.-H.; Lan, C.-C.; Lai, Y.-L.; Li, Y.-L.; Liu, C.-P. Enhancement of green emission from InGaN/GaN multiple quantum wells via coupling to surface plasmons in a two-dimensional silver array. Adv. Funct. Mater. 2011, 21, 4719–4723. [Google Scholar] [CrossRef]
- Lozano, G.; Louwers, D.J.; Rodriguez, S.R.K.; Murai, S.; Jansen, O.T.A.; Verschuuren, M.A.; Rivas, J.J.G. Plasmonics for solid-state lighting: Enhanced excitation and directional emission of highly efficient light sources. Light Sci. Appl. 2013, 2, e66. [Google Scholar] [CrossRef] [Green Version]
- Lozano, G.; Rodriguez, S.R.K.; Verschuuren, M.A.; Rivas, J.G. Metallic nanostructures for efficient LED lighting. Light Sci. Appl. 2016, 5, e16080. [Google Scholar] [CrossRef] [Green Version]
- Pustovit, V.N.; Urbas, A.M.; Shahbazyan, T.V. Energy transfer in plasmonic systems. J. Opt. 2014, 16, 114015. [Google Scholar] [CrossRef]
- Uzodinma, J.; Nelson, N.; Dai, Q.; Shahbazyan, T.V. Spontaneous emission by an ensemble of dipoles coupled to a plasmonic nanoresonator. J. Mod. Opt. 2019, 66, 1545–1549. [Google Scholar] [CrossRef]
- Tse, W.F.; Wu, R.-N.; Lu, C.-C.; Hsu, Y.-C.; Chen, Y.-P.; Kuo, S.-Y.; Su, Y.-C.; Wu, P.-H.; Kuo, Y.; Kiang, Y.-W.; et al. Spatial range of the plasmonic Dicke effect in an InGaN/GaN multiple quantum well structure. Nanotechnology 2020, 31, 295001. [Google Scholar] [CrossRef]
- Pustovit, V.N.; Shahbazyan, T.V. Cooperative emission of light by an ensemble of dipoles near a metal nanoparticle: The plasmonic Dicke effect. Phy. Rev. Lett. 2009, 102, 077401. [Google Scholar] [CrossRef] [Green Version]
- Kwon, M.-K.; Kim, J.-Y.; Kim, B.-H.; Park, I.-K.; Cho, C.-Y.; Byeon, C.C.; Park, S.-J. Surface-plasmon-enhanced light-emitting diodes. Adv. Mater. 2008, 20, 1253–1257. [Google Scholar] [CrossRef]
- Zhou, F.; Liu, Y.; Li, Z.Y. Surface-plasmon-polariton-assisted dipole-dipole interaction near metal surfaces. Opt. Lett. 2011, 36, 1969–1971. [Google Scholar] [CrossRef]
- Kuo, Y.; Lin, C.-H.; Chen, H.-S.; Hsieh, C.; Tu, C.-G.; Shih, P.-Y.; Chen, C.-H.; Liao, C.-H.; Su, C.-Y.; Yao, Y.-F.; et al. Surface plasmon coupled light-emitting diode: Experimental and numerical studies. Jpn. J. Appl. Phys. 2015, 54, 02BD01. [Google Scholar] [CrossRef]
- Chang, W.Y.; Kuo, Y.; Kiang, Y.W.; Yang, C.C. Simulation study on light color conversion enhancement through surface plasmon coupling. Opt. Express 2019, 27, A629–A642. [Google Scholar] [CrossRef]
- Wang, Y.-S.; Wu, R.-N.; Ni, C.-C.; Lu, C.-C.; Cai, C.-J.; Tse, W.-F.; Chang, W.-Y.; Kuo, Y.; Kiang, Y.-W.; Yang, C.-C. Important role of surface plasmon coupling with the quantum wells in a surface plasmon enhanced color-converting structure of colloidal quantum dots on quantum wells. Opt. Exp. 2020, 28, 13352–13367. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-T.; Liu, C.-W.; Chen, P.-Y.; Wu, R.-N.; Ni, C.-C.; Cai, C.-J.; Kiang, Y.-W.; Yang, C.C. Color conversion efficiency enhancement of colloidal quantum dot through its linkage with synthesized metal nanoparticle on a blue light- emitting diode. Opt. Lett. 2019, 44, 5691–5694. [Google Scholar] [CrossRef] [PubMed]
- Kuo, Y.; Chen, H.T.; Chang, W.Y.; Chen, H.S.; Yang, C.C.; Kiang, Y.W. Enhancements of the emission and light extraction of a radiating dipole coupled with localized surface plasmons induced on a surface metal nanoparticle in a light-emitting device. Opt. Express 2014, 22, A155–A166. [Google Scholar] [CrossRef]
- Kuo, Y.; Chang, W.Y.; Chen, H.S.; Kiang, Y.W.; Yang, C.C. Surface plasmon coupling with a radiating dipole near a Ag nanoparticle embedded in GaN. Appl. Phys. Lett. 2013, 102, 161103. [Google Scholar] [CrossRef]
- Kuo, Y.; Ting, S.-Y.; Liao, C.-H.; Huang, J.-J.; Chen, C.-Y.; Hsieh, C.; Lu, Y.-C.; Chen, C.-Y.; Shen, K.-C.; Lu, C.-F.; et al. Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light emitting diode. Opt. Express 2011, 19, A914–A929. [Google Scholar] [CrossRef]
- Kuo, Y.; Chang, W.Y.; Chen, H.S.; Wu, Y.R.; Yang, C.C.; Kiang, Y.W. Surface-plasmon-coupled emission enhancement of a quantum well with a metal nanoparticle embedded in a light-emitting diode. J. Opt. Soc. Am. B 2013, 30, 2599–2606. [Google Scholar] [CrossRef]
- Neogi, A.; Lee, C.W.; Everitt, H.O.; Kuroda, T.; Tackeuchi, A.; Yablonovitch, E. Enhancement of spontaneous recombination rate in a quantum well by resonant surface plasmon coupling. Phys. Rev. B 2002, 66, 153305. [Google Scholar] [CrossRef] [Green Version]
- Yamaguchi, A.A. Anisotropic optical matrix elements in strained GaN quantum wells on semipolar and nonpolar substrates. Jpn. J. Appl. Phys. 2007, 46, L789–L791. [Google Scholar] [CrossRef]
- Ajia, I.A.; Edwards, P.R.; Pak, Y.; Belekov, E.; Roldan, M.A.; Wei, N.N.; Liu, Z.Q.; Martin, R.W.; Roqan, I.S. Generated Carrier Dynamics in V-Pit-Enhanced InGaN/GaN Light-Emitting Diode. ACS Photonics 2018, 5, 820–826. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.H.; Wu, Y.R. Light emission polarization properties of semipolar InGaN/GaN quantum well. J. Appl. Phys. 2010, 107, 053112. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, P.; Hsu, K.H.; Kumar, A.; Fung, K.H.; Mabon, J.C.; Fang, N.X. Imaging of plasmonic modes of silver nanoparticles using high-resolution cathodoluminescence spectroscopy. ACS Nano 2009, 3, 2965–2974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Abajo, F.J.G. Optical excitations in electron microscopy. Rev. Mod. Phys. 2010, 82, 209–275. [Google Scholar] [CrossRef]
- Coenen, T.; Schoen, D.T.; Brenny, B.J.M.; Polman, A.; Brongersma, M.L. Combined electron energy-loss and cathodoluminescence spectroscopy on individual and composite plasmonic nanostructures. Phys. Rev. B 2016, 93, 195429. [Google Scholar] [CrossRef] [Green Version]
- Coenen, T.; Arango, F.B.; Koenderink, A.F.; Polman, A. Directional emission from a single plasmonic scatterer. Nat. Commun. 2014, 5, 3250. [Google Scholar] [CrossRef]
- Gutzwiller, M.C. Moon-Earth-Sun: The oldest three-body problem. Rev. Mod. Phys. 1998, 70, 589–639. [Google Scholar] [CrossRef] [Green Version]
- Dirac, P.A.M. The quantum theory of the emission and absorption of radiation. Proc. R. Soc. Lond. Ser. Contain. Pap. Math. Phys. Character 1927, 114, 243–265. [Google Scholar]
- Lumerical Illuminating the Way. Available online: http://www.lumerical.com (accessed on 8 November 2017).
- Chen, Y.F.; Feng, Y.L.; Chen, Z.Z.; Jiao, F.; Zhan, J.L.; Chen, Y.Y.; Nie, J.; Pan, Z.; Kang, X.; Li, S.; et al. Study on Electron-Induced Surface Plasmon Coupling with Quantum Well Using a Perturbation Method. Nanomaterials 2020, 10, 913. [Google Scholar] [CrossRef]
- Feng, Y.; Chen, Z.; Li, C.; Chen, Y.; Zhan, J.; Chen, Y.; Nie, J.; Jiao, F.; Kang, X.; Li, S.; et al. Effect of dipole polarization orientation on surface plasmon coupling with green emitting quantum wells by cathodoluminescence. RSC Adv. 2018, 8, 16370–16377. [Google Scholar] [CrossRef] [Green Version]
- Gao, H.; Tan, H.; Zhang, W.; Morton, K.; Chou, S.Y. Air cushion press for excellent uniformity, high yield, and fast nanoimprint across a 100 mm field. Nano Lett. 2006, 6, 2438–2441. [Google Scholar] [CrossRef] [PubMed]
- Sun, G.; Khurgin, J.B. Plasmon enhancement of luminescence by metal nanoparticles. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 110–118. [Google Scholar] [CrossRef]
- Chen, C.Y.; Yeh, D.M.; Lu, Y.C.; Yang, C.C. Dependence of resonant coupling between surface plasmons and an InGaN quantum well on metallic structure. Appl. Phys. Lett. 2006, 89, 203113. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Manjavacas, A.; Large, N.; Nordlander, P. Electron energy-loss spectroscopy calculation in finite-difference time-domain package. ACS Photonics 2015, 2, 369–375. [Google Scholar] [CrossRef]
- Estrin, Y.; Rich, D.H.; Keller, S.; DenBaars, S.P. Temperature dependence of exciton-surface plasmon polariton coupling in Ag, Au, and Al films on InxGa1-xN/GaN quantum wells studied with time-resolved cathodoluminescence. J. Appl. Phys. 2015, 117, 043105. [Google Scholar] [CrossRef] [Green Version]
- Maiti, A.; Maity, A.; Satpati, B.; Large, N.; Chini, T.K. Efficient excitation of higher order modes in the plasmonic response of individual concave gold nanocubes. J. Phys. Chem. C 2017, 121, 731–740. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Deng, C.; Xi, X.; Chen, Y.; Feng, Y.; Jiang, S.; Chen, W.; Kang, X.; Wang, Q.; Zhang, G.; et al. Study on Localized Surface Plasmon Coupling with Many Radiators. Nanomaterials 2021, 11, 3105. https://doi.org/10.3390/nano11113105
Chen Z, Deng C, Xi X, Chen Y, Feng Y, Jiang S, Chen W, Kang X, Wang Q, Zhang G, et al. Study on Localized Surface Plasmon Coupling with Many Radiators. Nanomaterials. 2021; 11(11):3105. https://doi.org/10.3390/nano11113105
Chicago/Turabian StyleChen, Zhizhong, Chuhan Deng, Xin Xi, Yifan Chen, Yulong Feng, Shuang Jiang, Weihua Chen, Xiangning Kang, Qi Wang, Guoyi Zhang, and et al. 2021. "Study on Localized Surface Plasmon Coupling with Many Radiators" Nanomaterials 11, no. 11: 3105. https://doi.org/10.3390/nano11113105
APA StyleChen, Z., Deng, C., Xi, X., Chen, Y., Feng, Y., Jiang, S., Chen, W., Kang, X., Wang, Q., Zhang, G., & Shen, B. (2021). Study on Localized Surface Plasmon Coupling with Many Radiators. Nanomaterials, 11(11), 3105. https://doi.org/10.3390/nano11113105