New Strategy for Inducing Surface Anisotropy in Polyimide Films for Nematics Orientation in Display Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Polyimide Synthesis
2.2. Methods
3. Results and Discussion
3.1. Transmittance and Birefringence of ALs
3.2. Molecular Modeling
3.3. Morphological Analysis
3.4. Nematic Wettability and Azimuthal Anchoring Energy
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Ni, H.; Wang, Z.; Yang, S.; Zhou, W. Colorless and Transparent high–Temperature-Resistant Polymer Optical Films–Current Status and Potential Applications in Optoelectronic Fabrications. In Optoelectronics-Materials and Devices; InTech: London, UK, 2015; ISBN 978-953-51-2174-9. [Google Scholar]
- Hoogboom, J.; Rasing, T.; Rowan, A.E.; Nolte, R.J.M. LCD alignment layers. Controlling nematic domain properties. J. Mater. Chem. 2006, 16, 1305–1314. [Google Scholar] [CrossRef]
- Wang, F.; Shao, L.; Bai, Q.; Che, X.; Liu, B.; Wang, Y. Photo-induced vertical alignment of liquid crystals via in situ polymerization initiated by polyimide containing benzophenone. Polymers 2017, 9, 233. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiao, M.; Ge, Z.; Song, Q.; Wu, S.-T. Alignment layer effects on thin liquid crystal cells. Appl. Phys. Lett. 2008, 92, 061102. [Google Scholar] [CrossRef] [Green Version]
- Berreman, D.W. Alignment of Liquid Crystals by Grooved Surfaces. Mol. Cryst. Liq. Cryst. 1973, 23, 215–231. [Google Scholar] [CrossRef]
- Stöhr, J.; Samant, M.G. Liquid crystal alignment by rubbed polymer surfaces: A microscopic bond orientation model. J. Electron Spectros. Relat. Phenomena 1999, 98–99, 189–207. [Google Scholar] [CrossRef]
- van Aerle, N.A.J.M.; Tol, A.J.W. Molecular Orientation in Rubbed Polyimide Alignment Layers Used for Liquid-Crystal Displays. Macromolecules 2002, 27, 6520–6526. [Google Scholar] [CrossRef]
- Nechifor, C.D.; Postolache, M.; Albu, R.M.; Barzic, A.I.; Dorohoi, D.O. Induced birefringence of rubbed and stretched polyvinyl alcohol foils as alignment layers for nematic molecules. Polym. Adv. Technol. 2019, 30, 2143–2152. [Google Scholar] [CrossRef]
- Barzic, A.I.; Stoica, I.; Popovici, D.; Vlad, S.; Cozan, V.; Hulubei, C. An insight on the effect of rubbing textile fiber on morphology of some semi-alicyclic polyimides for liquid crystal orientation. Polym. Bull. 2012, 70, 1553–1574. [Google Scholar] [CrossRef]
- Yamahara, M.; Nakamura, M.; Koide, N.; Sasaki, T. Influence of rubbing conditions of polyimide alignment layer on optical anisotropy of immobilized liquid crystal film. Liq. Cryst. 2007, 34, 381–387. [Google Scholar] [CrossRef]
- Stoica, I.; Barzic, A.I.; Hulubei, C. The impact of rubbing fabric type on surface roughness and tribological properties of some semi-alicyclic polyimides evaluated from atomic force measurements. Appl. Surf. Sci. 2013, 268, 442–449. [Google Scholar] [CrossRef]
- Mathews, A.S.; Kim, I.; Ha, C. Synthesis, characterization, and properties of fully aliphatic polyimides and their derivatives for microelectronics and optoelectronics applications. Macromol. Res. 2007, 15, 114–128. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, A.; Sen, S.K.; Banerjee, S.; Voit, B. Solubility improvements in aromatic polyimides by macromolecular engineering. RSC Adv. 2012, 2, 5900–5926. [Google Scholar] [CrossRef]
- Yang, Y.; Jung, Y.; Cho, M.D.; Lee, S.G.; Kwon, S. Transient color changes in oxidative-stable fluorinated polyimide film for flexible display substrates. RSC Adv. 2015, 5, 57339–57345. [Google Scholar] [CrossRef]
- Mehdipour-Ataei, S.; Akbarian-Feizi, L. Soluble polyimides from a semi-aliphatic diamine containing ester, amide and ether groups. Chin. J. Polym. Sci. 2010, 29, 93–100. [Google Scholar] [CrossRef]
- He, X.; Wang, S.; Wu, X.; Shu, C.; Fan, X.; Yu, Z.; Huang, W. Soluble and transparent polyimides with high Tgs from a new semi-aliphatic diamine with cyclohexyl and ortho-methyl groups. High Perform. Polym. 2020, 33, 528–537. [Google Scholar] [CrossRef]
- Barzic, A.I.; Stoica, I.; Fifere, N.; Vlad, C.D.; Hulubei, C. Morphological effects on transparency and absorption edges of some semi-alicyclic polyimides. J. Polym. Res. 2013, 20, 130. [Google Scholar] [CrossRef]
- Barzic, A.I.; Hulubei, C.; Stoica, I.; Albu, R.M. Insights on Light Dispersion in Semi-Alicyclic Polyimide Alignment Layers to Reduce Optical Losses in Display Devices. Macromol. Mater. Eng. 2018, 303, 1–11. [Google Scholar] [CrossRef]
- Albu, R.M.; Hulubei, C.; Stoica, I.; Barzic, A.I. Semi-alicyclic polyimides as potential membrane oxygenators: Rheological implications on film processing, morphology and blood compatibility. Express Polym. Lett. 2019, 13, 349–364. [Google Scholar] [CrossRef]
- Hulubei, C.; Albu, R.M.; Lisa, G.; Nicolescu, A.; Hamciuc, E.; Hamciuc, C.; Barzic, A.I. Antagonistic effects in structural design of sulfur-based polyimides as shielding layers for solar cells. Sol. Energy Mater. Sol. Cells 2019, 193, 219–230. [Google Scholar] [CrossRef]
- Barzic, A.I.; Hulubei, C.; Asandulesa, M.; Lisa, G.; Popovici, D.; Stoica, I.; Nicolescu, A.; Albu, R.M. Interlayer dielectrics based on copolyimides containing non-coplanar alicyclic-units for multilevel high-speed electronics. Polym. Test. 2020, 90, 106704. [Google Scholar] [CrossRef]
- Stoica, I.; Barzic, A.I.; Hulubei, C. Fabrication of nanochannels on polyimide films using dynamic plowing lithography. Appl. Surf. Sci. 2017, 426, 307–314. [Google Scholar] [CrossRef]
- Barzic, A.I.; Albu, R.M.; Stoica, I. Surface alteration implications on potential use of semi-alicyclic polyimide as biomedical materials. Appl. Surf. Sci. 2021, 540, 148377. [Google Scholar] [CrossRef]
- Cosutchi, A.I.; Hulubei, C.; Stoica, I.; Ioan, S. Morphological and structural-rheological relationship in epiclon-based polyimide/hydroxypropylcellulose blend systems. J. Polym. Res. 2010, 17, 541–550. [Google Scholar] [CrossRef]
- Cosutchi, A.I.; Hulubei, C.; Stoica, I.; Ioan, S. A new approach for patterning epiclon-based polyimide precursor films using a lyotropic liquid crystal template. J. Polym. Res. 2011, 18, 2389–2402. [Google Scholar] [CrossRef]
- Khan, P.M.; Rasulev, B.; Roy, K. QSPR Modeling of the Refractive Index for Diverse Polymers Using 2D Descriptors. ACS Omega 2018, 3, 13374–13386. [Google Scholar] [CrossRef] [PubMed]
- Liu, W. Prediction of glass transition temperatures of aromatic heterocyclic polyimides using an ANN model. Polym. Eng. Sci. 2010, 50, 1547–1557. [Google Scholar] [CrossRef]
- Olariu, M.A.; Hamciuc, C.; Asandulesa, M.; Hamciuc, E.; Epure, E.L.; Tsakiris, V.; Lisa, G. Study on highly thermostable low-k polymer films based on fluorene-containing polyetherimides. Polym. Eng. Sci. 2021, 61, 2639–2652. [Google Scholar] [CrossRef]
- Wang, S.; Cheng, M.; Zhou, L.; Dai, Y.; Dang, Y.; Ji, X. QSPR modelling for intrinsic viscosity in polymer–solvent combinations based on density functional theory. SAR QSAR Environ. Res. 2021, 32, 379–393. [Google Scholar] [CrossRef]
- Hulubei, C.; Popovici, D. Novel polyimides containing alicyclic units. Synthesis and characterization. Rev. Roum. Chim. 2011, 56, 209–215. [Google Scholar]
- Hulubei, C.; Hamciuc, E.; Bruma, M. New polyimides based on epiclon. Rev. Roum. Chim. 2007, 52, 1063–1069. [Google Scholar]
- Materials Studio 4.0. (DMol3, Synthia, Discover, Forcite and Amorphous Cell Module); Accelrys Software Inc.: San Diego, CA, USA, 2005. [Google Scholar]
- Bicerano, J. Prediction of Polymers, 3rd ed.; Revised and Expanded; Marcel Dekker Inc.: New York, NY, USA, 2002; ISBN 0824708210. [Google Scholar]
- Stoica, I.; Epure, E.L.; Constantin, C.P.; Damaceanu, M.D.; Ursu, E.L.; Mihaila, I.; Sava, I. Evaluation of local mechanical and chemical properties via AFM as a tool for understanding the formation mechanism of pulsed UV laser-nanoinduced patterns on azo-naphthalene-based polyimide films. Nanomaterials 2021, 11, 812. [Google Scholar] [CrossRef]
- Gestoso, P.; Brisson, J. Simulation of orientation of uniaxially stretched poly(vinyl phenol) by molecular dynamics. J. Polym. Sci. Part B Polym. Phys. 2002, 40, 1601–1625. [Google Scholar] [CrossRef]
- Lin, D.; Jiang, M.; Qi, S.; Wu, D. Macromolecular structural evolution of polyimide chains during large-ratio uniaxial fiber orientation process revealed by molecular dynamics simulation. Chem. Phys. Lett. 2020, 756, 137847. [Google Scholar] [CrossRef]
- Binger, D.R.; Hanna, S. Computer simulations of interactions between liquid crystal molecules and polymer surfaces II. Alignment of smectic C-forming mesogens. Liq. Cryst. 2000, 27, 89–102. [Google Scholar] [CrossRef]
- Matsumoto, T.; Mikami, D.; Hashimoto, T.; Kaise, M.; Takahashi, R.; Kawabata, S. Alicyclic polyimides–a colorless and thermally stable polymer for opto-electronic devices. J. Phys. Conf. Ser. 2009, 187, 012005. [Google Scholar] [CrossRef]
- Zhuang, Y.; Seong, J.G.; Lee, Y.M. Polyimides containing aliphatic/alicyclic segments in the main chains. Prog. Polym. Sci. 2019, 92, 35–88. [Google Scholar] [CrossRef]
- Tapaswi, P.K.; Choi, M.C.; Jeong, K.M.; Ando, S.; Ha, C.S. Transparent Aromatic Polyimides Derived from Thiophenyl-Substituted Benzidines with High Refractive Index and Small Birefringence. Macromolecules 2015, 48, 3462–3474. [Google Scholar] [CrossRef]
- Tabor, D. The bulk modulus of rubber. Polymer (Guildf.) 1994, 35, 2759–2763. [Google Scholar] [CrossRef]
- Pawlak, A. The Entanglements of Macromolecules and Their Influence on the Properties of Polymers. Macromol. Chem. Phys. 2019, 220, 1–25. [Google Scholar] [CrossRef]
- Stoica, I.; Barzic, A.I.; Hulubei, C.; Timpu, D. Statistical analysis on morphology development of some semialicyclic polyimides using atomic force microscopy. Microsc. Res. Tech. 2013, 76, 503–513. [Google Scholar] [CrossRef]
- Kelly, S.M.; O’Neill, M. Liquid crystals for electro-optic applications. In Handbook of Advanced Electronic and Photonic Materials and Devices; Elsevier: Amsterdam, The Netherlands, 2001; Volume 7, pp. 1–66. ISBN 0125137575. [Google Scholar]
- Khoo, I.-C.; Simoni, F. Physics of Liquid Crystalline Materials: Based on Lectures Delivered at the Summer School on the Physics of Liquid Crystals, Bra, Italy, 4–14 October 1988; Gordon and Breach Science Publishers: Philadelphia, PA, USA, 1991; ISBN 9782881244810. [Google Scholar]
- Berreman, D.W. Solid Surface Shape and the Alignment of an Adjacent Nematic Liquid Crystal. Phys. Rev. Lett. 1972, 28, 1683. [Google Scholar] [CrossRef]
- Hasegawa, M. RubbingTechnologies: Mechanisms and Applications. In Alignment Technology and Applications of Liquid Crystal Devices; Takatoh, K., Sakamoto, M., Hasegawa, R., Koden, M., Nobuyuki Itoh, M.H., Eds.; CRC Press: Boca Raton, FL, USA, 2005; pp. 7–54. ISBN 9780367392475. [Google Scholar]
- Pavlov, I.; Candemir, O.; Rybak, A.; Dobrovolskiy, A.; Kadan, V.; Blonskiy, I.; Lytvyn, P.; Korchovyi, A.; Tytarenko, P.; Kazantseva, Z.; et al. Azimuthal and polar anchoring energies of aligning layers structured by nonlinear laser lithography. Liq. Cryst. 2021, 48, 131–149. [Google Scholar] [CrossRef]
System | Bulk Modulus (MPa) | Young’s Modulus (MPa) | Brittle Fracture Stress * (MPa) | Entanglement Length (Å) | Cohesive Energy (Fedors) (kJ/mol) | Surface Tension (Fedors) (dyn/cm) | Density (g/cm3) |
---|---|---|---|---|---|---|---|
PI-HMDA | 4554.03 | 2528.81 | 128.00 | 200.86 | 147.14 | 48.09 | 1.20 |
PI-ODA | 5297.00 | 3101.27 | 117.86 | 166.69 | 181.07 | 49.94 | 1.28 |
Sample | Groove Characteristics | 3D Texture Parameters | ||||
---|---|---|---|---|---|---|
A | Λ | Sq | Sdr | Stdi | Sbi | |
PI-HMDA STR | 211 ± 24 | 3686 ± 555 | 41 | 0.556 | 0.298 | 0.497 |
PI-HMDA RUB | 39 ± 16 | 706 ± 129 | 17 | 0.424 | 0.137 | 0.170 |
PI-HMDA STR RUB | 22 ± 5 | 953 ± 256 | 11 | 0.286 | 0.385 | 0.102 |
PI-HMDA RUB STR | 74 ± 15 | 1422 ± 567 | 50 | 0.700 | 0.157 | 0.670 |
PI-ODA STR | 54 ± 12 | 1923 ± 297 | 16 | 0.382 | 0.480 | 0.0568 |
PI-ODA RUB | 20 ± 6 | 657 ± 191 | 15 | 0.328 | 0.214 | 0.168 |
PI-ODA STR RUB | 33 ± 15 | 1026 ± 190 | 14 | 0.374 | 0.448 | 0.124 |
PI-ODA RUB STR | 65 ± 17 | 1112 ± 142 | 25 | 0.737 | 0.179 | 0.187 |
Sample | Azimuthal Anchoring Energy, N/nm | |
---|---|---|
MBBA | 5CB | |
PI-HMDA STR | 3.1926 × 10−16 | 3.7431 × 10−16 |
PI-HMDA RUB | 1.5523 × 10−15 | 1.8199 × 10−15 |
PI-HMDA STR RUB | 2.0082 × 10−16 | 2.3545 × 10−16 |
PI-HMDA RUB STR | 6.8393 × 10−16 | 8.0185 × 10−16 |
PI-ODA STR | 1.4726 × 10−16 | 1.7265 × 10−16 |
PI-ODA RUB | 5.0654 × 10−16 | 5.9387 × 10−16 |
PI-ODA STR RUB | 2.1223 × 10−16 | 2.4882 × 10−16 |
PI-ODA RUB STR | 1.1035 × 10−15 | 1.2937 × 10−15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Epure, E.-L.; Stoica, I.; Albu, R.M.; Hulubei, C.; Barzic, A.I. New Strategy for Inducing Surface Anisotropy in Polyimide Films for Nematics Orientation in Display Applications. Nanomaterials 2021, 11, 3107. https://doi.org/10.3390/nano11113107
Epure E-L, Stoica I, Albu RM, Hulubei C, Barzic AI. New Strategy for Inducing Surface Anisotropy in Polyimide Films for Nematics Orientation in Display Applications. Nanomaterials. 2021; 11(11):3107. https://doi.org/10.3390/nano11113107
Chicago/Turabian StyleEpure, Elena-Luiza, Iuliana Stoica, Raluca Marinica Albu, Camelia Hulubei, and Andreea Irina Barzic. 2021. "New Strategy for Inducing Surface Anisotropy in Polyimide Films for Nematics Orientation in Display Applications" Nanomaterials 11, no. 11: 3107. https://doi.org/10.3390/nano11113107
APA StyleEpure, E.-L., Stoica, I., Albu, R. M., Hulubei, C., & Barzic, A. I. (2021). New Strategy for Inducing Surface Anisotropy in Polyimide Films for Nematics Orientation in Display Applications. Nanomaterials, 11(11), 3107. https://doi.org/10.3390/nano11113107