Thermo-Magneto-Electric Transport through a Torsion Dislocation in a Type I Weyl Semimetal
Abstract
:1. Introduction
2. Theory
2.1. Transmission and Landauer Conductance
2.2. Thermoelectric Transport Coefficients
3. Results
3.1. Electronic Transport
3.2. Thermal Transport
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
WSM | Weyl semimetal |
RDSP | Repulsive delta-shell potential |
References
- Hasan, M.Z.; Kane, C.L. Colloquium: Topological insulators. Rev. Mod. Phys. 2010, 82, 3045. [Google Scholar] [CrossRef] [Green Version]
- Qi, X.L.; Zhang, S.C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057. [Google Scholar] [CrossRef] [Green Version]
- Bansil, A.; Lin, H.; Das, T. Colloquium: Topological band theory. Rev. Mod. Phys. 2016, 88, 021004. [Google Scholar] [CrossRef] [Green Version]
- Vanderbilt, D. Berry Phases in Electronic Structure Theory; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Moessner, R.; Moore, J.E. Topological Phases of Matter; Cambridge University Press: Cambridge, UK, 2021. [Google Scholar]
- Wan, X.; Turner, A.M.; Vishwanath, A.; Savrasov, S.Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 2011, 83, 205101. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Gilbert, M.J.; Dai, X.; Bernevig, B.A. Multi-Weyl Topological Semimetals Stabilized by Point Group Symmetry. Phys. Rev. Lett. 2012, 108, 266802. [Google Scholar] [CrossRef]
- Ruan, J.; Jian, S.K.; Yao, H.; Zhang, H.; Zhang, S.C.; Xing, D. Symmetry-protected ideal Weyl semimetal in HgTe-class materials. Nat. Commun. 2016, 7, 11136. [Google Scholar] [CrossRef]
- Vafek, O.; Vishwanath, A. Dirac Fermions in Solids: From High-Tc Cuprates and Graphene to Topological Insulators and Weyl Semimetals. Annu. Rev. Condens. Matter Phys. 2014, 5, 83–112. [Google Scholar] [CrossRef] [Green Version]
- Yan, B.; Felser, C. Topological Materials: Weyl Semimetals. Annu. Rev. Condens. Matter Phys. 2017, 8, 337–354. [Google Scholar] [CrossRef] [Green Version]
- Armitage, N.P.; Mele, E.J.; Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 2018, 90, 015001. [Google Scholar] [CrossRef] [Green Version]
- Burkov, A. Weyl Metals. Annu. Rev. Condens. Matter Phys. 2018, 9, 359–378. [Google Scholar] [CrossRef] [Green Version]
- Xu, S.Y.; Belopolski, I.; Alidoust, N.; Neupane, M.; Bian, G.; Zhang, C.; Sankar, R.; Chang, G.; Yuan, Z.; Lee, C.C.; et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 2015, 349, 613–617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, L.; Wang, Z.; Ye, D.; Ran, L.; Fu, L.; Joannopoulos, J.D.; Soljačić, M. Experimental observation of Weyl points. Science 2015, 349, 622–624. [Google Scholar] [CrossRef] [Green Version]
- Hosur, P.; Qi, X. Recent developments in transport phenomena in Weyl semimetals. C. R. Phys. 2013, 14, 857–870. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Xu, S.Y.; Ni, N.; Mao, Z. Transport of Topological Semimetals. Annu. Rev. Mater. Res. 2019, 49, 207–252. [Google Scholar] [CrossRef] [Green Version]
- Nagaosa, N.; Morimoto, T.; Tokura, Y. Transport, magnetic and optical properties of Weyl materials. Nat. Rev. Mater. 2020, 5, 621–636. [Google Scholar] [CrossRef]
- Hosur, P.; Parameswaran, S.A.; Vishwanath, A. Charge Transport in Weyl Semimetals. Phys. Rev. Lett. 2012, 108, 046602. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.E.; Hankiewicz, E.M.; Culcer, D. Quantum transport in Weyl semimetal thin films in the presence of spin-orbit coupled impurities. Phys. Rev. B 2017, 96, 045307. [Google Scholar] [CrossRef] [Green Version]
- Flores-Calderón, R.; Martín-Ruiz, A. Quantized electrochemical transport in Weyl semimetals. Phys. Rev. B 2021, 103, 035102. [Google Scholar] [CrossRef]
- Zeng, C.; Nandy, S.; Tewari, S. Nonlinear transport in Weyl semimetals induced by Berry curvature dipole. Phys. Rev. B 2021, 103, 245119. [Google Scholar] [CrossRef]
- Lundgren, R.; Laurell, P.; Fiete, G.A. Thermoelectric properties of Weyl and Dirac semimetals. Phys. Rev. B 2014, 90, 165115. [Google Scholar] [CrossRef] [Green Version]
- Cortijo, A.; Ferreirós, Y.; Landsteiner, K.; Vozmediano, M.A.H. Elastic Gauge Fields in Weyl Semimetals. Phys. Rev. Lett. 2015, 115, 177202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cortijo, A.; Ferreirós, Y.; Landsteiner, K.; Vozmediano, M.A.H. Visco elasticity in 2D materials. 2D Mater. 2016, 3, 011002. [Google Scholar] [CrossRef]
- Arjona, V.; Vozmediano, M.A.H. Rotational strain in Weyl semimetals: A continuum approach. Phys. Rev. B 2018, 97, 201404. [Google Scholar] [CrossRef] [Green Version]
- Soto-Garrido, R.; Muñoz, E. Electronic transport in torsional strained Weyl semimetals. J. Phys. Condens. Matter 2018, 30, 195302. [Google Scholar] [CrossRef] [Green Version]
- Soto-Garrido, R.; Muñoz, E.; Juricic, V. Dislocation defect as a bulk probe of monopole charge of multi-Weyl semimetals. Phys. Rev. Res. 2020, 2, 012043(R). [Google Scholar] [CrossRef] [Green Version]
- Muñoz, E.; Soto-Garrido, R. Thermoelectric transport in torsional strained Weyl semimetals. J. Appl. Phys. 2019, 125, 082507. [Google Scholar] [CrossRef] [Green Version]
- Muñoz, E.; Soto-Garrido, R. Analytic approach to magneto-strain tuning of electronic transport through a graphene nanobubble: Perspectives for a strain sensor. J. Phys. Condens. Matter 2017, 29, 445302. [Google Scholar] [CrossRef] [Green Version]
- Bourgès, C.; Srinivasan, B.; Fontaine, B.; Sauerschnig, P.; Minard, A.; Halet, J.F.; Miyazaki, Y.; Berthebaud, D.; Mori, T. Tailoring the thermoelectric and structural properties of Cu–Sn based thiospinel compounds [CuM1+xSn1-xS4 (M = Ti, V, Cr, Co)]. J. Mater. Chem. C 2020, 8, 16368–16383. [Google Scholar] [CrossRef]
- Muchtar, A.R.; Srinivasan, B.; Tonquesse, S.L.; Singh, S.; Soelami, N.; Yuliarto, B.; Berthebaud, D.; Mori, T. Physical Insights on the Lattice Softening Driven Mid-Temperature Range Thermoelectrics of Ti/Zr-Inserted SnTe—An Outlook Beyond the Horizons of Conventional Phonon Scattering and Excavation of Heikes’ Equation for Estimating Carrier Properties. Adv. Energy Mater. 2021, 11, 2101122. [Google Scholar] [CrossRef]
- Calkin, M.G.; Kiang, D.; Nogami, Y. Proper treatment of the delta function potential in the one-dimensional Dirac equation. Am. J. Phys. 1987, 55, 737–739. [Google Scholar] [CrossRef]
- Benguria, R.D.; Castillo, H.; Loewe, M. The Dirac equation with a δ-potential. J. Phys. A Math. Gen. 2000, 33, 5315–5320. [Google Scholar] [CrossRef]
- Neupane, M.; Xu, S.Y.; Sankar, R.; Alidoust, N.; Bian, G.; Liu, C.; Belopolski, I.; Chang, T.R.; Jeng, H.T.; Lin, H.; et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2. Nat. Commun. 2014, 5, 3786. [Google Scholar] [CrossRef] [Green Version]
- Pikulin, D.I.; Chen, A.; Franz, M. Chiral Anomaly from Strain-Induced Gauge Fields in Dirac and Weyl Semimetals. Phys. Rev. X 2016, 6, 041021. [Google Scholar] [CrossRef] [Green Version]
- Skinner, B.; Fu, L. Large, nonsaturating thermopower in a quantizing magnetic field. Sci. Adv. 2018, 4, 1–6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, F.; Andrejevic, N.; Nguyen, T.; Kozii, V.; Nguyen, Q.T.; Hogan, T.; Ding, Z.; Pablo-Pedro, R.; Parjan, S.; Skinner, B.; et al. Quantized thermoelectric Hall effect induces giant power factor in a topological semimetal. Nat. Commun. 2020, 11, 1–7. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonilla, D.; Muñoz, E.; Soto-Garrido, R. Thermo-Magneto-Electric Transport through a Torsion Dislocation in a Type I Weyl Semimetal. Nanomaterials 2021, 11, 2972. https://doi.org/10.3390/nano11112972
Bonilla D, Muñoz E, Soto-Garrido R. Thermo-Magneto-Electric Transport through a Torsion Dislocation in a Type I Weyl Semimetal. Nanomaterials. 2021; 11(11):2972. https://doi.org/10.3390/nano11112972
Chicago/Turabian StyleBonilla, Daniel, Enrique Muñoz, and Rodrigo Soto-Garrido. 2021. "Thermo-Magneto-Electric Transport through a Torsion Dislocation in a Type I Weyl Semimetal" Nanomaterials 11, no. 11: 2972. https://doi.org/10.3390/nano11112972
APA StyleBonilla, D., Muñoz, E., & Soto-Garrido, R. (2021). Thermo-Magneto-Electric Transport through a Torsion Dislocation in a Type I Weyl Semimetal. Nanomaterials, 11(11), 2972. https://doi.org/10.3390/nano11112972