Enhanced Thermal Conductivity of Polymer Composite by Adding Fishbone-like Silicon Carbide
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of PVDF Composites
2.3. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- He, J.; Wang, H.; Qu, Q.Q.; Su, Z.; Qin, T.F.; Tian, X.Y. Three-dimensional network constructed by vertically oriented multilayer graphene and SiC nanowires for improving thermal conductivity and operating safety of epoxy composites with ultralow loading. Compos. Ptart A Appl. Sci. Manuf. 2020, 139, 106062. [Google Scholar] [CrossRef]
- Liang, C.Y.; Hamidinejad, M.; Ma, L.; Wang, Z.J.; Park, C.B. Lightweight and flexible graphene/SiC-nanowires/ poly(vinylidene fluoride) composites for electromagnetic interference shielding and thermal management. Carbon 2020, 156, 58–66. [Google Scholar] [CrossRef]
- Xiao, Y.J.; Wang, W.Y.; Chen, X.J.; Lin, T.; Zhang, Y.T.; Yang, J.H.; Wang, Y.; Zhou, Z.W. Hybrid network structure and thermal conductive properties in poly(vinylidene fluoride) composites based on carbon nanotubes and graphene nanoplatelets. Compos. Ptart A Appl. Sci. Manuf. 2016, 90, 614–625. [Google Scholar] [CrossRef]
- Guan, C.L.; Qin, Y.; Wang, B.; Li, L.H.; Wang, M.J.; Lin, C.-T.; He, X.D.; Nishimura, K.; Yu, J.H.; Yi, J.; et al. Highly thermally conductive polymer composites with barnacle-like nano-crystalline Diamond@Silicon carbide hybrid architecture. Compos. Ptart B Eng. 2020, 198, 108167. [Google Scholar] [CrossRef]
- Tao, P.F.; Liu, W.; Wang, Y.G. Fabrication of two-layer SiC nanowire cladding tube with high thermal conductivity. J. Eur. Ceram. Soc. 2020, 40, 3399–3405. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, J.H.; Dai, W.; Wang, D.; Song, Y.Z.; Bai, H.; Zhou, X.F.; Li, C.Y.; Lin, C.-T.; Jiang, N. Epoxy composites filled with one-dimensional SiC nanowires–two-dimensional graphene nanoplatelets hybrid nanofillers. RSC Adv. 2014, 4, 59409–59417. [Google Scholar] [CrossRef]
- Wang, P.; Zheng, Y.; Inoue, T.; Xiang, R.; Shawky, A.; Watanabe, M.; Anisimov, A.; Kauppinen, E.I.; Chiashi, S.; Maruyama, S. Enhanced In-Plane Thermal Conductance of Thin Films Composed of Coaxially Combined Single-Walled Carbon Nanotubes and Boron Nitride Nanotubes. ACS Nano 2020, 14, 4298–4305. [Google Scholar] [CrossRef]
- He, J.; Wang, H.; Su, Z.; Guo, Y.L.; Qu, Q.Q.; Qin, T.F.; Tian, X.Y. Designing Poly(vinylidene fluoride)-Silicon Carbide Nanowire Composite Structures to Achieve High Thermal Conductivity. ACS Appl. Polym. Mater. 2019, 1, 2807–2818. [Google Scholar] [CrossRef]
- Mehra, N.; Mu, L.W.; Ji, T.; Yang, X.T.; Kong, J.; Gu, J.W.; Zhu, J.H. Thermal transport in polymeric materials and across composite interfaces. Appl. Mater. Today 2018, 12, 92–130. [Google Scholar] [CrossRef]
- Kim, H.S.; Jang, J.-U.; Lee, H.; Kim, S.Y.; Kim, S.H.; Kim, J.; Jung, Y.C.; Yang, B.J. Thermal Management in Polymer Composites: A Review of Physical and Structural Parameters. Adv. Eng. Mater. 2018, 20, 1800204. [Google Scholar] [CrossRef]
- Xu, X.; Chen, J.; Zhou, J.; Li, B. Thermal Conductivity of Polymers and Their Nanocomposites. Adv. Mater. 2018, 30, e1705544. [Google Scholar] [CrossRef] [Green Version]
- Hsissou, R.; Seghiri, R.; Benzekri, Z.; Hilali, M.; Rafik, M.; Elharfi, A. Polymer composite materials: A comprehensive review. Compos. Struct. 2021, 262, 113640. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Ruan, K.P.; Shi, X.T.; Yang, X.T.; Gu, J.W. Factors affecting thermal conductivities of the polymers and polymer composites: A review. Compos. Sci. Technol. 2020, 193, 108134. [Google Scholar] [CrossRef]
- Rasul, M.G.; Kiziltas, A.; Arfaei, B.; Shahbazian-Yassar, R. 2D boron nitride nanosheets for polymer composite materials. npj 2D Mater. Appl. 2021, 5, 56. [Google Scholar] [CrossRef]
- Han, Z.D.; Alberto, F. Thermal conductivity of carbon nanotubes and their polymernanocomposites: A review. Prog. Polym. Sci. 2011, 36, 914–944. [Google Scholar] [CrossRef] [Green Version]
- Xiong, Y.H.; Wu, H.; Gao, J.S.; Chen, W.; Zhang, J.C.; Yue, Y.N. Toward Improved Thermal Conductance of Graphene-Polyethylene Composites via Surface Defect Engineering: A Molecular Dynamics Study. Acta Phys. Chim. Sin. 2019, 35, 1150–1156. [Google Scholar] [CrossRef]
- Chen, H.Y.; Ginzburg, V.V.; Yang, J.; Yang, Y.F.; Liu, W.; Huang, Y.; Du, L.B.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci. 2016, 59, 41–85. [Google Scholar] [CrossRef]
- Wang, T.; Wang, H.C.; Su, W.B.; Zhai, J.Z.; Yakovleva, G.; Wang, X.; Chen, T.T.; Romanenko, A.; Wang, C.L. Simultaneous enhancement of thermoelectric and mechanical performance for SnTe by nano SiC compositing. J. Mater. Chem. C 2020, 8, 7393–7400. [Google Scholar] [CrossRef]
- Wu, R.B.; Zhou, K.; Yue, C.Y.; Wei, J.; Pan, Y. Recent progress in synthesis, properties and potential applications of SiC nanomaterials. Prog. Mater. Sci. 2015, 72, 1–60. [Google Scholar] [CrossRef]
- Chen, S.; Feng, Y.; Qin, M.; Ji, T.; Feng, W. Improving thermal conductivity in the through-thickness direction of carbon fibre/SiC composites by growing vertically aligned carbon nanotubes. Carbon 2017, 116, 84–93. [Google Scholar] [CrossRef]
- Shimoda, K.; Hinoki, T.; Kohyama, A. Effect of carbon nanofibers (CNFs) content on thermal and mechanical properties of CNFs/SiC nanocomposites. Compos. Sci. Technol. 2010, 70, 387–392. [Google Scholar] [CrossRef]
- Yang, X.T.; Tang, L.; Guo, Y.Q.; Liang, C.B.; Zhang, Q.Y.; Kou, K.C.; Gu, J.W. Improvement of thermal conductivities for PPS dielectric nanocomposites via incorporating NH2-POSS functionalized nBN fillers. Compos. Ptart A Appl. Sci. Manuf. 2017, 101, 237–242. [Google Scholar] [CrossRef]
- Lichtenhan, J.D.; Pielichowski, K.; Blanco, I. POSS-Based Polymers. Polymers 2019, 11, 1727. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.Y.; Song, Q.; Zhang, S.Y.; Li, K.; Xiao, C.X.; Lin, H.J.; Shen, Q.L.; Li, H.J. Simultaneous enhancement of mechanical and electrical/thermal properties of carbon fiber/polymer composites via SiC nanowires/graphene hybrid nanofillers. Compos. Ptart A Appl. Sci. Manuf. 2021, 145, 106404. [Google Scholar] [CrossRef]
- Spinelli, G.; Guarini, R.; Kotsilkova, R.; Ivanov, E.; Romano, V. Experimental, Theoretical and Simulation Studies on the Thermal Behavior of PLA-Based Nanocomposites Reinforced with Different Carbonaceous Fillers. Nanomaterials 2021, 11, 1511. [Google Scholar] [CrossRef] [PubMed]
- Kang, G.D.; Cao, Y.M. Application and modification of poly(vinylidene fluoride) (PVDF) membranes—A review. J. Membr. Sci. 2014, 463, 145–165. [Google Scholar] [CrossRef]
- Yu, J.H.; Jiang, P.K.; Wu, C.; Wang, L.C.; Wu, X.F. Graphene nanocomposites based on poly(vinylidene fluoride): Structure and properties. Polym. Compos. 2011, 32, 1483–1491. [Google Scholar] [CrossRef]
- Chen, J.P.; Wang, Z.F.; Yi, Z.L.; Xie, L.J.; Liu, Z.; Zhang, S.C.; Chen, C.M. SiC whiskers nucleated on rGO and its potential role in thermal conductivity and electronic insulation. Chem. Eng. J. 2021, 423, 130181. [Google Scholar] [CrossRef]
- Li, X.X.; Li, W.J.; Liu, Q.; Chen, S.L.; Wang, L.; Gao, F.M.; Shao, G.; Tian, Y.; Lin, Z.F.; Yang, W.Y. Robust High-Temperature Supercapacitors Based on SiC Nanowires. Adv. Funct. Mater. 2020, 31, 2008901. [Google Scholar] [CrossRef]
- Biscay, N.; Henry, L.; Adschiri, T.; Yoshimura, M.; Aymonier, C. Behavior of Silicon Carbide Materials under Dry to Hydrothermal Conditions. Nanomaterials 2021, 11, 1351. [Google Scholar] [CrossRef]
- Shen, D.; Zhan, Z.; Liu, Z.; Cao, Y.; Zhou, L.; Liu, Y.; Dai, W.; Nishimura, K.; Li, C.; Lin, C.T.; et al. Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires. Sci. Rep. 2017, 7, 2606. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Y.; Zhu, X.; Zeng, X.; Sun, R.; Xu, J.B.; Wong, C.P. Vertically Aligned and Interconnected SiC Nanowire Networks Leading to Significantly Enhanced Thermal Conductivity of Polymer Composites. ACS Appl. Mater. Interfaces 2018, 10, 9669–9678. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Yin, X.H.; Peng, D.; Lv, R.H.; Na, B.; Liu, H.S.; Gu, X.B.; Wu, W.; Zhou, J.L.; Zhang, Y. Achieving thermally conductive low loss PVDF-based dielectric composites via surface functionalization and orientation of SiC nanowires. Express Polym. Lett. 2020, 14, 2–11. [Google Scholar] [CrossRef]
- Wang, B.; Yin, X.; Peng, D.; Zhang, Y.; Wu, W.; Gu, X.; Na, B.; Lv, R.; Liu, H. Highly thermally conductive PVDF-based ternary dielectric composites via engineering hybrid filler networks. Compos. Ptart B Eng. 2020, 191. [Google Scholar] [CrossRef]
- Xue, B.; Yang, S.D.; Sun, X.; Xie, L.; Qin, S.H.; Zheng, Q. From tanghulu-like to cattail-like SiC nanowire architectures: Interfacial design of nanocellulose composites toward high thermal conductivity. J. Mater. Chem. A 2020, 8, 14506–14518. [Google Scholar] [CrossRef]
- Shen, D.Y.; Wang, M.J.; Wu, Y.M.; Liu, Z.D.; Cao, Y.; Wang, T.; Wu, X.F.; Shi, Q.T.; Chee, K.W.A.; Dai, W.; et al. Enhanced thermal conductivity of epoxy composites with core-shell SiC@SiO2 nanowires. High Volt. 2017, 2, 154–160. [Google Scholar] [CrossRef]
- Xu, B.H.; Yang, H.G.; Dai, K.; Liu, X.Y.; Zhang, L.; Wang, M.; Niu, M.J.; Duan, R.X.; Wang, X.; Chen, J.Z. Thermo-compression-aligned functional graphene showing anisotropic response to in-plane stretching and out-of-plane bending. J. Mater. Sci. 2018, 53, 6574–6585. [Google Scholar] [CrossRef]
- Sun, N.; Sun, J.J.; Zeng, X.L.; Chen, P.; Qian, J.S.; Xia, R.; Sun, R. Hot-pressing induced orientation of boron nitride in polycarbonate composites with enhanced thermal conductivity. Compos. Ptart A Appl. Sci. Manuf. 2018, 110, 45–52. [Google Scholar] [CrossRef]
- Yu, C.P.; Gong, W.B.; Tian, W.; Zhang, Q.C.; Xu, Y.C.; Lin, Z.Y.; Hu, M.; Fan, X.D.; Yao, Y.G. Hot-pressing induced alignment of boron nitride in polyurethane for composite films with thermal conductivity over 50 Wm−1 K−1. Compos. Sci. Technol. 2018, 160, 199–207. [Google Scholar] [CrossRef]
- Lin, B.; Li, Z.T.; Yang, Y.; Li, Y.; Lin, J.C.; Zheng, X.M.; He, F.A.; Lam, K.H. Enhanced dielectric permittivity in surface-modified graphene/PVDF composites prepared by an electrospinning-hot pressing method. Compos. Sci. Technol. 2019, 172, 58–65. [Google Scholar] [CrossRef]
- Zhang, X.; Cai, X.; Xie, X.; Pu, C.; Dong, X.; Jiang, Z.; Gao, T.; Ren, Y.; Hu, J.; Zhang, X. Anisotropic Thermally Conductive Perfluoroalkoxy Composite with Low Dielectric Constant Fabricated by Aligning Boron Nitride Nanosheets via Hot Pressing. Polymers 2019, 11, 1638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hwang, Y.; Kim, M.; Kim, J. Fabrication of surface-treated SiC/epoxy composites through a wetting method for enhanced thermal and mechanical properties. Chem. Eng. J. 2014, 246, 229–237. [Google Scholar] [CrossRef]
- Li, Y.H.; Qi, R.S.; Shi, R.C.; Li, N.; Gao, P. Manipulation of surface phonon polaritons in SiC nanorods. Sci. Bull. 2020, 65, 820–826. [Google Scholar] [CrossRef]
- Oluwalowo, A.; Nguyen, N.; Zhang, S.; Park, J.G.; Liang, R. Electrical and thermal conductivity improvement of carbon nanotube and silver composites. Carbon 2019, 146, 224–231. [Google Scholar] [CrossRef]
- Guo, Y.Q.; Ruan, K.P.; Gu, J.W. Controllable thermal conductivity in composites by constructing thermal conduction networks. Mater. Today Phys. 2021, 20, 100449. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, J.; Qin, Y.; Wei, X.; Li, L.; Li, M.; Kong, X.; Xiong, S.; Cai, T.; Dai, W.; Lin, C.-T.; et al. Enhanced Thermal Conductivity of Polymer Composite by Adding Fishbone-like Silicon Carbide. Nanomaterials 2021, 11, 2891. https://doi.org/10.3390/nano11112891
Xia J, Qin Y, Wei X, Li L, Li M, Kong X, Xiong S, Cai T, Dai W, Lin C-T, et al. Enhanced Thermal Conductivity of Polymer Composite by Adding Fishbone-like Silicon Carbide. Nanomaterials. 2021; 11(11):2891. https://doi.org/10.3390/nano11112891
Chicago/Turabian StyleXia, Juncheng, Yue Qin, Xianzhe Wei, Linhong Li, Maohua Li, Xiangdong Kong, Shaoyang Xiong, Tao Cai, Wen Dai, Cheng-Te Lin, and et al. 2021. "Enhanced Thermal Conductivity of Polymer Composite by Adding Fishbone-like Silicon Carbide" Nanomaterials 11, no. 11: 2891. https://doi.org/10.3390/nano11112891
APA StyleXia, J., Qin, Y., Wei, X., Li, L., Li, M., Kong, X., Xiong, S., Cai, T., Dai, W., Lin, C.-T., Jiang, N., Fang, S., Yi, J., & Yu, J. (2021). Enhanced Thermal Conductivity of Polymer Composite by Adding Fishbone-like Silicon Carbide. Nanomaterials, 11(11), 2891. https://doi.org/10.3390/nano11112891