Red GaPAs/GaP Nanowire-Based Flexible Light-Emitting Diodes
Abstract
:1. Introduction
2. Results and Discussion
2.1. Modeling of GaPAs/GaP NW LEDs
2.2. GaPAs/GaP NW LED Array Synthesis
2.3. Sylgard Preparation
2.4. Fabrication of the Reference NW LED on Si Substrate
2.5. Fabrication of Flexible PDMS/NW LED
2.6. Electroluminescence Characterization
2.7. LEDs-on-Si Characterization
2.8. Flexible LED Characterization
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Schadt, M. Milestone in the history of field-effect liquid crystal displays and materials. Jpn. J. Appl. Phys. 2009, 48, 03B001. [Google Scholar] [CrossRef]
- Yang, D.; Wu, S. Fundamentals of Liquid Crystal Devices; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2014. [Google Scholar]
- Huang, Y.; Hsiang, E.-L.; Deng, M.-Y.; Wu, S.-T. Mini-LED, micro-LED and OLED displays: Present status and future perspectives. Light Sci. Appl. 2020, 9, 105. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.-H.; Chen, C.-H.; Lee, P.-H.; Lin, H.-Y.; Leung, M.; Chiu, T.-L.; Lin, C.-F. Blue organic light-emitting diodes: Current status, challenges, and future outlook. J. Mater. Chem. C 2019, 7, 5874–5888. [Google Scholar] [CrossRef]
- OLED Accounts for 60 Pct of World’s Market for Smartphone Displays: IHS Markit. Available online: http://www.koreapost.com/news/articleView.html?idxno=8130 (accessed on 24 June 2021).
- Tang, C.W.; VanSlyke, S.A. Organic electroluminescent diodes. Appl. Phys. Lett. 1987, 51, 913–915. [Google Scholar] [CrossRef]
- Baldo, M.A.; O’Brien, D.F.; You, Y.; Shoustikov, A.; Sibley, S.; Thompson, M.E.; Forrest, S.R. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 1998, 395, 151–154. [Google Scholar] [CrossRef]
- Adachi, C.; Baldo, M.A.; Thompson, M.E.; Forrest, S.R. Nearly 100% internal phosphorescence efficiency in an organic light-emitting device. J. Appl. Phys. 2001, 90, 5048–5051. [Google Scholar] [CrossRef] [Green Version]
- Uoyama, H.; Goushi, K.; Shizu, K.; Nomura, H.; Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 2012, 492, 234–238. [Google Scholar] [CrossRef] [PubMed]
- Sasabe, H.; Nakanishi, H.; Watanabe, Y.; Yano, S.; Hirasawa, M.; Pu, Y.-J.; Kido, J. Extremely low operating voltage green phosphorescent organic light-emitting devices. Adv. Funct. Mater. 2013, 23, 5550–5555. [Google Scholar] [CrossRef]
- Kim, K.-H.; Kim, J.-J. Origin and control of orientation of phosphorescent and TADF dyes for high-efficiency OLEDs. Adv. Mater. 2018, 30, 1705600. [Google Scholar] [CrossRef]
- Kim, K.-H.; Lee, S.; Moon, C.-K.; Kim, S.-Y.; Park, Y.-S.; Lee, J.-H.; Woo Lee, J.; Huh, J.; You, Y.; Kim, J.-J. Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes. Nat. Commun. 2014, 5, 4769. [Google Scholar] [CrossRef] [Green Version]
- Schlingman, K.; Chen, Y.; Carmichael, R.S.; Carmichael, T.B. 25 years of light-emitting electrochemical cells: A flexible and stretchable perspective. Adv. Mater. 2021, 33, 2006863. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.; Chui, C.; Tao, X. Luminous fabric devices for wearable low-level light therapy. Biomed. Opt. Express 2013, 4, 2925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yokota, T.; Zalar, P.; Kaltenbrunner, M.; Jinno, H.; Matsuhisa, N.; Kitanosako, H.; Tachibana, Y.; Yukita, W.; Koizumi, M.; Someya, T. Ultraflexible organic photonic skin. Sci. Adv. 2016, 2, e1501856. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kgatuke, M.; Hardy, D.; Townsend, K.; Salter, E.; Downes, T.; Harrigan, K.; Allcock, S.; Dias, T. Exploring the role of textile craft practice in interdisciplinary e-textiles development through the design of an illuminated safety cycling jacket. Proceedings 2019, 32, 12. [Google Scholar] [CrossRef] [Green Version]
- Templier, F. GaN-based emissive microdisplays: A very promising technology for compact, ultra-high brightness display systems. J. Soc. Inf. Disp. 2016, 24, 669–675. [Google Scholar] [CrossRef]
- Ou, F.; Chong, W.C.; Xu, Q.; Chen, Y.; Li, Q.; Zhang, L. P-125: Monochromatic active matrix micro-LED micro-displays with >5000 Dpi pixel density fabricated using monolithic hybrid integration process. SID Symp. Dig. Tech. Pap. 2018, 49, 1677–1680. [Google Scholar] [CrossRef]
- Bibl, A.; Higginson, J.A.; Law, H.F.S.; Hu, H.H. Method of Fabricating a Micro Device Transfer Head. U.S. Patent No. 9,620,478, 10 April 2017. [Google Scholar]
- Park, S.-I.; Xiong, Y.; Kim, R.-H.; Elvikis, P.; Meitl, M.; Kim, D.-H.; Wu, J.; Yoon, J.; Yu, C.-J.; Liu, Z.; et al. Printed assemblies of inorganic light-emitting diodes for deformable and semitransparent displays. Science 2009, 325, 977–981. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cok, R.S.; Meitl, M.; Rotzoll, R.; Melnik, G.; Fecioru, A.; Trindade, A.J.; Raymond, B.; Bonafede, S.; Gomez, D.; Moore, T.; et al. Inorganic light-emitting diode displays using micro-transfer printing. J. Soc. Inf. Disp. 2017, 25, 589–609. [Google Scholar] [CrossRef]
- Huang, Y.; Tan, G.; Gou, F.; Li, M.-C.; Lee, S.-L.; Wu, S.-T. Prospects and challenges of mini-LED and micro-LED displays. J. Soc. Inf. Disp. 2019, 27, 387–401. [Google Scholar] [CrossRef]
- Pan, C.; Dong, L.; Zhu, G.; Niu, S.; Yu, R.; Yang, Q.; Liu, Y.; Wang, Z.L. High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array. Nat. Photonics 2013, 7, 752–758. [Google Scholar] [CrossRef]
- Dai, X.; Messanvi, A.; Zhang, H.; Durand, C.; Eymery, J.; Bougerol, C.; Julien, F.H.; Tchernycheva, M. Flexible light-emitting diodes based on vertical nitride nanowires. Nano Lett. 2015, 15, 6958–6964. [Google Scholar] [CrossRef] [Green Version]
- Nadarajah, A.; Word, R.C.; Meiss, J.; Könenkamp, R. Flexible inorganic nanowire light-emitting diode. Nano Lett. 2008, 8, 534–537. [Google Scholar] [CrossRef]
- Kochetkov, F.M.; Neplokh, V.; Mastalieva, V.A.; Mukhangali, S.; Vorob’ev, A.A.; Uvarov, A.V.; Komissarenko, F.E.; Mitin, D.M.; Kapoor, A.; Eymery, J.; et al. Stretchable transparent light-emitting diodes based on InGaN/GaN quantum well microwires and Carbon nanotube films. Nanomaterials 2021, 11, 1503. [Google Scholar] [CrossRef]
- Kochetkov, F.M.; Neplokh, V.; Fedorov, V.V.; Bolshakov, A.D.; Sharov, V.A.; Eliseev, I.E.; Tchernycheva, M.; Cirlin, G.E.; Nasibulin, A.G.; Islamova, R.M.; et al. Fabrication and electrical study of large area free-standing membrane with embedded GaP NWs for flexible devices. Nanotechnology 2020, 31, 46LT01. [Google Scholar] [CrossRef]
- Gilshteyn, E.P.; Romanov, S.A.; Kopylova, D.S.; Savostyanov, G.V.; Anisimov, A.S.; Glukhova, O.E.; Nasibulin, A.G. Mechanically tunable single-walled carbon nanotube films as a universal material for transparent and stretchable electronics. ACS Appl. Mater. Interfaces 2019, 11, 27327–27334. [Google Scholar] [CrossRef]
- Borgstrom, M.T.; Magnusson, M.H.; Dimroth, F.; Siefer, G.; Hohn, O.; Riel, H.; Schmid, H.; Wirths, S.; Bjork, M.; Aberg, I.; et al. Towards nanowire tandem junction solar cells on silicon. IEEE J. Photovolt. 2018, 8, 733–740. [Google Scholar] [CrossRef] [Green Version]
- Jeong, J.; Jin, D.K.; Cha, J.; Kang, B.K.; Wang, Q.; Choi, J.; Lee, S.W.; Mikhailovskii, V.Y.; Neplokh, V.; Amador-Mendez, N.; et al. Selective-area remote epitaxy of ZnO microrods using multilayer–monolayer-patterned graphene for transferable and flexible device fabrications. ACS Appl. Nano Mater. 2020, 3, 8920–8930. [Google Scholar] [CrossRef]
- Jeong, J.; Jin, D.K.; Choi, J.; Jang, J.; Kang, B.K.; Wang, Q.; Park, W.I.; Jeong, M.S.; Bae, B.-S.; Yang, W.S.; et al. Transferable, flexible white light-emitting diodes of GaN p–n junction microcrystals fabricated by remote epitaxy. Nano Energy 2021, 86, 106075. [Google Scholar] [CrossRef]
- Ishizaka, A.; Shiraki, Y. Low temperature surface cleaning of silicon and its application to silicon MBE. J. Electrochem. Soc. 1986, 133, 666–671. [Google Scholar] [CrossRef]
- Matteini, F.; Tütüncüoglu, G.; Potts, H.; Jabeen, F.; Fontcuberta i Morral, A. Wetting of Ga on SiO x and its impact on GaAs nanowire growth. Cryst. Growth Des. 2015, 15, 3105–3109. [Google Scholar] [CrossRef]
- Neplokh, V.; Kochetkov, F.M.; Deriabin, K.V.; Fedorov, V.V.; Bolshakov, A.D.; Eliseev, I.E.; Mikhailovskii, V.Y.; Ilatovskii, D.A.; Krasnikov, D.V.; Tchernycheva, M.; et al. Modified silicone rubber for fabrication and contacting of flexible suspended membranes of N-/p-GaP nanowires with a single-walled carbon nanotube transparent contact. J. Mater. Chem. C 2020, 8, 3764–3772. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Sun, Z.; Sanchez, A.M.; Ramsteiner, M.; Aagesen, M.; Wu, J.; Kim, D.; Jurczak, P.; Huo, S.; Lauhon, L.J.; et al. Doping of self-catalyzed nanowires under the influence of droplets. Nano Lett. 2018, 18, 81–87. [Google Scholar] [CrossRef]
- Bolshakov, A.D.; Fedorov, V.V.; Sibirev, N.V.; Fetisova, M.V.; Moiseev, E.I.; Kryzhanovskaya, N.V.; Koval, O.Y.; Ubyivovk, E.V.; Mozharov, A.M.; Cirlin, G.E.; et al. Growth and characterization of GaP/GaPAs nanowire heterostructures with controllable composition. Phys. Status Solidi (RRL)—Rapid Res. Lett. 2019, 13, 1900350. [Google Scholar] [CrossRef]
- Koval, O.Y.; Fedorov, V.V.; Bolshakov, A.D.; Fedina, S.V.; Kochetkov, F.M.; Neplokh, V.; Sapunov, G.A.; Dvoretckaia, L.N.; Kirilenko, D.A.; Shtrom, I.V.; et al. Structural and optical properties of self-catalyzed axially heterostructured GaPN/GaP nanowires embedded into a flexible silicone membrane. Nanomaterials 2020, 10, 2110. [Google Scholar] [CrossRef] [PubMed]
- Koval, O.Y.; Fedorov, V.V.; Bolshakov, A.D.; Eliseev, I.E.; Fedina, S.V.; Sapunov, G.A.; Udovenko, S.A.; Dvoretckaia, L.N.; Kirilenko, D.A.; Burkovsky, R.G.; et al. XRD evaluation of wurtzite phase in MBE grown self-catalyzed GaP nanowires. Nanomaterials 2021, 11, 960. [Google Scholar] [CrossRef]
- Fedorov, V.V.; Berdnikov, Y.; Sibirev, N.V.; Bolshakov, A.D.; Fedina, S.V.; Sapunov, G.A.; Dvoretckaia, L.N.; Cirlin, G.; Kirilenko, D.A.; Tchernycheva, M.; et al. Tailoring morphology and vertical yield of self-catalyzed GaP nanowires on template-free Si substrates. Nanomaterials 2021, 11, 1949. [Google Scholar] [CrossRef] [PubMed]
- Khabushev, E.M.; Krasnikov, D.V.; Zaremba, O.T.; Tsapenko, A.P.; Goldt, A.E.; Nasibulin, A.G. Machine learning for tailoring optoelectronic properties of single-walled carbon nanotube films. J. Phys. Chem. Lett. 2019, 10, 6962–6966. [Google Scholar] [CrossRef] [PubMed]
- Goldt, A.E.; Zaremba, O.T.; Bulavskiy, M.O.; Fedorov, F.S.; Larionov, K.V.; Tsapenko, A.P.; Popov, Z.I.; Sorokin, P.; Anisimov, A.S.; Inani, H.; et al. Highly efficient bilateral doping of single-walled carbon nanotubes. J. Mater. Chem. C 2021, 9, 4514–4521. [Google Scholar] [CrossRef]
- Anisimov, A.S.; Nasibulin, A.G.; Jiang, H.; Launois, P.; Cambedouzou, J.; Shandakov, S.D.; Kauppinen, E.I. Mechanistic investigations of single-walled carbon nanotube synthesis by ferrocene vapor decomposition in carbon monoxide. Carbon N. Y. 2010, 48, 380–388. [Google Scholar] [CrossRef]
- Iakovlev, V.Y.; Krasnikov, D.V.; Khabushev, E.M.; Kolodiazhnaia, J.V.; Nasibulin, A.G. Artificial Neural network for predictive synthesis of single-walled carbon nanotubes by aerosol CVD method. Carbon N. Y. 2019, 153, 100–103. [Google Scholar] [CrossRef]
- Kapoor, A.; Guan, N.; Vallo, M.; Messanvi, A.; Mancini, L.; Gautier, E.; Bougerol, C.; Gayral, B.; Julien, F.H.; Vurpillot, F.; et al. Green electroluminescence from radial m-plane InGaN quantum wells grown on GaN wire sidewalls by metal–organic vapor phase epitaxy. ACS Photonics 2018, 5, 4330–4337. [Google Scholar] [CrossRef]
- Zhang, H.; Dai, X.; Guan, N.; Messanvi, A.; Neplokh, V.; Piazza, V.; Vallo, M.; Bougerol, C.; Julien, F.H.; Babichev, A.; et al. Flexible photodiodes based on nitride core/shell p–n junction nanowires. ACS Appl. Mater. Interfaces 2016, 8, 26198–26206. [Google Scholar] [CrossRef]
- Cowley, A.M. Depletion capacitance and diffusion potential of gallium phosphide schottky-barrier diodes. J. Appl. Phys. 1966, 37, 3024–3032. [Google Scholar] [CrossRef]
- Lin, Y.C.; Chang, S.J.; Su, Y.K.; Tsai, T.Y.; Chang, C.S.; Shei, S.C.; Kuo, C.W.; Chen, S.C. InGaN/GaN light emitting diodes with Ni/Au, Ni/ITO and ITO p-type contacts. Solid-State Electron. 2003, 47, 849–853. [Google Scholar] [CrossRef]
- Messanvi, A.; Zhang, H.; Neplokh, V.; Julien, F.H.; Bayle, F.; Foldyna, M.; Bougerol, C.; Gautier, E.; Babichev, A.; Durand, C.; et al. Investigation of photovoltaic properties of single core–shell GaN/InGaN Wires. ACS Appl. Mater. Interfaces 2015, 7, 21898–21906. [Google Scholar] [CrossRef]
- Craford, M.G.; Shaw, R.W.; Herzog, A.H.; Groves, W.O. Radiative recombination mechanisms in GaAsP diodes with and without nitrogen doping. J. Appl. Phys. 1972, 43, 4075–4083. [Google Scholar] [CrossRef]
- Guan, N.; Amador-Mendez, N.; Kunti, A.; Babichev, A.; Das, S.; Kapoor, A.; Gogneau, N.; Eymery, J.; Julien, F.H.; Durand, C.; et al. Heat dissipation in flexible nitride nanowire light-emitting diodes. Nanomaterials 2020, 10, 2271. [Google Scholar] [CrossRef]
- Hajiali, F.; Shojaei, A. Network structure and mechanical properties of polydimethylsiloxane filled with nanodiamond—Effect of degree of silanization of nanodiamond. Compos. Sci. Technol. 2017, 142, 227–234. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neplokh, V.; Fedorov, V.; Mozharov, A.; Kochetkov, F.; Shugurov, K.; Moiseev, E.; Amador-Mendez, N.; Statsenko, T.; Morozova, S.; Krasnikov, D.; et al. Red GaPAs/GaP Nanowire-Based Flexible Light-Emitting Diodes. Nanomaterials 2021, 11, 2549. https://doi.org/10.3390/nano11102549
Neplokh V, Fedorov V, Mozharov A, Kochetkov F, Shugurov K, Moiseev E, Amador-Mendez N, Statsenko T, Morozova S, Krasnikov D, et al. Red GaPAs/GaP Nanowire-Based Flexible Light-Emitting Diodes. Nanomaterials. 2021; 11(10):2549. https://doi.org/10.3390/nano11102549
Chicago/Turabian StyleNeplokh, Vladimir, Vladimir Fedorov, Alexey Mozharov, Fedor Kochetkov, Konstantin Shugurov, Eduard Moiseev, Nuño Amador-Mendez, Tatiana Statsenko, Sofia Morozova, Dmitry Krasnikov, and et al. 2021. "Red GaPAs/GaP Nanowire-Based Flexible Light-Emitting Diodes" Nanomaterials 11, no. 10: 2549. https://doi.org/10.3390/nano11102549
APA StyleNeplokh, V., Fedorov, V., Mozharov, A., Kochetkov, F., Shugurov, K., Moiseev, E., Amador-Mendez, N., Statsenko, T., Morozova, S., Krasnikov, D., Nasibulin, A. G., Islamova, R., Cirlin, G., Tchernycheva, M., & Mukhin, I. (2021). Red GaPAs/GaP Nanowire-Based Flexible Light-Emitting Diodes. Nanomaterials, 11(10), 2549. https://doi.org/10.3390/nano11102549