Multifunctional GaFeO3 Obtained via Mechanochemical Activation Followed by Calcination of Equimolar Nano-System Ga2O3–Fe2O3
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Equimolar Mixture β-Ga2O3 and α-Fe2O3 under HEBM
3.1.1. X-Ray Diffraction
3.1.2. 57Fe Mössbauer Spectroscopy
3.1.3. TEM
3.2. Obtaining and Characterizing the GaFeO3 (GFO)
3.2.1. XRD Data
3.2.2. 57Fe Mössbauer Spectroscopy
3.2.3. TEM Images
3.3. Optical Properties of the Ga:α-Fe2O3 and GaFeO3 Systems
3.4. Magnetic Properties of the Ga:α-Fe2O3 and GaFeO3 Systems
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bakr Mohamed, M.; Senyshyn, A.; Ehrenberg, H.; Fuess, H. Structural, magnetic, dielectric properties of multiferroic GaFeO3 prepared by solid state reaction and sol-gel methods. J. Alloy Comp. 2010, 492, L20–L27. [Google Scholar] [CrossRef]
- Dhanasekaran, P.; Gupta, M.N. Factors affecting the production of H2 by water splitting over a novel visible light-driven photocatalysts GaFeO3. Int. J. Hydrog. Energy 2012, 37, 4897–4907. [Google Scholar] [CrossRef]
- Liang, C.H.; Meng, G.W.; Wang, G.Z.; Wang, Y.W.; Zhang, L.D.; Zhang, S.Y. Catalytic synthesis and photoluminescence of beta-Ga2O3 nanowires. Appl. Phys. Lett. 2001, 78, 3202–3204. [Google Scholar] [CrossRef]
- Li, X.Y.; Trinchi, A.; Wlodarski, W.; Galatsis, K.; Kalantar-zadehet, K. Investigation of the oxygen gas sensing performance of Ga2O3 thin films with different dopants. Sens. Actuators 2003, B93, 431–434. [Google Scholar] [CrossRef]
- Hou, Y.D.; Wu, L.; Wang, X.C.; Ding, Z.X.; Li, Z.H.; Fu, X.Z. Photocatalytic performance of alpha-, beta-, and gamma-Ga2O3 for the destruction of volatile aromatic pollutants in air. J. Catal. 2007, 250, 12–18. [Google Scholar] [CrossRef]
- Krishnamoorthy, S.; Rivas, J.A.; Amiridis, M.D. Catalytic oxidation of 1,2-dichlorobenzene over supported transition metal oxides. J. Catal. 2000, 193, 264–272. [Google Scholar] [CrossRef]
- Carraro, G.; Barreca, D.; Bekermann, D.; Montini, T.; Gasparotto, A.; Gombac, V.; Maccato, C.; Fornasiero, P. Supported F-Doped alpha-Fe2O3 Nanomaterials: Synthesis, Characterization and Photo-Assisted H-2 Production. J. Nanosci. Nanotechnol. 2013, 13, 4962–4968. [Google Scholar] [CrossRef]
- Rettig, F.; Moos, R. α-Iron oxide: An intrinsically semiconducting oxide material for direct thermoelectric oxygen sensors. Sens. Actuators B Chem. 2010, 145, 685–690. [Google Scholar] [CrossRef]
- Ohkoshi, S.; Kuroki, S.; Sakurai, S.; Matsumoto, K.; Sato, K.; Sasaki, S. A Millimeter-Wave Absorber Based on Gallium-Substituted ε-Iron Oxide Nanomagnets. Angew. Chem. Int. Ed. 2007, 46, 8392–8395. [Google Scholar] [CrossRef]
- Sena, S.; Chakraborty, N.; Rana, P.; Narjinary, M.; Mursalina, S.D.; Tripathyb, S.; Pradhan, D.K.; Sen, A. Nanocrystalline gallium ferrite: A novel material for sensing very low concentration of alcohol vapour. Ceram. Int. 2015, 41, 10110–10115. [Google Scholar] [CrossRef]
- Kujur, V.S.; Singh, S. Structural, magnetic, optical and photocatalytic properties of GaFeO3 nanoparticles synthesized via non-aqueous solvent-based sol-gel route. J. Mater. Sci. Mater. Electron. 2020, 31, 17633–17646. [Google Scholar] [CrossRef]
- Han, T.C.; Chen, T.Y.; Lee, Y.C. Grain size effect on site-disorder and magnetic properties of multiferroic GaFeO3 nanoparticles. Appl. Phys. Lett. 2013, 103, 232405. [Google Scholar] [CrossRef]
- Zhang, M.H.; Yasui, S.; Katayama, T.; Rao, B.N.; Wen, H.Q.; Pan, X.H.; Tang, M.B.; Ai, F.; Itoh, M. Epitaxial Growth of Orthorhombic GaFeO3 Thin Films on SrTiO3 (111) Substrates by Simple Sol-Gel Method. Materials 2019, 12, 254. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, X.; Tiwari, D.; Fermin, D.J. High Interfacial Hole-Transfer Efficiency at GaFeO3 Thin Film Photoanodes. Adv. Energy Mater. 2020, 2002784. [Google Scholar] [CrossRef]
- Tachiyama, K.; Yasui, S.; Aroor Rao, B.; Dazai, T.; Usami, T.; Taniyama, T.; Katayama, T.; Hamasaki, Y.; Yu, J.; He, H.; et al. Magnetic properties of Single Crystal GaFeO3. MRS Adv. 2019, 4, 61–66. [Google Scholar] [CrossRef]
- Zhao, Z.M.; An, F.; Tian, F.G.; Zhang, Y.; Zhu, Q.F.; Chen, L.; Zhong, G.K.; Xie, S.H. Room temperature multiferroic properties of electrospun gallium ferrite nanofibers. J. Appl. Phys. 2020, 127, 134101. [Google Scholar] [CrossRef]
- Jacobson, C.J.H.; Jiang, J.Z.; Mørup, S.; Clause, B.S.; Topsoe, H. Ammonia synthesis over multi-promoted iron catalysts obtained by high-energy ball-milling. Catal. Lett. 1999, 61, 115–120. [Google Scholar] [CrossRef]
- Suryanarayana, C.; Al-Aqeeli, N. Mechanically alloyed nanocomposites. Prog. Mater. Sci. 2013, 58, 383–502. [Google Scholar] [CrossRef]
- Delogu, F.; Gorrasi, G.; Sorrentino, A. Fabrication of polymer nanocomposites via ball milling: Present status and future perspectives. Prog. Mater. Sci. 2017, 86, 75–126. [Google Scholar] [CrossRef]
- Sorescu, M.; Diamandescu, L. Mechanochemical and magnetomechanical synthesis of hematite nanoparticles. Hyperfine Interact. 2010, 196, 349–358. [Google Scholar] [CrossRef]
- Lemine, O.M.; Ghiloufi, I.; Bououdina, M.; Khezami, L.; M’hamed, M.O.; Hassan, A.T. Nanocrystalline Ni doped alpha-Fe2O3 for adsorption of metals from aqueous solution. J. Alloy Comp. 2014, 588, 592–595. [Google Scholar] [CrossRef]
- Sorescu, M.; Diamandescu, L.; Wood, J. Synthesis and characterization of the xZnO-(1−x)α-Fe2O3 nanoparticles system. J. Phys. Chem. Solids 2007, 68, 426–430. [Google Scholar] [CrossRef]
- Sorescu, M.; Xu, T.; Burnett, J.D.; Aitken, J.A. Investigation of LaFeO3 perovskite growth mechanism through mechanical ball milling of lanthanum and iron oxides. J. Mater. Sci. 2011, 46, 6709–6717. [Google Scholar] [CrossRef]
- Sorescu, M.L.; Diamandescu, L.; DiGnazio, J.; Xu, T. Structural, thermal, 57Fe and 151Eu Mössbauer studies of Eu2O3-Fe2O3 ceramic nanostructures. Ceram. Int. 2015, 41, 1579–1588. [Google Scholar] [CrossRef]
- Szafraniak-Wiza, I.; Bednarski, W.; Waplak, S.; Hilczer, B.; Pietraszko, A.; Kępiński, L. Multiferroic BiFeO3 nanoparticles studied by electron spin resonance, Diffraction and Transmission Electron Microscopy Methods. J. Nanosci. Nanotechnol. 2009, 9, 3246–3251. [Google Scholar] [CrossRef] [PubMed]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Reddy, V.R.; Sharma, K.; Gupta, A.; Banerjee, A. Magnetic anisotropy and sub-lattice magnetization study of polycrystalline magneto-electric Ga2-xFexO3. J. Magn. Magn. Mater. 2014, 362, 97–103. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, J.R.; Vancu, A. Optical Properties and Electronic Structure of Amorphous Germanium. Phys. Status Solidi B 1966, 15, 627–637. [Google Scholar] [CrossRef]
- Diamandescu, L.; Vasiliu, F.; Tarabasanu-Mihaila, D.; Feder, M.; Vlaicu, A.M.; Teodorescu, C.M.; Macovei, D.; Enculescu, I.; Parvulescu, V.; Vasile, E. Structural and photocatalytic properties of iron- and europium-doped TiO2 nanoparticles obtained under hydrothermal conditions. Mater. Chem. Phys. 2008, 112, 146–153. [Google Scholar] [CrossRef]
- Sharma, K.; Reddy, V.R.; Gupta, A.; Banerjee, A.; Awasthi, A.M. Magnetic and 57Fe Mössbauer study of magneto-electric GaFeO3 prepared by the sol-gel route. J. Phys. Condens. Matt. 2013, 25, 076002C. [Google Scholar] [CrossRef]
- Kumar, A.; Yusuf, S.M. The phenomenon of negative magnetization and its implications. Phys. Rep. 2015, 556, 1–34. [Google Scholar] [CrossRef]
- Raies, I.; Aldulmani Sharah, A.A.; Farhat, L.B.; Amami, M. Effect of restricted structural deformation on magnetic and electrical properties in GaFeO3 with Zn, Ti co-doping. J. Mater. Res. Tech. 2020, 9, 1673–1682. [Google Scholar] [CrossRef]
- Han, M.J.; Ozaki, T.; Yu, J. Magnetic ordering and exchange interactions in multiferroic GaFeO3. Phys. Rev. B 2007, 75, 060404(R). [Google Scholar] [CrossRef]
- Joy, P.A.; Kumar Anil, P.S.; Date, S.K. The relationship between field-cooled and zero-field-cooled susceptibilities of some ordered magnetic systems. J. Phys. Condens. Matter 1998, 10, 11049–11054. [Google Scholar] [CrossRef]
Milling Time (h) | Lattice Parameters (Å) | Reliability R Factors (%) | Crystallite Size (nm) | Phase Content (wt. %) | ||||
---|---|---|---|---|---|---|---|---|
a | b | c | Rp | Rwp | Rexp | |||
0 | 5.0334 12.2143 | - 3.0384 | 13.7463 5.8084 | 1.05 | 1.43 | 3.69 | >100 >100 | α-Fe2O3 (21.3) β-Ga2O3 (78.7) |
2 | 5.0311 | - | 13.7310 | 1.26 | 1.68 | 7.23 | 14.1 | Ga:α-Fe2O3 (100) |
4 | 5.0289 2.8640 | - - | 13.672 - | 1.15 | 1.51 | 7.44 | 12.2 95.2 | Ga:α-Fe2O3 (98.1) α- Fe (1.9) |
8 | 5.0276 2.8690 | - - | 13.6715 - | 1.29 | 1.77 | 8.14 | 13.9 93.6 | Ga:α-Fe2O3 (97.3) α- Fe (2.7) |
12 | 5.0272 2.8589 | - - | 13.6711 - | 1.05 | 1.43 | 8.94 | 15.6 94.6 | Ga:α-Fe2O3 (97.8) α- Fe (2.2) |
Errors | ±0.0005 | - | ±0.0005 | ±1.5 | ±1.2 |
Milling Time (h) | δ * (mm/s) | Δ (mm/s) | B (T) | Phase Assignment | Relative Abundance (%) |
---|---|---|---|---|---|
0 | 0.288 | −0.209 | 52.4 | α-Fe2O3 | 100 |
2 | 0.293 0.258 0.254 | −0.178 −0.350 0.705 | 51.7 4.6–47.4 - | α-Fe2O3 Ga:α-Fe2O3 Paramagnetic | 58.0 35.7 6.3 |
4 | 0.295 0.262 0.268 0.254 | −0.197 −0.231 −0.300 0.699 | 51.8 5.7–48.3 32.7 - | α-Fe2O3 Ga:α-Fe2O3 α-Fe Paramagnetic | 23.4 57.0 5.0 14.6 |
8 | 0.360 0.293 0.204 0.244 | −0.341 −0.243 −0.197 0.760 | 51.9 5.5–47.9 32.9 - | α-Fe2O3 Ga:α-Fe2O3 α-Fe Paramagnetic | 3.0 68.1 5.1 23.8 |
12 | 0.159 0.334 0.252 | −0.090 −0.362 0.620 | 4.3–47.9 33.2 - | Ga:α-Fe2O3 α-Fe Paramagnetic | 71.0 5.0 24.0 |
Errors | ±0.005 | ±0.010 | ±0.5 | ±0.06 |
Temperature (°C) | Lattice Parameters (Å) | Reliability R Factors (%) | Crystallite Size (nm) | Phase Content (wt. %) | ||||
---|---|---|---|---|---|---|---|---|
a | b | c | Rp | Rwp | Rexp | |||
600 | 5.0223 | - | 13.6720 | 1.38 | 1.85 | 7.62 | 20.9 | Ga:α-Fe2O3 (100) |
800 | 5.0261 | - | 13.6720 | 2.15 | 3.75 | 12.75 | 62.2 | Ga:α-Fe2O3 (100) |
850 | 5.0249 12.3140 5.0932 | - 3.0382 8.7406 | 13.6720 5.8413 9.3867 | 2.37 | 3.89 | 16.90 | 65.1 13.9 40.7 | Ga:α-Fe2O3 (74.52) β-Ga2O3 (12.46) GaFeO3 (13.02) |
900 | 5.0312 12.3140 5.0856 | - 3.0234 8.7527 | 13.6720 5.8553 9.4123 | 1.70 | 2.74 | 18.56 | 54.6 - 68.4 | Ga:α-Fe2O3 (27.79) β-Ga2O3 (3.52) GaFeO3 (68.69) |
950 | 5.0839 | 8.7498 | 9.3973 | 2.03 | 3.25 | 22.46 | >>100 | GaFeO3 (100) |
1000 | 5.0829 | 8.7476 | 9.3963 | 1.99 | 3.22 | 24.71 | >>100 | GaFeO3 (100) |
Errors | ±0.0005 | ±0.0005 | ±0.0005 | ±1.5 | ±1.2 |
Temperature (°C) | δ * (mm/s) | Δ (mm/s) | B (T) | Phase Areas (%) | Phase Assignment |
---|---|---|---|---|---|
600 | 0.280 | −0.23 | 6.9–49.2 | 100 | Ga:α-Fe2O3 |
800 | 0.277 0.310 | −0.232 −0.268 | 5.2–49.8 51.5 | 97.0 3.0 | Ga:α-Fe2O3 α-Fe2O3 |
850 | 0.284 0.175 0.259 0.277 0.229 | −0.216 −0.247 0.671 0.410 1.091 | 7.4–52.6 52.1 - - - | 75.5 10 6.7 5.0 2.8 | Ga:α-Fe2O3 α-Fe2O3 S1-GaFeO3 S2-GaFeO3 S3-GaFeO3 |
900 | 0.295 0.262 0.272 0.263 | −0.169 0.648 0.409 1.075 | 16.4–46.3 - - - | 30 24 28 18 | Ga:α-Fe2O3 S1-GaFeO3 S2-GaFeO3 S3-GaFeO3 |
950 | 0.260 0.269 0.263 | 0.677 0.406 1.086 | - - - | 32 43 25 | S1-GaFeO3 S2-GaFeO3 S3-GaFeO3 |
1000 | 0.260 0.269 0.266 | 0.681 0.405 1.086 | - - - | 32 43 25 | S1-GaFeO3 S2-GaFeO3 S3-GaFeO3 |
Errors | ±0.005 | ±0.010 | ±0.5 | ±0.06 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diamandescu, L.; Tolea, F.; Feder, M.; Vasiliu, F.; Mercioniu, I.; Enculescu, M.; Popescu, T.; Popescu, B. Multifunctional GaFeO3 Obtained via Mechanochemical Activation Followed by Calcination of Equimolar Nano-System Ga2O3–Fe2O3. Nanomaterials 2021, 11, 57. https://doi.org/10.3390/nano11010057
Diamandescu L, Tolea F, Feder M, Vasiliu F, Mercioniu I, Enculescu M, Popescu T, Popescu B. Multifunctional GaFeO3 Obtained via Mechanochemical Activation Followed by Calcination of Equimolar Nano-System Ga2O3–Fe2O3. Nanomaterials. 2021; 11(1):57. https://doi.org/10.3390/nano11010057
Chicago/Turabian StyleDiamandescu, Lucian, Felicia Tolea, Marcel Feder, Florin Vasiliu, Ionel Mercioniu, Monica Enculescu, Traian Popescu, and Bogdan Popescu. 2021. "Multifunctional GaFeO3 Obtained via Mechanochemical Activation Followed by Calcination of Equimolar Nano-System Ga2O3–Fe2O3" Nanomaterials 11, no. 1: 57. https://doi.org/10.3390/nano11010057