Low-Power Flexible Organic Field-Effect Transistors with Solution-Processable Polymer-Ceramic Nanoparticle Composite Dielectrics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials Synthetic
2.2. Device Fabrication
2.3. Characterization
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Thuau, D.; Kallitsis, K.; Ha, S.; Bargain, F.; Soulestin, T.; Pecastaings, G.; Tencé-Girault, S.; Domingues Dos Santos, F.; Hadziioannou, G. High and Temperature-Independent Dielectric Constant Dielectrics from PVDF-Based Terpolymer and Copolymer Blends. Adv. Electron. Mater. 2020, 19, 1901250. [Google Scholar] [CrossRef]
- Liu, Q.; Bottle, S.E.; Sonar, P. Developments of Diketopyrrolopyrrole-Dye-Based Organic Semiconductors for a Wide Range of Applications in Electronics. Adv. Mater. 2019, 26, 1903882. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, R.P.; Facchetti, A.; Marks, T.J. High-k Organic, Inorganic, and Hybrid Dielectrics for Low-Voltage Organic Field-Effect Transistors. Chem. Rev. 2010, 110, 205–239. [Google Scholar] [CrossRef] [PubMed]
- Sirringhaus, H. 25th anniversary article: Organic field-effect transistors: The path beyond amorphous silicon. Adv. Mater. 2014, 26, 1319–1335. [Google Scholar] [CrossRef] [Green Version]
- Zirkl, M.; Haase, A.; Fian, A.; Schön, H.; Sommer, C.; Jakopic, G.; Leising, G.; Stadlober, B.; Graz, I.; Gaar, N.; et al. Low-Voltage Organic Thin-Film Transistors with High-k Nanocomposite Gate Dielectrics for Flexible Electronics and Optothermal Sensors. Adv. Mater. 2007, 19, 2241–2245. [Google Scholar] [CrossRef]
- Wilk, G.D.; Wallace, R.M.; Anthony, J.M. High-κ gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 2001, 89, 5243–5275. [Google Scholar] [CrossRef]
- Lim, S.C.; Kim, S.H.; Koo, J.B.; Lee, J.H.; Ku, C.H.; Yang, Y.S.; Zyung, T. Hysteresis of pentacene thin-film transistors and inverters with cross-linked poly(4-vinylphenol) gate dielectrics. Appl. Phys. Lett. 2007, 90, 173512. [Google Scholar] [CrossRef]
- Jang, Y.; Lee, W.H.; Park, Y.D.; Kwak, D.; Cho, J.H.; Cho, K. High field-effect mobility pentacene thin-film transistors with nanoparticle polymer composite/polymer bilayer insulators. Appl. Phys. Lett. 2009, 94, 256–258. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Bae, J.H.; Lee, S.D.; Horowitz, G. An effective method to minimize the leakage current in organic thin-film transistors by using blends of various molecular weights. Org. Electron. 2012, 13, 1255–1260. [Google Scholar] [CrossRef]
- Portilla, L.; Etschel, S.H.; Tykwinski, R.R.; Halik, M. Green processing of metal oxide core-shell nanoparticles as low-temperature dielectrics in organic thin-film transistors. Adv. Mater. 2015, 27, 5950–5954. [Google Scholar] [CrossRef]
- Li, Y.; Wang, H.; Zhang, C.; Zhang, Y.; Cui, Z.; Yan, D.; Shi, Z. Organic thin-film transistors with novel high-k polymers as dielectric layers. Polym. Chem. 2015, 6, 3685–3693. [Google Scholar] [CrossRef]
- Bathula, C.; Appiagyei, A.B.; Yadav, H.; Kumar, K.A.; Ramesh, S.; Shrestha, N.K.; Shinde, S.; Kim, H.S.; Kim, H.S.; Reddy, L.V.; et al. Facile Synthesis of Triphenylamine Based Hyperbranched Polymer for Organic Field Effect Transistors. Nanomaterials 2019, 9, 1787. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Qu, G.; Mohammadi, E.; Mei, J.; Diao, Y. Solution-Processed Nanoporous Organic Semiconductor Thin Films: Toward Health and Environmental Monitoring of Volatile Markers. Adv. Funct. Mater. 2017, 27, 1701117. [Google Scholar] [CrossRef]
- Hou, X.; Ng, S.C.; Zhang, J.; Chang, J.S. Polymer nanocomposite dielectric based on P(VDF-TrFE)/PMMA/BaTiO3 for TIPs-pentacene OFETs. Org. Electron. 2015, 17, 247–252. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, J.; Kim, Y.S.; Lee, J.K. TiO2-poly(4-vinylphenol) nanocomposite dielectrics for organic thin film transistors. Org. Electron. 2013, 14, 3406–3414. [Google Scholar] [CrossRef]
- Kell, R.C.; Greenham, A.C.; Olds, G.C.E. High-Permittivity Temperature-Stable Ceramic Dielectrics with Low Microwave Loss. J. Am. Ceram. Soc. 1973, 56, 352–354. [Google Scholar] [CrossRef] [Green Version]
- Baek, Y.; Lim, S.; Kim, L.H.; Park, S.; Lee, S.W.; Oh, T.H.; Kim, S.H.; Park, C.E. Al2 O3 /TiO2 nanolaminate gate dielectric films with enhanced electrical performances for organic field-effect transistors. Org. Electron. 2016, 28, 139–146. [Google Scholar] [CrossRef]
- Wang, B.; Huang, W.; Chi, L.; Al-Hashimi, M.; Marks, T.J.; Facchetti, A. High-k Gate Dielectrics for Emerging Flexible and Stretchable Electronics. Chem. Rev. 2018, 118, 5690–5754. [Google Scholar] [CrossRef]
- Dodabalapur, A.; Torsi, L.; Katz, H.E. Organic Transistors: Two-Dimensional Transport and Improved Electrical Characteristics. Science 1995, 268, 270–271. [Google Scholar] [CrossRef]
- Wang, Z.R.; Xin, J.Z.; Ren, X.C.; Wang, X.L.; Leung, C.W.; Shi, S.Q.; Ruotolo, A.; Chan, P.K.L. Low power flexible organic thin film transistors with amorphous Ba0.7 Sr0.3 TiO3 gate dielectric grown by pulsed laser deposition at low temperature. Org. Electron. 2012, 13, 1223–1228. [Google Scholar] [CrossRef]
- Shiwaku, R.; Tamura, M.; Matsui, H.; Takeda, Y.; Murase, T.; Tokito, S. Charge Carrier Distribution in Low-Voltage Dual-Gate Organic Thin-Film Transistors. Appl. Sci. 2018, 8, 1341. [Google Scholar] [CrossRef] [Green Version]
- Guan, X.; Li, G.; Zhou, L.; Li, L.; Qiu, X. Template-free Approach to Core–Shell-structured CO3 O4 Microspheres. Chem. Lett. 2009, 38, 280–281. [Google Scholar] [CrossRef]
Dielectric Materials | Thickness (nm) | Ci (nF/cm2) (f = 1 kHz) | k | Vth(V) | Ion/Ioff | SS (V/decade) |
---|---|---|---|---|---|---|
PVP | 300 | 5.2 | 1.8 | 10.5 | ~104 | 5.1 |
PVP:CaTiO3 NPs | 300 | 9.9 | 3.4 | −2.5 | ~103 | 8.3 |
PVP:CaTiO3 NPs /PVP | 350 | 8.4 | 3.3 | −2.9 | ~105 | 0.8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Zhang, H.; Zhang, Y.; Guan, X.; Zhang, Z.; Chen, D. Low-Power Flexible Organic Field-Effect Transistors with Solution-Processable Polymer-Ceramic Nanoparticle Composite Dielectrics. Nanomaterials 2020, 10, 518. https://doi.org/10.3390/nano10030518
Chen X, Zhang H, Zhang Y, Guan X, Zhang Z, Chen D. Low-Power Flexible Organic Field-Effect Transistors with Solution-Processable Polymer-Ceramic Nanoparticle Composite Dielectrics. Nanomaterials. 2020; 10(3):518. https://doi.org/10.3390/nano10030518
Chicago/Turabian StyleChen, Xiong, Hao Zhang, Yu Zhang, Xiangfeng Guan, Zitong Zhang, and Dagui Chen. 2020. "Low-Power Flexible Organic Field-Effect Transistors with Solution-Processable Polymer-Ceramic Nanoparticle Composite Dielectrics" Nanomaterials 10, no. 3: 518. https://doi.org/10.3390/nano10030518
APA StyleChen, X., Zhang, H., Zhang, Y., Guan, X., Zhang, Z., & Chen, D. (2020). Low-Power Flexible Organic Field-Effect Transistors with Solution-Processable Polymer-Ceramic Nanoparticle Composite Dielectrics. Nanomaterials, 10(3), 518. https://doi.org/10.3390/nano10030518