Synthesis, Cytotoxicity Assessment and Optical Properties Characterization of Colloidal GdPO4:Mn2+, Eu3+ for High Sensitivity Luminescent Nanothermometers Operating in the Physiological Temperature Range
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis
2.3. Methods
3. Results and Discussion
3.1. Structural and Morphological Properties of GdPO4:Mn2+, Eu3+ Nanoparticles
3.2. Spectroscopic Properties of GdPO4:Mn2+, Eu3+ Nanoparticles
3.3. Kinetics of Emission of Eu3+ and Mn2+ in GdPO4 Nanoparticles
3.4. Luminescent Thermometry
4. Conclusions
Supplementary Materials
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Roco, M.C. The long view of nanotechnology development: The National Nanotechnology Initiative at 10 years. J. Nanopart. Res. 2020, 427–445. [Google Scholar] [CrossRef][Green Version]
- Sordillo, L.A.; Alfano, R.R. Deep optical imaging of tissue using the second and third near-infrared spectral windows and third near-infrared spectral windows. J. Biomed. Opt. 2014, 19. [Google Scholar] [CrossRef] [PubMed]
- Nune, S.K.; Gunda, P.; Thallapally, P.K.; Lin, Y.; Laird, M.; Berkland, C.J. Nanoparticles for biomedical imaging. Expert Opin. Drug Deliv. 2011, 6, 1175–1194. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Christian Streffer. Hyperthermia and The Therapy of Malignant Tumors; Recent Results in Cancer Research book series; Springer: Berlin/Heidelberg, Germany, 1987; (RECENTCANCER, Volume 104). [Google Scholar] [CrossRef]
- Carlos, L.D.; Fernando, P.P. Thermometry at the Nanoscale: Techniques and Selected Applications; Royal Society Chemistry: Cambridge, UK, 2016; ISBN 978-1-78262-203-1. [Google Scholar] [CrossRef]
- Wolfbeis, O.S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev. 2015, 4743–4768. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Labrador-páez, L.; Pedroni, M.; Speghini, A.; García-solé, J.; Haro-gonzález, P.; Jaque, D. Reliability of rare-earth-doped infrared luminescent nanothermometers. Nanoscale 2018, 22319–22328. [Google Scholar] [CrossRef] [PubMed]
- Lima, P.; Silva, N.J.O.; Palacio, F.; Carlos, D. Ratiometric highly sensitive luminescent nanothermometers working in the room temperature range. Applications to heat propagation in nano fluids. Nanoscale 2013, 7572–7580. [Google Scholar] [CrossRef]
- Wang, X.; Wolfbeis, O.S.; Meier, R.J.; Wang, X. Luminescent probes and sensors for temperature. Chem. Soc. Rev. 2013, 7834–7869. [Google Scholar] [CrossRef]
- Jaque, D.; Vetrone, F. Luminescence Nanothermometry. Nanoscale 2012, 4301–4326. [Google Scholar] [CrossRef]
- Brites, C.D.S.; Lima, P.P.; Silva, N.J.O.; Mill, A.; Amaral, V.S.; Carlos, D. Thermometry at the nanoscale. Nanoscale 2012, 4799–4829. [Google Scholar] [CrossRef][Green Version]
- Brites, C.D.S.; Milla, A. Lanthanides in Luminescent Thermometry. In Handbook of Nanomaterials in Analytical Chemistry: Modern Trends in Analysis; Elsevier: Amsterdam, The Netherlands, 2016; Volume 49, ISBN 978-0-12-816699-4. [Google Scholar]
- Benayas, A.; Rosal, B.; Pérez-delgado, A.; Santacruz-gómez, K.; Jaque, D.; Hirata, G.A.; Vetrone, F. Nd: YAG Near-Infrared Luminescent Nanothermometers. Adv. Opt. Matter. 2015, 1–8. [Google Scholar] [CrossRef]
- Vetrone, F.; Naccache, R.; Zamarro, A.; Juarranz, A.; Fuente, D.; Sanz-rodrı, F.; Maestro, L.M.; Martı, E.; Jaque, D.; Capobianco, J.A. Temperature Sensing Using Fluorescent Nanothermometers. ACS Nano 2010, 4, 3254–3258. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Westcott, S.; Chen, W. Nanoparticle Luminescence Thermometry. J. Phys. Chem. B 2002, 106, 11203–11209. [Google Scholar] [CrossRef]
- Marciniak, L.; Bednarkiewicz, A.; Drabik, J.; Trejgis, K.; Strek, W. Optimization of highly sensitive YAG: Cr3+,Nd3+ nanocrystal-based luminescent thermometer operating in an optical window of biological tissues. Phys. Chem. Chem. Phys. 2017, 7343–7351. [Google Scholar] [CrossRef] [PubMed]
- Trejgis, K.; Marciniak, L. The influence of manganese concentration on the sensitivity of bandshape and lifetime luminescent thermometers based on Y3Al5O12:Mn3+, Mn4+, Nd3+ nanocrystals. Phys. Chem. Chem. Phys. 2018, 20, 9574–9581. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, L.; Prorok, K.; Bednarkiewicz, A. Size dependent sensitivity of Yb3+, Er3+ up-converting luminescent nano-thermometers. J. Mater. Chem. C 2017, 5, 7890–7897. [Google Scholar] [CrossRef]
- Matuszewska, C.; Marciniak, L. Transition Metal Ion-Based Nanocrystalline Luminescent Thermometry in SrTiO3:Ni2+, Er3+ Nanocrystals Operating in the Second Optical Window of Biological Tissues. J. Phys. Chem. C 2019, 123, 18646–18653. [Google Scholar] [CrossRef]
- Kniec, K.; Marciniak, L. The influence of grain size and vanadium concentration on the spectroscopic properties of YAG:V3+, V5+ and YAG:V, Ln3+ (Ln3+ = Eu3+, Dy3+, Nd3+) nanocrystalline luminescent thermometers. Sens. Actuators B Chem. 2018, 264, 382–390. [Google Scholar] [CrossRef]
- Elzbieciak, K.; Marciniak, L. The Impact of Cr3+ Doping on Temperature Sensitivity Modulation in Cr3+ Doped and Cr3+, Nd3+ and Y3Ga5O12 Nanothermometers. Front. Chem. 2018, 6, 1–8. [Google Scholar] [CrossRef][Green Version]
- Dongdong, L.I.; Qiyue, S.; Yan, D.; Jianqing, J. Nanoparticles using rare-earth acetate precursors. J. Rare Earths 2014, 32, 1032–1036. [Google Scholar] [CrossRef]
- Shang, L.; Stockmar, F.; Azadfar, N.; Nienhaus, G.U. Intracellular Thermometry by Using Fluorescent Gold Nanoclusters. Angewandte 2013, 11154–11157. [Google Scholar] [CrossRef]
- Gai, S.; Li, C.; Yang, P.; Lin, J. Recent Progress in Rare Earth Micro/Nanocrystals: Soft Chemical Synthesis, Luminescent Properties and Biomedical Applications. Chem. Rev. 2014, 114, 2343–2389. [Google Scholar] [CrossRef] [PubMed]
- Runowski, M.; Shyichuk, A.; Tymiński, A.; Grzyb, T.; Lavín, V.; Lis, S. Multifunctional Optical Sensors for Nanomanometry and Nanothermometry: High-Pressure and High-Temperature Upconversion Luminescence of Lanthanide-Doped Phosphates LaPO4/YPO4:Yb3+−Tm3+. ACS Appl. Mater. Interfaces 2018, 10, 17269–17279. [Google Scholar] [CrossRef] [PubMed]
- Clifford, D.M.; Copping, R. Synthesis and characterization of intrinsically radiolabeled lanthanide phosphate nanoparticles toward biomedical and environmental applications. J. Nanopart. Res. 2018, 20, 238. [Google Scholar] [CrossRef]
- Lin, S.; Dong, X.; Jia, R.; Yuan, Y. Controllable synthesis and luminescence property of LnPO4 (Ln = La, Gd, Y) nanocrystals. Langmuir 2004, 20, 11763–11771. [Google Scholar] [CrossRef]
- Riwotzki, K.; Meyssamy, H.; Kornowski, A.; Haase, M. Liquid-Phase Synthesis of Doped Nanoparticles: Colloids of Luminescing LaPO4:Eu and CePO4:Tb Particles with a Narrow Particle Size Distribution. J. Phys. Chem. B 2000, 104, 2824–2828. [Google Scholar] [CrossRef]
- Marciniak, L. Step by step designing of sensitive luminescent nanothermometers based on Cr3+, Nd3+ co-doped La3−xLuxAl5−yGayO12 nanocrystals. New J. Chem. 2019, 43, 12614–12622. [Google Scholar] [CrossRef]
- Kniec, K.; Ledwa, K. Enhancing the Relative Sensitivity of V5+, V4+ and V3+ Based Luminescent Thermometer by the Optimization of the Stoichiometry of Y3Al5−xGaxO12 Nanocrystals. Nanomaterials 2019, 9, 1375. [Google Scholar] [CrossRef][Green Version]
- Drabik, J.; Cichy, B.; Marciniak, L. New Type of Nanocrystalline Luminescent Thermometers Based on Ti3+/Ti4+ and Ti4+/Ln3+ (Ln3+ = Nd3+, Eu3+, Dy3+) Luminescence Intensity Ratio. J. Phys. Chem. C 2018, 122, 14928–14936. [Google Scholar] [CrossRef]
- Kobylinska, A.; Kniec, K.; Maciejewska, K.; Marciniak, L. The influence of dopant concentration and grain size on the ability for temperature sensing using nanocrystalline MgAl2O4: Co2+,Nd3+ luminescent thermometers. New J. Chem. 2019, 43, 6080–6086. [Google Scholar] [CrossRef]
- Zhang, X.; Zhu, Z.; Guo, Z.; Sun, Z.; Chen, Y. A ratiometric optical thermometer with high sensitivity and superior signal discriminability based on Na3Sc2P3O12: Eu2+, Mn2+ thermochromic phosphor. Chem. Eng. J. 2019, 356, 413–422. [Google Scholar] [CrossRef]
- Chi, F.; Jiang, B.; Zhao, Z.; Chen, Y.; Wei, X.; Duan, C. Sensors and Actuators B: Chemical Multimodal temperature sensing using Zn2GeO4: Mn2+ phosphor as highly sensitive luminescent thermometer. Sens. Actuators B Chem. 2019, 296, 126640. [Google Scholar] [CrossRef]
- Lojpur, V.; Nikolić, M.G.; Jovanović, D.; Medić, M.; Antić, Ž.; Dramićanin, M.D. Luminescence thermometry with Zn2SiO4: Mn2+ powder. Appl. Phys. Lett. 2013, 141912, 2–5. [Google Scholar] [CrossRef]
- Gao, Y.; Cheng, Y.; Huang, F.; Lin, H.; Xu, J. Sn2+/Mn2+ codoped strontium phosphate (Sr2P2O7) phosphor for high temperature optical thermometry. J. Alloys Compd. Front Chem. 2019, 7, 425. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, J.; Guo, Z.; Gong, M. Luminescence and Energy Transfer of Dual-Emitting Solid Solution Sensing. Ind. Eng. Chem. Res. 2017, 3–11. [Google Scholar] [CrossRef]
- Xia, H.; Lei, L.; Hong, W.; Xu, S. A novel Ce3+/Mn2+/Eu3+ tri-doped GdF3 nanocrystals for optical temperature sensor and anti-counterfeiting. J. Alloys Compd. 2018, 757, 239–245. [Google Scholar] [CrossRef]
- Huang, F.; Chen, D. Nanocomposites for highly sensitive optical thermometry through the synergistic. J. Mater. Chem. C. 2017, 5176–5182. [Google Scholar] [CrossRef]
- Xu, Z.; Cao, Y.; Li, C.; Ma, P.; Zhai, X.; Huang, S.; Kang, X.; Shang, M.; Yang, D.; Dai, Y.; et al. Urchin-like GdPO4 and GdPO4: Eu3+ hollow spheres– hydrothermal synthesis, luminescence and drug-delivery properties. J. Mater. Chem. 2011, 21, 3686–3694. [Google Scholar] [CrossRef]
- Mansoor, H.; Harrigan, W.L.; Lehuta, K.A.; Kittilstved, K.R. Reversible Control of the Mn Oxidation State in SrTiO3 Bulk Powders. Solid State Commun. 1983, 45, 903–906. [Google Scholar] [CrossRef][Green Version]
- Shannon, B.Y.R.D.; Baur, M.H.N.H.; Gibbs, O.H.; Eu, M.; Cu, V. Revised Effective Ionic Radii and Systematic Studies of Interatomie Distances in Halides and Chaleogenides. Acta Cryst. 1976, A32, 751–767. [Google Scholar] [CrossRef]
- Nono, A.G. The cation distribution in synthetic (Fe, Mn)3(PO4)2 graftonite-type sotid solutions. Am. Mineral. 1982, 67, 826–832. [Google Scholar]
- Song, E.; Zhao, W.; Dou, X.; Zhu, Y.; Yi, S.; Min, H. Nonradiative energy transfer from Mn2+ to Eu3+ in K2CaP2O7: Mn2+,Eu3+ phosphor. J. Lumin. 2012, 132, 1462–1467. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, T. Exploring Mn2+-location-dependent red emission from (Mn/Zn)–Ga–Sn–S supertetrahedral nanoclusters with relatively precise dopant positions. J. Mater. Chem. C 2016, 4, 10435–10444. [Google Scholar] [CrossRef]
- Ningthoujam, R.S.; Atomic, B.; Singh, N.S.; Vatsa, R.; Singh, N.R. Luminescence, Lifetime, and Quantum Yield Studies of Redispersible Eu3+-Doped GdPO4 Crystalline Nanoneedles: Core-Shell and Concentration. J. Appl. Phys. 2010, 107, 034301. [Google Scholar] [CrossRef]
- Papan, J.; Viana, B. MgTiO3:Mn4+ a multi-reading temperature nanoprobe. RSC Adv. 2018, 18341–18346. [Google Scholar] [CrossRef][Green Version]
- Chen, D.; Liu, S.; Zhou, Y.; Wan, Z.; Huang, P.; Ji, Z. Dual-activator luminescence of RE/TM: Y3Al5O12 (RE = Eu3+, Tb3+, Dy3+; TM = Mn4+, Cr3+) phosphors for self-referencing optical thermometry. J. Mater. Chem. C 2016, 4, 9044–9051. [Google Scholar] [CrossRef]
- Zhuang, B.; Liu, Y.; Yuan, S.; Huang, H.; Chen, J.; Chen, D. Dots for cryogenic temperature sensing. Nanoscale 2019, 11, 15010–15016. [Google Scholar] [CrossRef]
- Ren, W.; Tian, G.; Zhou, L.; Yin, W.; Yan, L.; Jin, S.; Zu, Y.; Li, S. Timing matters: The underappreciated role of temperature ramp rate for shape control and reproducibility of quantum dot synthesis. Nanoscale 2012, 3754–3760. [Google Scholar] [CrossRef]
- Holder, A.L.; Goth-goldstein, R.; Lucas, D.; Koshland, C.P. Particle-Induced Artifacts in the MTT and LDH Viability Assays. Chem. Res. Toxicol. 2012, 25, 1885–1892. [Google Scholar] [CrossRef][Green Version]
Compound | Mn Valence State | Temperature Range (°C) | SR Max (%/°C) | Reference |
---|---|---|---|---|
Y3Al5O12:Mn3+, Mn4+, Nd3+ | III/IV | −90–523 | 2.69 | [17] |
ZnGeO4:Mn2+ | II | 250–420 | 12.2 | [35] |
MgTiO3:Mn4+ a | IV | −200–50 | 1.2 | [45] |
Mn2+:Zn2SiO4–Eu3+:Gd2O3 | II | 30–50 | 3.05 | [40] |
Zn2SiO4:Mn2+ | II | 0–300 | 12.2 | [46] |
Eu3+/Mn4+:YAG | IV | 20–120 | 4.81 | [47] |
Tb3+/Mn4+:YAG | IV | 20–120 | 3.73 | [47] |
CsPb(Cl/Br)3:Mn2+ | II | −193–20 | 10.04 | [48] |
GdPO4:10%Mn2+, 1%Eu3+ | II | 30–50 | 8.88 | This work |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maciejewska, K.; Poźniak, B.; Tikhomirov, M.; Kobylińska, A.; Marciniak, Ł. Synthesis, Cytotoxicity Assessment and Optical Properties Characterization of Colloidal GdPO4:Mn2+, Eu3+ for High Sensitivity Luminescent Nanothermometers Operating in the Physiological Temperature Range. Nanomaterials 2020, 10, 421. https://doi.org/10.3390/nano10030421
Maciejewska K, Poźniak B, Tikhomirov M, Kobylińska A, Marciniak Ł. Synthesis, Cytotoxicity Assessment and Optical Properties Characterization of Colloidal GdPO4:Mn2+, Eu3+ for High Sensitivity Luminescent Nanothermometers Operating in the Physiological Temperature Range. Nanomaterials. 2020; 10(3):421. https://doi.org/10.3390/nano10030421
Chicago/Turabian StyleMaciejewska, Kamila, Blazej Poźniak, Marta Tikhomirov, Adrianna Kobylińska, and Łukasz Marciniak. 2020. "Synthesis, Cytotoxicity Assessment and Optical Properties Characterization of Colloidal GdPO4:Mn2+, Eu3+ for High Sensitivity Luminescent Nanothermometers Operating in the Physiological Temperature Range" Nanomaterials 10, no. 3: 421. https://doi.org/10.3390/nano10030421