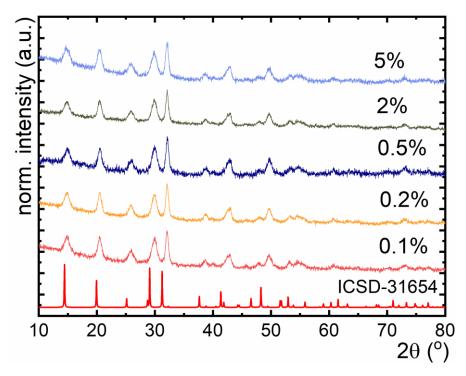
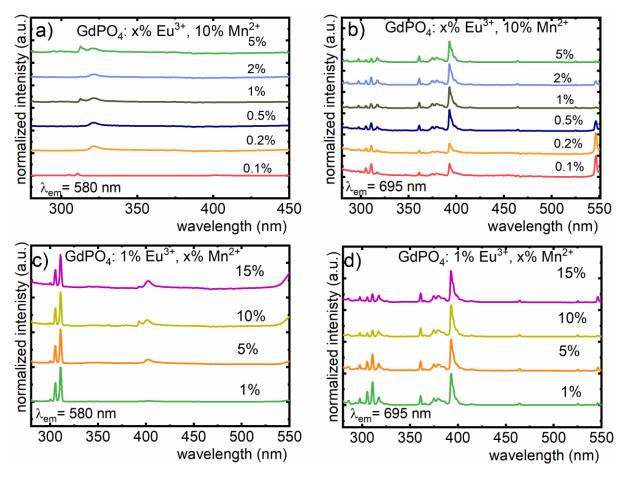
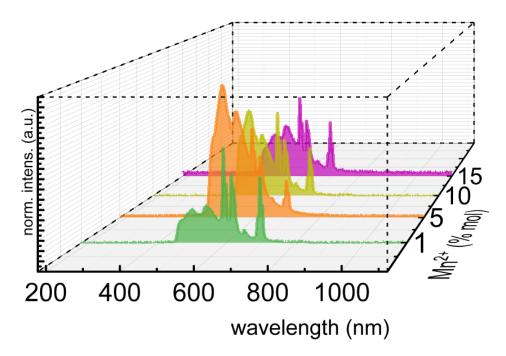
Supplementary Information

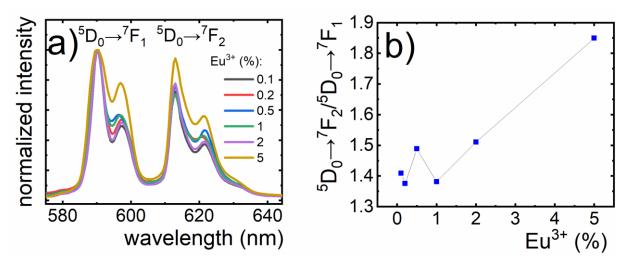

Synthesis, Cytotoxicity Assessment and Optical Properties Characterization of Colloidal GdPO4:Mn²⁺, Eu³⁺ for High Sensitivity Luminescent Nanothermometers Operating in the Physiological Temperature Range

K. Maciejewska1*, B. Poźniak2, M. Tikhomirov2, A. Kobylińska1 and L. Marciniak1*


- ¹ Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
- ² Wrocław University of Environmental and Life Sciences, ul. C.K. Norwida 31, 50-366 Wrocław
- * Correspondence: k.maciejewska@intibs.pl; l.marciniak@intibs.pl

% Mn % Eu % Gd Sample 15% Mn 18.42113361 81.57887 0 1% Eu 0 1.312104 98.6879 1% Mn, 1% Eu 1.625904839 1.278901 97.09519 5% Mn, 1% Eu 6.324815405 92.47136 1.20382 10% Mn, 1% Eu 11.32800033 1.305311 87.36669 15% Mn, 1% Eu 17.80329943 80.88325 1.313448 15% Mn, 0.1%Eu 18.74500723 0.109384 81.14561 15% Mn, 0.2% Eu 17.76267241 0.219622 82.01771 15% Mn, 0.5% Eu 16.81513671 0.712126 82.47274


Table S1. The results of ICP measurments for selected nanocrystals.


Figure S1. The comparison of X-ray diffractiograms of GdPO₄:10Mn²⁺, x%Eu³⁺ with different concentration of Eu³⁺ ions.

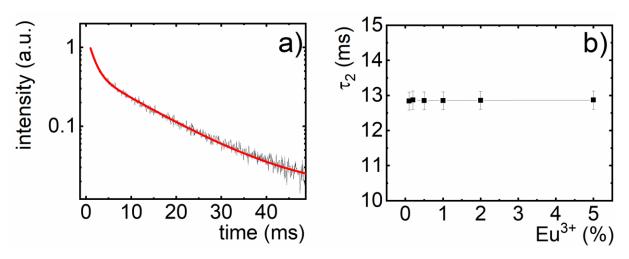

Figure S2. Excitation spectra of GdPO₄ doped with different concentration of Mn^{2+} (a, c) and Eu^{3+} (b, d) ions with emission monitored at 695 nm (${}^{5}D_{0} \rightarrow {}^{7}F_{J}$ electronic transition of Eu^{3+})- (c, d) and at emission 580 nm (${}^{4}T_{1} \rightarrow {}^{6}A_{1}$ electronic transition of Mn^{2+}) (a, b).

Figure S3. The comparisson of room temperature emission spectra of GdPO₄:1%Eu³⁺, x%Mn²⁺ with different concentration of Mn²⁺ ions.

Figure S4. The comparison of normalized (to the intensity of ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ emission band) room temperature emission spectra of GdPO₄:Eu³⁺ nanocrystals with different concentration of Eu³⁺ ions – (a) and the disorder parameter (emission intensity ratio of ${}^{5}D_{0} \rightarrow {}^{7}F_{2}$ band to the ${}^{5}D_{0} \rightarrow {}^{7}F_{1}$ band)-(b).

Figure S5. Luminescence decay profile of Mn^{2+} luminescence ($\lambda_{em} = 550$ nm) for GdPO4:10%Mn²⁺, 5%Eu³⁺ nanocrystals with double exponential fit-a) and lifetime τ_2 cslculated from double exponential fitting as a function of Eu³⁺ concentration-b).

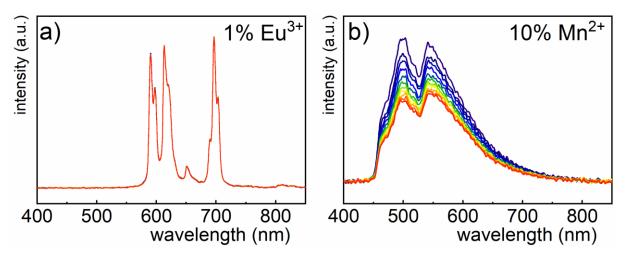
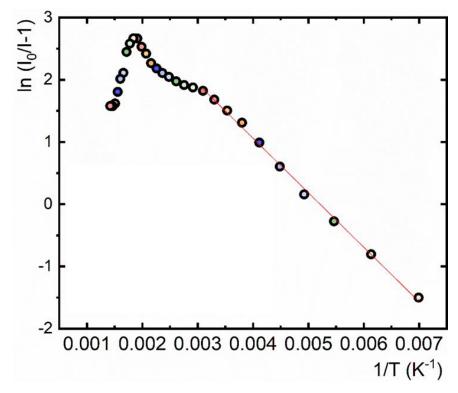
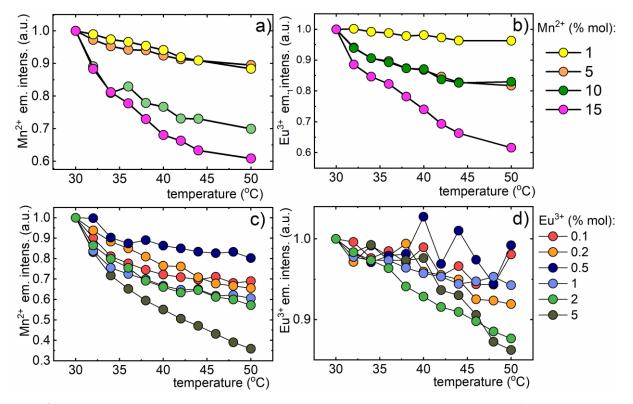
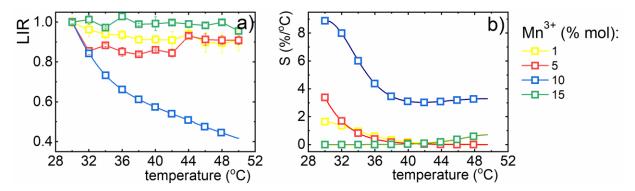
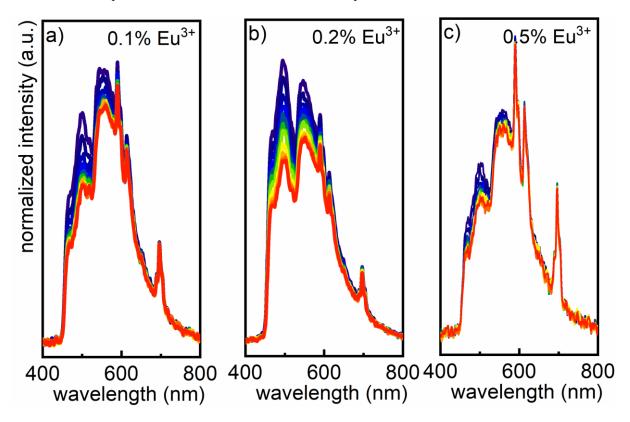


Figure 6. Thermal evolution spectra of GdPO4 nanocrystals doped with: 1%Eu³⁺ (a) and 10%Mn²⁺ (b).


Figure S7. The ln(I0/I-1) vs 1/T plot for GdPO4: 10% Mn²⁺ nanocrystals.

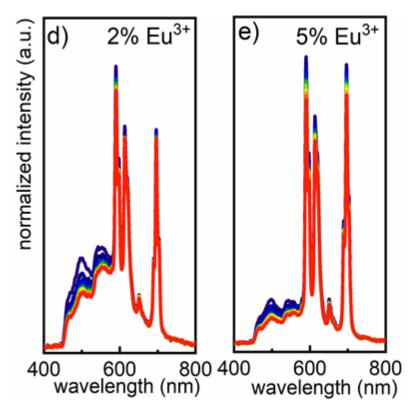


Figure S8. Thermal evolution of integrated Eu³⁺ (a, c) and Mn²⁺ (b, d) emission intensities for GdPO₄ doped with different concentration of Mn²⁺ (1, 5, 10, 15%) with 1% Eu³⁺ and Eu³⁺ (0.1, 0.2, 0.5, 1, 2, 5%) with 10% Mn²⁺.

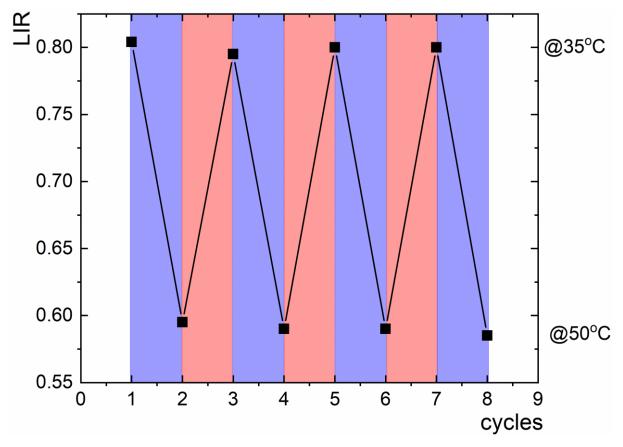


Figure S9. Thermal evolution of luminescence intensity ratio (LIR) (a) their relative sensitivities (b) for GdPO₄ doped with 1% Eu³⁺ and 1, 5, 10, 15 % Mn^{2+} nanoparticles.

Figure S10. Thermal evolution spectra of GdPO₄ nanocrystals doped with: 0.1%Eu³⁺, 10%Mn²⁺-(a); 0.2%Eu³⁺, 10%Mn²⁺-(b); 0.5%Eu³⁺, 10%Mn²⁺-(c); 2%Eu³⁺, 10%Mn²⁺-(d); 5%Eu³⁺, 10%Mn²⁺-(e) monitored at 30-50 °C.

Figure S11. Thermal dependence of LIR for the GdPO₄ 10% Mn²⁺, 1%Eu³⁺ nanocrystals during heating-cooling cycles.