Ultrafast Yb-Doped Fiber Laser Using Few Layers of PdS2 Saturable Absorber
Abstract
1. Introduction
2. Fabrication and Characterization of PdS2
3. Ultrafast Photonics Applications
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yue, Y.; Kurokawa, T. Designing responsive photonic crystal patterns by using laser engraving. ACS Appl. Mater. Interfaces 2019, 11, 10841–10847. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Yang, S.; Dong, X.; Chu, D.; Gong, X.; Duan, J.A. Femtosecond laser fabrication of shape-gradient platform: Underwater bubbles continuous self-driven and unidirectional transportation. Appl. Surf. Sci. 2019, 471, 999–1004. [Google Scholar] [CrossRef]
- Teuma, E.V.; Bott, S.; Edelhauser, H.F. Sealability of ultrashort-pulse laser and manually generated full-thickness clear corneal incisions. J. Cataract Refract. Surg. 2014, 40, 460–468. [Google Scholar] [CrossRef] [PubMed]
- Boroson, D.M.; Robinson, B.S.; Murphy, D.V.; Burianek, D.A.; Khatri, F.; Kovalik, J.M.; Sodnik, Z.; Cornwell, D.M. Overview and result of the Lunar Laser Communication Demonstration. In Free-Space Laser Communication and Atmospheric Propagation XXVI; International Society for Optics and Photonics: Bellingham, WA, USA, 2014; Volume 8971, p. 89710S. [Google Scholar]
- Wang, W.; Zhao, W.; Huang, L.; Vimarlund, V.; Wang, Z. Applications of terrestrial laser scanning for tunnels: A review. J. Traffic Transp. Eng. 2014, 1, 325–337. [Google Scholar] [CrossRef]
- Assali, P.; Grussenmeyer, P.; Villemin, T.; Pollet, N.; Viguier, F. Surveying and modeling of rock discontinuities by terrestrial laser scanning and photogrammetry: Semi-automatic approaches for linear outcrop inspection. J. Struct. Geol. 2014, 66, 102–114. [Google Scholar] [CrossRef]
- Wang, Y.; Qiu, M.; Won, M.; Jung, E.; Fan, T.; Xie, N.; Chi, S.G.; Zhang, H.; Kim, J.S. Emerging 2D material-based nanocarrier for cancer therapy beyond graphene. Coord. Chem. Rev. 2019, 400, 213041. [Google Scholar] [CrossRef]
- Song, Y.; Shi, X.; Wu, C.; Tang, D.; Zhang, H. Recent progress of study on optical solitons in fiber lasers. Appl. Phys. Rev. 2019, 6, 021313. [Google Scholar] [CrossRef]
- Barmenkov, Y.O.; Kir’yanov, A.V.; Cruz, J.L.; Andres, M.V. Pulse regimes of erbium-doped fiber laser Q-switched using acousto-optical modulator. IEEE J. Sel. Top. Quantum Electron. 2014, 20, 337–344. [Google Scholar] [CrossRef]
- Burgmeier, J.; Waltermann, C.; Flachenecker, G.; Schade, W. Point-by-point inscription of phase-shifted fiber Bragg gratings with electro-optic amplitude modulated femtosecond laser pulses. Opt. Lett. 2014, 39, 540–543. [Google Scholar] [CrossRef]
- Kong, L.C.; Xie, G.Q.; Yuan, P.; Qian, L.J.; Wang, S.X.; Yu, H.H.; Zhang, H.J. Passive Q-switching and Q-switched mode-locking operations of 2 μm Tm:CLNGG laser with MoS2 saturable absorber mirror. Photonics Res. 2015, 3, A47–A50. [Google Scholar] [CrossRef]
- Long, H.; Tang, C.Y.; Cheng, P.K.; Wang, X.Y.; Qarony, W.; Tsang, Y.H. Ultrafast laser pulses generation by using 2D layered PtS2 as a saturable absorber. J. Light. Technol. 2018, 37, 1174–1179. [Google Scholar] [CrossRef]
- Cheng, P.K.; Tang, C.Y.; Wang, X.Y.; Zeng, L.H.; Tsang, Y.H. Passively Q-switched and femtosecond mode-locked erbium-doped fiber laser based on a 2D palladium disulfide (PdS2) saturable absorber. Photonics Res. 2020, 8, 511–518. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, J.; Li, J.; Wang, Z.; Wang, Y.; Ge, Y.; Dong, W.; Xu, N.; He, T.; Zhang, H.; et al. Site-Selective Bi2Te3–FeTe2 Heterostructure as a Broadband Saturable Absorber for Ultrafast Photonics. Laser Photonics Rev. 2020, 14, 1900409. [Google Scholar] [CrossRef]
- Lee, T.H.; Kim, S.Y.; Jang, H.W. Black Phosphorus: Critical Review and Potential for Water Splitting Photocatalyst. Nanomaterials 2016, 6, 194. [Google Scholar] [CrossRef]
- Long, H.; Tao, L.; Tang, C.Y.; Zhou, B.; Zhao, Y.; Zeng, L.; Yu, S.F.; Lau, S.P.; Chai, Y.; Tsang, Y.H. Tuning nonlinear optical absorption properties of WS2 nanosheets. Nanoscale 2015, 7, 17771–17777. [Google Scholar] [CrossRef]
- Liang, G.; Zeng, L.; Tsang, Y.H.; Tao, L.; Tang, C.Y.; Cheng, P.K.; Long, H.; Liu, X.; Li, J.; Qu, J.; et al. Technique and model for modifying the saturable absorption (SA) properties of 2D nanofilms by considering interband exciton recombination. J. Mater. Chem. C 2018, 6, 7501–7511. [Google Scholar] [CrossRef]
- Chen, B.; Zhang, X.; Wu, K.; Wang, H.; Wang, J.; Chen, J. Q-switched fiber laser based on transition metal dichalcogenides MoS2, MoSe2, WS2, and WSe2. Opt. Express 2015, 23, 26723–26727. [Google Scholar] [CrossRef]
- Yan, B.; Zhang, B.; Nie, H.; Li, G.; Sun, X.; Wang, Y.; Liu, J.; Shi, B.; Liu, S.; He, J. Broadband 1T-titanium selenide-based saturable absorbers for solid-state bulk lasers. Nanoscale 2018, 10, 20171–20177. [Google Scholar] [CrossRef]
- Mai, C.; Semenov, Y.G.; Barrette, A.; Yu, Y.; Jin, Z.; Cao, L.; Kim, K.W.; Gundogdu, K. Exciton valley relaxation in a single layer of WS2 measured by ultrafast spectroscopy. Phys. Rev. B 2014, 90, 041414. [Google Scholar] [CrossRef]
- Qiao, J.; Zhao, S.; Yang, K.; Zhao, J.; Li, G.; Li, D.; Li, T.; Qiao, W.; Wang, Y. Sub-nanosecond KTP-OPO pumped by a hybrid Q-switched laser with WS2 saturable absorber and AOM. Opt. Mater. Express 2017, 7, 3998–4009. [Google Scholar] [CrossRef]
- Niu, Z.; Feng, T.; Pan, Z.; Yang, K.; Li, T.; Zhao, J.; Zhao, S.; Li, G.; Li, D.; Qiao, W.; et al. Dual-loss-modulated Q-switched Tm:Ca(Gd,Lu)AlO4 laser using AOM and a MoS2 nanosheet. Opt. Mater. Express 2020, 10, 752–762. [Google Scholar] [CrossRef]
- Liu, W.; Liu, M.; Yang, Y.O.; Hou, H.; Ma, G.; Lei, M.; Wei, Z. Tungsten diselenide for mode-locked erbium-doped fiber lasers with short pulse duration. Nanotechnology 2018, 29, 174002. [Google Scholar] [CrossRef]
- Luo, Z.; Li, Y.; Zhong, M.; Huang, Y.; Wan, X.; Peng, J.; Weng, J. Nonlinear optical absorption of few-layer molybdenum diselenide (MoSe2) for passively mode-locked soliton fiber laser. Photonics Res. 2015, 3, A79–A86. [Google Scholar] [CrossRef]
- Shi, Y.; Long, H.; Liu, S.; Tsang, Y.H.; Wen, Q. Ultrasmall 2D NbSe2 based quantum dots used for low threshold ultrafast lasers. J. Mater. Chem. C 2018, 6, 12638–12642. [Google Scholar] [CrossRef]
- Du, J.; Wang, Q.; Jiang, G.; Xu, C.; Zhao, C.; Xiang, Y.; Chen, Y.; Wen, S.; Zhang, H. Ytterbium-doped fiber laser passively mode locked by few-layer molybdenum disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci. Rep. 2014, 4, 6346. [Google Scholar] [CrossRef] [PubMed]
- Samikannu, S.; Sivaraj, S. Dissipative soliton generation in an all-normal dispersion ytterbium-doped fiber laser using few-layer molybdenum diselenide as a saturable absorber. Opt. Eng. 2016, 55, 081311. [Google Scholar] [CrossRef]
- Guoyu, H.; Song, Y.; Li, K.; Dou, Z.; Tian, J.; Zhang, X. Mode-locked ytterbium-doped fiber laser based on tungsten disulphide. Laser Phys. Lett. 2015, 12, 125102. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, H.; Yin, Y.; Ouyang, Q.; Chen, Y.; Lewis, E.; Farrell, G.; Tokurakawa, M.; Harun, S.W.; Wang, C.; et al. NiS2 as a broadband saturable absorber for ultrafast pulse lasers. Opt. Laser Technol. 2020, 132, 106492. [Google Scholar] [CrossRef]
- Yuan, J.; Mu, H.; Li, L.; Chen, Y.; Yu, W.; Zhang, K.; Sun, B.; Lin, S.; Li, S.; Bao, Q. Few-Layer Platinum Diselenide as a New Saturable Absorber for Ultrafast Fiber Lasers. ACS Appl. Mater. Interfaces 2018, 10, 21534–21540. [Google Scholar] [CrossRef]
- Zhang, H.; Ma, P.; Zhu, M.; Zhang, W.; Wang, G.; Fu, S. Palladium selenide as a broadband saturable absorber for ultra-fast photonics. Nanophotonics 2020, 9, 2557–2567. [Google Scholar] [CrossRef]
- Yang, H.; Li, Y.; Yang, Z.; Shi, X.; Lin, Z.; Guo, R.; Xu, L.; Qu, H.; Zhang, S. First-principles calculations of the electronic properties of two-dimensional pentagonal structure XS2 (X = Ni, Pd, Pt). Vacuum 2020, 174, 109176. [Google Scholar] [CrossRef]
- Deng, S.; Tao, M.; Mei, J.; Li, M.; Zhang, Y.; Li, L. Optical and Piezoelectric Properties of Strained Orthorhombic PdS2. IEEE Trans. Nanotechnol. 2019, 18, 358–364. [Google Scholar] [CrossRef]
- Lan, Y.S.; Lu, Q.; Hu, C.E.; Chen, X.R.; Chen, Q.F. Correction to: Strain-modulated mechanical, electronic, and thermal transport properties of two-dimensional PdS2 from first-principles investigations. Appl. Phys. A 2019, 125, 107. [Google Scholar] [CrossRef]
- Asl, M.G.; Kuc, A.; Miro, P.; Heine, T. A single-material logical junction based on 2D crystal PdS2. Adv. Mater. 2016, 28, 853–856. [Google Scholar]
- Wang, X.; Qarony, W.; Cheng, P.K.; Ismail, M.; Tsang, Y.H. Photoluminescence of PdS2 and PdSe2 quantum dots. RSC Adv. 2019, 9, 38077–38084. [Google Scholar] [CrossRef]
- Saraf, D.; Chakraborty, S.; Kshirsagar, A.; Ahuja, R. In pursuit of bifunctional catalytic activity in PdS2 pseudo-monolayer through reaction coordinate mapping. Nano Energy 2018, 49, 283–289. [Google Scholar] [CrossRef]
- Kristin, P. Materials Data on PdS2 (SG:61) by Materials Project; DOE Data Explorer: New York, NY, USA, 2014. [Google Scholar] [CrossRef]
- Cavalleri, O.; Gonella, G.; Terreni, S.; Vignolo, M.; Pelori, P.; Floreano, L.; Morgante, A.; Canepa, M.; Rolandi, R. High resolution XPS of the S 2p core level region of the L-cysteine/gold interface. J. Phys. Condens. Matter 2004, 16, S2477. [Google Scholar] [CrossRef]
- Dodero, G.; De Michieli, L.; Cavalleri, O.; Rolandi, R.; Oliveri, L.; Dacca, A.; Parodi, R. L-Cysteine chemisorption on gold: An XPS and STM study. Colloids Surf. A Physicochem. Eng. Asp. 2000, 175, 121–128. [Google Scholar] [CrossRef]
Group of Transition Metal | Material | Wavelength, nm (3 dB Bandwidth, nm) | Pulse Duration (SNR, dB) | Slope Efficiency (Output Power, mW) | Reference |
---|---|---|---|---|---|
Group 5 | NbSe2 | 1033 (0.155) | 380 ps (43) | 3.70% (10.5) | [25] |
Group 6 | MoS2 | 1042.6 (8.6) | 656 ps (59) | 1.1% (2.37) | [26] |
MoSe2 | 1040 (4.26) | 471 ps (54) | / (2.0) | [27] | |
WS2 | 1030.3 (1.1) | 2.5 ns (48) | 2.5% (8.02) | [28] | |
Group 10 | NiS2 | 1064.5 (7.8) | 11.7 ps (66) | 5.1% (35.6) | [29] |
PtSe2 | 1064 (2.0) | 470 ps (53) | 3.6% (12.19) | [30] | |
PdSe2 | 1067.4 (5.22) | 768 ps (61) | 4.6% (15.6) | [31] | |
PdS2 | 1033 (3.7) | 375 ps (65) | 4.99% (15.7) | This work |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, P.K.; Liu, S.; Ahmed, S.; Qu, J.; Qiao, J.; Wen, Q.; Tsang, Y.H. Ultrafast Yb-Doped Fiber Laser Using Few Layers of PdS2 Saturable Absorber. Nanomaterials 2020, 10, 2441. https://doi.org/10.3390/nano10122441
Cheng PK, Liu S, Ahmed S, Qu J, Qiao J, Wen Q, Tsang YH. Ultrafast Yb-Doped Fiber Laser Using Few Layers of PdS2 Saturable Absorber. Nanomaterials. 2020; 10(12):2441. https://doi.org/10.3390/nano10122441
Chicago/Turabian StyleCheng, Ping Kwong, Shunxiang Liu, Safayet Ahmed, Junle Qu, Junpeng Qiao, Qiao Wen, and Yuen Hong Tsang. 2020. "Ultrafast Yb-Doped Fiber Laser Using Few Layers of PdS2 Saturable Absorber" Nanomaterials 10, no. 12: 2441. https://doi.org/10.3390/nano10122441
APA StyleCheng, P. K., Liu, S., Ahmed, S., Qu, J., Qiao, J., Wen, Q., & Tsang, Y. H. (2020). Ultrafast Yb-Doped Fiber Laser Using Few Layers of PdS2 Saturable Absorber. Nanomaterials, 10(12), 2441. https://doi.org/10.3390/nano10122441