Efficacy of Etidronic Acid for Smear Layer Removal: A Systematic Review of In Vitro Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. Search Strategy
2.2. Eligibility Criteria
2.3. Study Selection
2.4. Quality Assessment
2.5. Data Extraction
3. Results
3.1. Database Search and Study Selection
3.2. Study Methodology
3.3. Quality Assessment Results
3.4. Study Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ricucci, D.; Siqueira, J.F. Biofilms and Apical Periodontitis: Study of Prevalence and Association with Clinical and Histopathologic Findings. J. Endod. 2010, 36, 1277–1288. [Google Scholar] [CrossRef]
- Torabinejad, M.; Handysides, R.; Khademi, A.A.; Bakland, L.K. Clinical Implications of the Smear Layer in Endodontics: A Review. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2002, 94, 658–666. [Google Scholar] [CrossRef]
- McComb, D.; Smith, D.C. A Preliminary Scanning Electron Microscopic Study of Root Canals after Endodontic Procedures. J. Endod. 1975, 1, 238–242. [Google Scholar] [CrossRef]
- Nakashima, K.; Terata, R. Effect of pH Modified EDTA Solution to the Properties of Dentin. J. Endod. 2005, 31, 47–49. [Google Scholar] [CrossRef] [PubMed]
- Alamoudi, R. The Smear Layer in Endodontic: To Keep or Remove—An Updated Overview. Saudi Endod. J. 2019, 9, 71–81. [Google Scholar] [CrossRef]
- Outhwaite, W.C.; Livingston, M.J.; Pashley, D.H. Effects of Changes in Surface Area, Thickness, Temperature and Post-Extraction Time on Human Dentine Permeability. Arch. Oral Biol. 1976, 21, 599–603. [Google Scholar] [CrossRef]
- Kokkas, A.; Boutsioukis, A.; Vassiliadis, L.; Stavrianos, C. The Influence of the Smear Layer on Dentinal Tubule Penetration Depth by Three Different Root Canal Sealers: An In Vitro Study. J. Endod. 2004, 30, 100–102. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, J.F.; De Uzeda, M.; Fonseca, M.E.F. A Scanning Electron Microscopic Evaluation of In Vitro Dentinal Tubules Penetration by Selected Anaerobic Bacteria. J. Endod. 1996, 22, 308–310. [Google Scholar] [CrossRef]
- Shahravan, A.; Haghdoost, A.; Adl, A.; Rahimi, H.; Shadifar, F. Effect of Smear Layer on Sealing Ability of Canal Obturation: A Systematic Review and Meta-Analysis. J. Endod. 2007, 33, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Hülsmann, M.; Heckendorff, M.; Lennon, Á. Chelating Agents in Root Canal Treatment: Mode of Action and Indications for Their Use. Int. Endod. J. 2003, 36, 810–830. [Google Scholar] [CrossRef]
- Mikheikina, A.; Novozhilova, N.; Polyakova, M.; Sokhova, I.; Mun, A.; Zaytsev, A.; Babina, K.; Makeeva, I. Knowledge, Attitude, and Practice towards Chelating Agents in Endodontic Treatment among Dental Practitioners. Dent. J. 2023, 11, 156. [Google Scholar] [CrossRef]
- Alzamzami, Z.T.; Alqurashi, A.A.; Almansour, L.A.; Ashi, H.M.; Abulhamael, A.M.; Alghamdi, F.T.; Albahiti, M.T. Current Trends in Irrigation Solution and Adjunct Use During Endodontic Therapy Among Dental Professionals in Jeddah, Saudi Arabia: A Cross-Sectional Study. Cureus 2022, 14, e32168. [Google Scholar] [CrossRef]
- Natanasabapathy, V. Current Trends in the Use of Irrigant Activation Techniques among Endodontist & Post Graduates in India—A Knowledge, Attitude and Practice Based Survey. Eur. Endod. J. 2020, 5, 73–80. [Google Scholar] [CrossRef]
- Duncan, H.F.; Kirkevang, L.; Peters, O.A.; El-Karim, I.; Krastl, G.; Del Fabbro, M.; Chong, B.S.; Galler, K.M.; Segura-Egea, J.J.; Kebschull, M.; et al. Treatment of Pulpal and Apical Disease: The European Society of Endodontology (ESE) S3-level Clinical Practice Guideline. Int. Endod. J. 2023, 56, 238–295. [Google Scholar] [CrossRef]
- Mohammadi, Z.; Shalavi, S.; Kinoshita, J.-I.; Giardino, L.; Gutmann, J.L.; Banihashem Rad, S.; Udoye, C.I.; Jafarzadeh, H. A Review on Root Canal Irrigation Solutions in Endodontics. J. Dent. Mater. Tech. 2021, 10, 121–132. [Google Scholar] [CrossRef]
- Grawehr, M.; Sener, B.; Waltimo, T.; Zehnder, M. Interactions of Ethylenediamine Tetraacetic Acid with Sodium Hypochlorite in Aqueous Solutions. Int. Endod. J. 2003, 36, 411–415. [Google Scholar] [CrossRef] [PubMed]
- Wagner, M.H.; Da Rosa, R.A.; De Figueiredo, J.A.P.; Duarte, M.A.H.; Pereira, J.R.; Só, M.V.R. Final Irrigation Protocols May Affect Intraradicular Dentin Ultrastructure. Clin. Oral Investig. 2017, 21, 2173–2182. [Google Scholar] [CrossRef] [PubMed]
- Cruz-Filho, A.M.; Sousa-Neto, M.D.; Savioli, R.N.; Silva, R.G.; Vansan, L.P.; Pécora, J.D. Effect of Chelating Solutions on the Microhardness of Root Canal Lumen Dentin. J. Endod. 2011, 37, 358–362. [Google Scholar] [CrossRef] [PubMed]
- Şen, B.H.; Ertürk, Ö.; Pişkin, B. The Effect of Different Concentrations of EDTA on Instrumented Root Canal Walls. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2009, 108, 622–627. [Google Scholar] [CrossRef]
- Calt, S.; Serper, A. Time-Dependent Effects of EDTA on Dentin Structures. J. Endod. 2002, 28, 17–19. [Google Scholar] [CrossRef]
- Bhatia, S. Comparative Evaluation of the Effect of EDTA, Chitosan, Etidronic Acid, and Silver Citrate on the Mineral Content of Root Canal Dentine Using Energy Dispersive X-Ray Spectroscopy: An In-Vitro Study. Eur. Endod. J. 2025, 10, 173–180. [Google Scholar] [CrossRef]
- Prado, M.; Santos Júnior, H.M.; Rezende, C.M.; Pinto, A.C.; Faria, R.B.; Simão, R.A.; Gomes, B.P.F.A. Interactions between Irrigants Commonly Used in Endodontic Practice: A Chemical Analysis. J. Endod. 2013, 39, 505–510. [Google Scholar] [CrossRef]
- Zehnder, M.; Schmidlin, P.; Sener, B.; Waltimo, T. Chelation in Root Canal Therapy Reconsidered. J. Endod. 2005, 31, 817–820. [Google Scholar] [CrossRef]
- Russell, R.G.G.; Rogers, M.J. Bisphosphonates: From the Laboratory to the Clinic and Back Again. Bone 1999, 25, 97–106. [Google Scholar] [CrossRef]
- Coons, D.; Dankowski, M.; Diehl, M.; Jakobi, G.; Kuzel, P.; Sung, E.; Trabitzsch, U. Performance in Detergents, Cleaning Agents and Personal Care Products. In Surfactants in Consumer Products; Falbe, J., Ed.; Springer: Berlin/Heidelberg, Germany, 1987; pp. 197–398. ISBN 978-3-642-71547-1. [Google Scholar]
- Paqué, F.; Rechenberg, D.-K.; Zehnder, M. Reduction of Hard-Tissue Debris Accumulation during Rotary Root Canal Instrumentation by Etidronic Acid in a Sodium Hypochlorite Irrigant. J. Endod. 2012, 38, 692–695. [Google Scholar] [CrossRef] [PubMed]
- Morago, A.; Ordinola-Zapata, R.; Ferrer-Luque, C.M.; Baca, P.; Ruiz-Linares, M.; Arias-Moliz, M.T. Influence of Smear Layer on the Antimicrobial Activity of a Sodium Hypochlorite/Etidronic Acid Irrigating Solution in Infected Dentin. J. Endod. 2016, 42, 1647–1650. [Google Scholar] [CrossRef]
- Yadav, H.K.; Tikku, A.P.; Chandra, A.; Yadav, R.K.; Patel, D.K. Efficacy of Etidronic Acid, BioPure MTAD and SmearClear in Removing Calcium Ions from the Root Canal: An In Vitro Study. Eur. J. Dent. 2015, 09, 523–528. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Cobankara, F.K.; Erdogan, H.; Hamurcu, M. Effects of Chelating Agents on the Mineral Content of Root Canal Dentin. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2011, 112, e149–e154. [Google Scholar] [CrossRef]
- Novozhilova, N.; Babina, K.; Polyakova, M.; Sokhova, I.; Sherstneva, V.; Zaytsev, A.; Makeeva, I.; Mikheikina, A. The Effect of Different Compositions and Concentrations of Etidronate-Containing Irrigants on the Antibacterial Activity of Sodium Hypochlorite against Enterococcus faecalis and Candida albicans. Dent. J. 2024, 12, 46. [Google Scholar] [CrossRef]
- Tartari, T.; Guimarães, B.M.; Amoras, L.S.; Duarte, M.A.H.; Silva e Souza, P.A.R.; Bramante, C.M. Etidronate Causes Minimal Changes in the Ability of Sodium Hypochlorite to Dissolve Organic Matter. Int. Endod. J. 2015, 48, 399–404. [Google Scholar] [CrossRef] [PubMed]
- Campello, A.F.; Rodrigues, R.C.V.; Alves, F.R.F.; Miranda, K.R.; Brum, S.C.; Mdala, I.; Siqueira, J.F.; Rôças, I.N. Enhancing the Intracanal Antibacterial Effects of Sodium Hypochlorite with Etidronic Acid or Citric Acid. J. Endod. 2022, 48, 1161–1168. [Google Scholar] [CrossRef]
- Ballal, N.V.; Gandhi, P.; Shenoy, P.A.; Shenoy Belle, V.; Bhat, V.; Rechenberg, D.-K.; Zehnder, M. Safety Assessment of an Etidronate in a Sodium Hypochlorite Solution: Randomized Double-blind Trial. Int. Endod. J. 2019, 52, 1274–1282. [Google Scholar] [CrossRef] [PubMed]
- Arias-Moliz, M.T.; Ordinola-Zapata, R.; Baca, P.; Ruiz-Linares, M.; García García, E.; Hungaro Duarte, M.A.; Monteiro Bramante, C.; Ferrer-Luque, C.M. Antimicrobial Activity of Chlorhexidine, Peracetic Acid and Sodium Hypochlorite/Etidronate Irrigant Solutions against Enterococcus faecalis Biofilms. Int. Endod. J. 2015, 48, 1188–1193. [Google Scholar] [CrossRef] [PubMed]
- El-Banna, A.; Elmesellawy, M.; Elsayed, M. Flexural Strength and Microhardness of Human Radicular Dentin Sticks after Conditioning with Different Endodontic Chelating Agents. J. Conserv. Dent. 2023, 26, 344–348. [Google Scholar] [CrossRef] [PubMed]
- De-Deus, G.; Zehnder, M.; Reis, C.; Fidel, S.; Fidel, R.A.S.; Galan, J.; Paciornik, S. Longitudinal Co-Site Optical Microscopy Study on the Chelating Ability of Etidronate and EDTA Using a Comparative Single-Tooth Model. J. Endod. 2008, 34, 71–75. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. Declaración PRISMA 2020: Una guía actualizada para la publicación de revisiones sistemáticas. Rev. Española Cardiol. 2021, 74, 790–799. [Google Scholar] [CrossRef]
- Faggion, C.M. Guidelines for Reporting Pre-Clinical In Vitro Studies on Dental Materials. J. Evid. Based Dent. Pract. 2012, 12, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, I.; Conde, A.J.; Loroño, G.; Estevez, R.; Plotino, G.; Cisneros, R. Effectiveness of XP-Endo Finisher and Passive Ultrasonic Irrigation in the Removal of the Smear Layer Using Two Different Chelating Agents. J. Dent. 2021, 22, 243–251. [Google Scholar] [CrossRef]
- Castagnola, R. In Vitro Evaluation of Smear Layer and Debris Removal and Antimicrobial Activity of Different Irrigating Solutions. Eur. Endod. J. 2024, 9, 81–88. [Google Scholar] [CrossRef]
- Lottanti, S.; Gautschi, H.; Sener, B.; Zehnder, M. Effects of Ethylenediaminetetraacetic, Etidronic and Peracetic Acid Irrigation on Human Root Dentine and the Smear Layer. Int. Endod. J. 2009, 42, 335–343. [Google Scholar] [CrossRef]
- Kfir, A.; Goldenberg, C.; Metzger, Z.; Hülsmann, M.; Baxter, S. Cleanliness and Erosion of Root Canal Walls after Irrigation with a New HEDP-Based Solution vs. Traditional Sodium Hypochlorite Followed by EDTA. A Scanning Electron Microscope Study. Clin. Oral Investig. 2020, 24, 3699–3706. [Google Scholar] [CrossRef]
- Kamil, A.A.; Ali, A.H.; Foschi, F.; Mannocci, F. Effectiveness of Continuous and Sequential Chelation and Different Agitation Techniques on Smear Layer Removal and Microhardness of Root Canal Dentin (An In Vitro Study). Dent. J. 2025, 13, 221. [Google Scholar] [CrossRef]
- Adham, A.; Ali, A. The Effectiveness of Continuous versus Sequential Chelation in the Removal of Smear Layer and Their Influence on Push-out Bond Strength of Bio-C Sealer (An In Vitro Study). Cumhur. Dent. J. 2023, 26, 112–120. [Google Scholar] [CrossRef]
- Razumova, S.; Brago, A.; Kryuchkova, A.; Troitskiy, V.; Bragunova, R.; Barakat, H. Evaluation of the Efficiency of Smear Layer Removal during Endodontic Treatment Using Scanning Electron Microscopy: An In Vitro Study. BMC Oral Health 2025, 25, 151. [Google Scholar] [CrossRef]
- Hegde, V.; Thakkar, P. Effect of Continuous Soft Chelating Irrigation Protocol on Removal of Smear Layer. Endodontology 2019, 31, 63–67. [Google Scholar] [CrossRef]
- Aoun, C.; Rechenberg, D.K.; Karam, M.; Mhanna, R.; Plotino, G.; Zogheib, C. Effect of Continuous Chelation Irrigation Using DualRinse HEDP + 3% NaOCL with or without High-Power Sonic Activation on Debris and Smear Layer Removal. Eur. Endod. J. 2022, 8, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Hazar, E.; Hazar, A. Effects of Phytic Acid and Etidronic Acid Using Continuous and Sequential Chelation on the Removal of Smear Layer, Dentin Microhardness, and Push-out Bond Strength of Calcium Silicate-Based Cement. BMC Oral Health 2025, 25, 633. [Google Scholar] [CrossRef]
- Mankeliya, S.; Jaiswal, N.; Singhal, R.K.; Gupta, A.; Pathak, V.K.; Kushwah, A. A Comparative Evaluation of Smear Layer Removal by Using Four Different Irrigation Solutions like Root Canal Irrigants: An In Vitro SEM Study. J. Contemp. Dent. Pract. 2021, 22, 527–531. [Google Scholar] [CrossRef] [PubMed]
- Pendalwar, S.; Mukka, P.K.; Pola, S.S.R.; Jarupula, D.; Kotha, S. Comparative Evaluation of Three Different Irrigants on Smear Layer Removal in Instrumented Root Canals: An In-Vitro Scanning Electron Microscopic Study. Afr. J. Biol. Sci. 2024, 6, 785–796. [Google Scholar] [CrossRef]
- Patil, P.; Gulve, M.; Kolhe, S.; Samuel, R.; Aher, G. Efficacy of New Irrigating Solution on Smear Layer Removal in Apical Third of Root Canal: A Scanning Electron Microscope Study. J. Conserv. Dent. 2018, 21, 190–193. [Google Scholar] [CrossRef]
- Yadav, H.K.; Yadav, R.K.; Chandra, A.; Tikku, A.P. A Scanning Electron Microscopic Evaluation of the Effectiveness of Etidronic Acid, SmearClear and MTAD in Removing the Intracanal Smear Layer. J. Dent. Shiraz Univ. Med. Sci. 2017, 18, 118–126. [Google Scholar]
- Kour, S.; Pradeep, P.R.; Veena Kumari, R.; Chaudhury, T.; Syam, A. Effect of Final Irrigating Solutions on Smear Layer Removal and Penetrability of an Epoxy Resin Based Sealer into Dentinal Tubules. Int. J. Contemp. Med. Res. 2019, 6, B1–B6. [Google Scholar] [CrossRef]
- Varma, K.M.; Manishaa, B.; Satish, R.K.; Kumar, M.S.R.; Panithini, D.B.; Madhavi, K. Smear Layer Removal Efficacy of Different Types of Irrigation Solutions with Single File System: An In Vitro SEM Study. Res. J. Pharm. Technol. 2023, 16, 1875–1879. [Google Scholar] [CrossRef]
- Bajpe, S.; Shetty, C.; Shetty, A.; Kaur, G.; Saji, S.A.; Prabha, C. Scanning Electron Microscopy Evaluation of Smear Layer Removal Using Ethylenediaminetetraacetic Acid, Etidronic Acid, and Chitosan Nanoparticle Solution as Root Canal Irrigants. Endodontology 2023, 35, 48–53. [Google Scholar] [CrossRef]
- Kuruvilla, A.; Jaganath, B.M.; Krishnegowda, S.C.; Ramachandra, P.K.; Johns, D.A.; Abraham, A. A Comparative Evaluation of Smear Layer Removal by Using Edta, Etidronic Acid, and Maleic Acid as Root Canal Irrigants: An In Vitro Scanning Electron Microscopic Study. J. Conserv. Dent. 2015, 18, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Ulusoy, Ö.İ.; Zeyrek, S.; Çelik, B. Evaluation of Smear Layer Removal and Marginal Adaptation of Root Canal Sealer after Final Irrigation Using Ethylenediaminetetraacetic, Peracetic, and Etidronic Acids with Different Concentrations. Microsc. Res. Tech. 2017, 80, 687–692. [Google Scholar] [CrossRef]
- Emre Erik, C.; Onur Orhan, E.; Maden, M. Qualitative Analysis of Smear Layer Treated with Different Etidronate Concentrations: A Scanning Electron Microscopy Study. Microsc. Res. Tech. 2019, 82, 1535–1541. [Google Scholar] [CrossRef]
- Hülsmann, M.; Rümmelin, C.; Schäfers, F. Root Canal Cleanliness after Preparation with Different Endodontic Handpieces and Hand Instruments: A Comparative SEM Investigation. J. Endod. 1997, 23, 301–306. [Google Scholar] [CrossRef]
- Torabinejad, M.; Khademi, A.; Babagoli, J.; Cho, Y.; Johnson, W.; Bozhilov, K.; Kim, J.; Shabahang, S. A New Solution for the Removal of the Smear Layer. J. Endod. 2003, 29, 170–175. [Google Scholar] [CrossRef]
- Lee, S.-J.; Wu, M.-K.; Wesselink, P.R. The Effectiveness of Syringe Irrigation and Ultrasonics to Remove Debris from Simulated Irregularities within Prepared Root Canal Walls. Int. Endod. J. 2004, 37, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Gutmann, J.L.; Saunders, W.P.; Nguyen, L.; Guo, I.Y.; Saunders, E.M. Ultrasonic Root-end Preparation Part 1. SEM Analysis. Int. Endod. J. 1994, 27, 318–324. [Google Scholar] [CrossRef]
- Habshi, A.Y.; Aga, N.; Habshi, K.Y.; Hassan, M.E.M.; Choudhry, Z.; Ahmed, M.A.; Syed, A.U.Y.; Jouhar, R. Efficacy of Smear Layer Removal at the Apical One-Third of the Root Using Different Protocols of Erbium-Doped Yttrium Aluminium Garnet (Er:YAG) Laser. Medicina 2023, 59, 433. [Google Scholar] [CrossRef]
- Spanó, J.C.E.; Silva, R.G.; Guedes, D.F.C.; Sousa-Neto, M.D.; Estrela, C.; Pécora, J.D. Atomic Absorption Spectrometry and Scanning Electron Microscopy Evaluation of Concentration of Calcium Ions and Smear Layer Removal with Root Canal Chelators. J. Endod. 2009, 35, 727–730. [Google Scholar] [CrossRef]
- Gambarini, G.; Laszkiewicz, J. A Scanning Electron Microscopic Study of Debris and Smear Layer Remaining Following Use of GT Rotary Instruments. Int. Endod. J. 2002, 35, 422–427. [Google Scholar] [CrossRef] [PubMed]
- Kato, A.S.; Cunha, R.S.; Da Silveira Bueno, C.E.; Pelegrine, R.A.; Fontana, C.E.; De Martin, A.S. Investigation of the Efficacy of Passive Ultrasonic Irrigation Versus Irrigation with Reciprocating Activation: An Environmental Scanning Electron Microscopic Study. J. Endod. 2016, 42, 659–663. [Google Scholar] [CrossRef]
- Boutsioukis, C.; Arias-Moliz, M.T. Present Status and Future Directions—Irrigants and Irrigation Methods. Int. Endod. J. 2022, 55, 588–612. [Google Scholar] [CrossRef] [PubMed]
- Zollinger, A.; Mohn, D.; Zeltner, M.; Zehnder, M. Short-term Storage Stability of NaOCl Solutions When Combined with Dual Rinse HEDP. Int. Endod. J. 2018, 51, 691–696. [Google Scholar] [CrossRef]
- Wright, P.P.; Scott, S.; Kahler, B.; Walsh, L.J. Organic Tissue Dissolution in Clodronate and Etidronate Mixtures with Sodium Hypochlorite. J. Endod. 2020, 46, 289–294. [Google Scholar] [CrossRef]
- Rajendran, M.R.; Kumaresan, K.; Govindaraju, L. Effect of Continuous Chelation on Physicochemical Properties of Dentin: A Systematic Review. J. Contemp. Dent. Pract. 2025, 26, 321–330. [Google Scholar] [CrossRef]
- Gupta, K.; Shetty, S.S.; Tandale, A.B.; Srikurmam, M.; Nihalani, H. Comparative Evaluation of Continuous and Sequential Chelation on the Dentinal Tubule Penetration of Bioceramic-Based Sealer—A Confocal Laser Scanning Microscopic Study. J. Conserv. Dent. Endod. 2024, 27, 935–941. [Google Scholar] [CrossRef] [PubMed]
- Gawdat, S.I.; Bedier, M.M. Influence of Dual Rinse Irrigation on Dentinal Penetration of a Bioceramic Root Canal Sealer: A Confocal Microscopic Analysis. Aust. Endod. J. 2022, 48, 481–486. [Google Scholar] [CrossRef]
- Neelakantan, P.; Varughese, A.A.; Sharma, S.; Subbarao, C.V.; Zehnder, M.; De-Deus, G. Continuous Chelation Irrigation Improves the Adhesion of Epoxy Resin-based Root Canal Sealer to Root Dentine. Int. Endod. J. 2012, 45, 1097–1102. [Google Scholar] [CrossRef]
- Fortea, L.; Sanz-Serrano, D.; Luz, L.; Bardini, G.; Mercade, M. Update on Chelating Agents in Endodontic Treatment: A Systematic Review. J. Clin. Exp. Dent. 2024, 16, e516–e538. [Google Scholar] [CrossRef]
- La Rosa, G.R.M.; Chapple, I.; Polosa, R.; Pedullà, E. A Scoping Review of New Technologies for Dental Plaque Quantitation: Benefits and Limitations. J. Dent. 2023, 139, 104772. [Google Scholar] [CrossRef]
- Zou, X.; Zheng, X.; Liang, Y.; Zhang, C.; Fan, B.; Liang, J.; Ling, J.; Bian, Z.; Yu, Q.; Hou, B.; et al. Expert Consensus on Irrigation and Intracanal Medication in Root Canal Therapy. Int. J. Oral Sci. 2024, 16, 23. [Google Scholar] [CrossRef]
- Wu, L.; Mu, Y.; Deng, X.; Zhang, S.; Zhou, D. Comparison of the Effect of Four Decalcifying Agents Combined with 60 °C 3% Sodium Hypochlorite on Smear Layer Removal. J. Endod. 2012, 38, 381–384. [Google Scholar] [CrossRef]
- Versiani, M.A.; Silva, E.J.N.L.; Souza, E.; De Deus, G.; Zuolo, M. Managing Canal Anatomies in the Context of Shaping for Cleaning Proposal. In Shaping for Cleaning the Root Canals; De Deus, G., Silva, E.J.N.L., Souza, E., Versiani, M.A., Zuolo, M., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 295–370. ISBN 978-3-030-84616-9. [Google Scholar]
- Loroño, G.; Zaldivar, J.R.; Arias, A.; Cisneros, R.; Dorado, S.; Jimenez-Octavio, J.R. Positive and Negative Pressure Irrigation in Oval Root Canals with Apical Ramifications: A Computational Fluid Dynamics Evaluation in micro-CT Scanned Real Teeth. Int. Endod. J. 2020, 53, 671–679. [Google Scholar] [CrossRef] [PubMed]
- Mandke, L.; Padhye, L. Apical Vapour Lock Effect in Endodontics—A Review. Int. J. Contemp. Med. Res. 2018, 5, 10–13. [Google Scholar]
- Boutsioukis, C.; Arias-Moliz, M.T.; Chávez De Paz, L.E. A Critical Analysis of Research Methods and Experimental Models to Study Irrigants and Irrigation Systems. Int. Endod. J. 2022, 55, 295–329. [Google Scholar] [CrossRef] [PubMed]
- De-Deus, G.; Reis, C.; Paciornik, S. Critical Appraisal of Published Smear Layer-Removal Studies: Methodological Issues. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontology 2011, 112, 531–543. [Google Scholar] [CrossRef]
- Hülsmann, M.; Peters, O.A.; Dummer, P.M.H. Mechanical Preparation of Root Canals: Shaping Goals, Techniques and Means. Endod. Top. 2005, 10, 30–76. [Google Scholar] [CrossRef]
- Gulabivala, K.; Patel, B.; Evans, G.; Ng, Y. Effects of Mechanical and Chemical Procedures on Root Canal Surfaces. Endod. Top. 2005, 10, 103–122. [Google Scholar] [CrossRef]
- Paqué, F.; Boessler, C.; Zehnder, M. Accumulated Hard Tissue Debris Levels in Mesial Roots of Mandibular Molars after Sequential Irrigation Steps: Debris Reduction. Int. Endod. J. 2011, 44, 148–153. [Google Scholar] [CrossRef]
- De-Deus, G.; Reis, C.M.; Fidel, R.A.S.; Fidel, S.R.; Paciornik, S. Co-site Digital Optical Microscopy and Image Analysis: An Approach to Evaluate the Process of Dentine Demineralization. Int. Endod. J. 2007, 40, 441–452. [Google Scholar] [CrossRef]
- Parente, J.M.; Loushine, R.J.; Susin, L.; Gu, L.; Looney, S.W.; Weller, R.N.; Pashley, D.H.; Tay, F.R. Root Canal Debridement Using Manual Dynamic Agitation or the EndoVac for Final Irrigation in a Closed System and an Open System. Int. Endod. J. 2010, 43, 1001–1012. [Google Scholar] [CrossRef] [PubMed]
- Tay, F.R.; Gu, L.; Schoeffel, G.J.; Wimmer, C.; Susin, L.; Zhang, K.; Arun, S.N.; Kim, J.; Looney, S.W.; Pashley, D.H. Effect of Vapor Lock on Root Canal Debridement by Using a Side-Vented Needle for Positive-Pressure Irrigant Delivery. J. Endod. 2010, 36, 745–750. [Google Scholar] [CrossRef]
- Sharma, G. A Comparative SEM Investigation of Smear Layer Remaining on Dentinal Walls by Three Rotary NiTi Files with Different Cross Sectional Designs in Moderately Curved Canals. J. Clin. Diagn. Res. 2015, 9, ZC43. [Google Scholar] [CrossRef]
- Agrawal, S.; Bichpuriya, A.; Maria, R. Comparison of Cleaning Efficiency of Root Canal Using Different Rotary NiTi Instrumentation System: A Scanning Electron Microscopic Study. Cureus 2022, 14, e24200. [Google Scholar] [CrossRef] [PubMed]
- Aksel, H.; Serper, A. Concentration and Time-Dependent Effect of Initial Sodium Hypochlorite on the Ability of QMix and Ethylenediaminetetraacetic Acid to Remove Smear Layer. J. Conserv. Dent. 2017, 20, 185. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.; Singh, M.; Salgar, A.; Chandrahari, N.; Prathibha, N.; Koppolu, P. Time-Dependent Effect of Various Irrigants for Root Canal on Smear Layer Removal. J. Pharm. Bioallied Sci. 2019, 11, 51. [Google Scholar] [CrossRef]

| Author, Year | Sample Characteristics | Sample Preparation | Instrumentation | Irrigants | Irrigation | Results Analysis | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Total Size | Size per Group | Teeth | Decoronation | Apical Foramen Closure | Working Length Determination | File System | Final Apical Caliber | Method | Volume and Time (Instrumentation) | Volume and Time (Final) | Activation | Measurement Scale | Magnification | ||
| Espinoza et al., 2001 [39] | 52 | 12 | Upper CI | 16 mm | Yes | K-file n°10 WL–1 mm | PG | 40 | 3%NaOCl/17%EDTA 3%NaOCl + 9%HEDP | NE-300 Syringe “Just Infusion” 3 mL/min 27 G WL–2 mm | 1.5 mL 30 s | 12 mL NS | XP or PUI | Lee (0–3) | 100 and 800 |
| Castagnola et al., 2024 [40] | 30 | 10 | Upper and lower PM | No | Yes | K-file n°10 to WL | Mtwo | 40 | 6%NaOCl/17%EDTA 6%NaOCl + 9%HEDP DR 6%NaOCl/Triton | MS 30 G WL–1 mm | 2 mL 30 s | 6 mL 2 min | No | Gutmann (1–4) | 1000 |
| Lottanti et al., 2009 [41] | 48 | 12 | PM | 12 mm | NS | NS, WL–1 mm | Profile | 45 | 1%NaOCl/17%EDTA 1%NaOCl + 9%HEDP 1%NaOCl/2.25%peracetic acid | NS WL–1 mm | 10 mL 15 min | 5 mL 3 min | No | - | 1000 |
| Kfir et al., 2020 [42] | 40 | 20 | SR | No | Yes | K-file n°15 to WL | PN | 30 | 3%NaOCl/17%EDTA 3%NaOCl + 9%HEDP DR | MS 30 G WL–2 mm | 2 mL 30 s | 2 mL NS | No | Hülsmann (1–4) | 1000 |
| Kamil et al., 2025 [43] | 64 | 8 | Palatal root upper M | 12 mm | NS | K-file n°10 WL–1 mm | PN | 30 | 3%NaOCl/17%EDTA 3%NaOCl + 9%HEDP DR | MS 30 G WL–2 mm | 2 mL 1 min | 5 mL 1 min | Endoactivator, laser, PUI | Hülsmann (1–4) | 2500 |
| Adham et al., 2023 [44] | 32 | 8 | Palatal root upper M | 12 mm | NS | K-file n°10 WL–1 mm | PN | 30 | 3%NaOCl/17%EDTA 3%NaOCl + 9%HEDP DR | MS 30 G WL–2 mm | 2 mL 1 min | 5 mL 1 min | No | Hülsmann (1–4) | 1500 |
| Razumova et al., 2025 [45] | 30 | 10 | I, C, PM | NS | NS | NS | S-flexi | 35 | 3%NaOCl/17%EDTA 3%NaOCl + 9%HEDP | NS | 2 mL 30 s | NS | EQ-S sonic endoactivator | Hülsmann (1–4) | NS |
| Hedge et al., 2019 [46] | 60 | 12 | PM | 12 mm | NS | K-file n°10 WL–1 mm | NS | NS | 5.25%NaOCl/17%EDTA 5.25%NaOCl/Smear Clear 5.25%NaOCl/EDTA/CHX/surfact 5.25%NaOCl + HEDP 9% and 18%Ch | MS 30 G WL–1–2 mm | 2 mL NS | 3 mL NS | No | Torabinejad (1–3) | 2000 |
| Aoun et al., 2023 [47] | 75 | 15 | Lower PM | 15 mm | Yes | K-file n°10 WL–1 mm | Wave One Gold | 25 | 3%NaOCl/17%EDTA 3%NaOCl + 9%HEDP DR | MS 27 G WL–2 mm | 2 mL 30 s | 6 mL 3 min | EDDY | Adaptation of Gambarini and Laszkiewicz and Kato et al. (1–4) | 1000 |
| Hazar & Hazar, 2025 [48] | 30 | 5 | Upper CI | 15 mm | No | NS | Protaper | 40 | 2.5%NaOCl 2.5%NaOCl/17%EDTA 2.5NaOCl/9%HEDP DR 2.5%NaOCl/phytic acid 2.5%NaOCl + 9%HEDP DR 2.5%NaOCl + phytic acid | 27 G WL–1 mm | 4 mL 2 min | 4 mL 2 min | No | Habshi (1–4) | 2500 |
| Author, Year | Sample Characteristics | Sample Preparation | Instrumentation | Irrigants Size per Group | Irrigation | Results Analysis | ||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Total Size | Size per Group | Teeth | Decoronation | Apical Foramen Closure | Working Length Determination | Instrumentation System | Total Size | Method | Volume and Time (Instrumentation) | Volume and Time (Final) | Activation | Measurement Scale | Analysis per Thirds | Magnification | ||
| Mankeliya et al., 2021 [49] | 60 | 15 | Lower PM | 17 mm | NS | NS | Manual | 40 | 5.25%NaOCl/10%EDTA 5.25%NaOCl/10%citric acid 5.25%NaOCl/18%HEDP 5.25%NaOCl/7%maleic acid | MS WL | NS | NS | No | Torabinejad (1–3) | Only apical | 2000 |
| Pendalwar et al., 2024 [50] | 20 | 5 | Lower PM | Yes, NS | No | NS | Protaper | 30 | NaOCl/17%EDTA NaOCl/18%HEDP NaOCl/0.2%Chitosan | NS | NS | NS | No | Hülsmann (1–4) | Yes | 2000 |
| Patil et al., 2018 [51] | 40 | 10 | Lower PM | 14 mm | NS | K-file n°15 WL–1 mm | Protaper | 30 | 5.25%NaOCl/17%EDTA 5.25%NaOCl/18%HEDP Ch high 5.25%NaOCl/Biopure MTAD | MS 30 G WL–1 mm | 2 mL NS | 5 mL 3 min | No | Hülsmann (1–4) | Only apical | 500 |
| Yadav et al., 2017 [52] | 50 | 10 | Lower PM | Yes, NS | NS | K-file n°10 or n°15 WL–1 mm | Protaper | 50 | 1%NaOCl/SC 1%NaOCl/9% and 18%HEDP 1%NaOCl/Biopure MTAD | MS 30 G WL–1,2 mm | NS | 5 mL 5 min | No | Spano (1–3) | Yes | 2000 |
| Kour et al., 2019 [53] | 60 | 20 | Lower PM | 16 mm | Yes | NS | Mtwo | 35 | 5.25%NaOCl/17%EDTA 5.25%NaOCl/18%HEDP 5.25%NaOCl/Biopure MTAD | MS 30 G NS | 2 mL NS | 5 mL 2 min | No | Torabinejad (1–3) | Apical and middle | 2000 |
| Varma et al., 2023 [54] | 33 | 11 | Lower PM | 14 mm | No | K-file n°15 WL–1 mm | XPS | 30 | 3%NaOCl/17%EDTA 3%NaOCl/9%HEDP (TK) 3%NaOCl/Remix 2in1 | MS 30 G WL–1 mm | 2 mL NS | 5 mL NS | No | Hülsmann (1–4) | Yes | 1000 |
| Bajpe et al., 2023 [55] | 30 | 10 | Lower PM | 16 mm | No | K-file n°15 WL–1 mm | Protaper | 30 | 2.5%NaOCl/17%EDTA 2.5%NaOCl/18%HEDP 2.5%NaOCl/0.2%chitosan | MS 30 G WL–2 mm | 2 mL NS | 5 mL 3 min | No | Hülsmann (1–4) | Yes | 4000 |
| Kuruvilla et al., 2015 [56] | 30 | 10 | Lower PM | 17 mm | No | NS | Manual | 40 | 2.5%NaOCl/17%EDTA 2.5%NaOCl/18%HEDP 2.5%NaOCl/7%maleic acid | MS WL | NS | 5 mL 1 min | No | Torabinejad (1–3) | Yes | 2000 |
| Hazar & Hazar, 2025 [48] | 30 | 5 | Upper CI | 15 mm | No | NS | Protaper | 40 | 2.5%NaOCl 2.5%NaOCl/17%EDTA 2.5%NaOCl/9%HEDP DR 2.5%NaOCl/phytic acid 2.5%NaOCl + 9%HEDP DR 2.5%NaOCl + phytic acid | MS 27 G WL–1 mm | 4 mL 2 min | 4 mL 2 min | No | Habshi (1–4) | Yes | 2500 |
| Ulusoy et al., 2017 [57] | 70 | 10 | Lower PM | 14 mm | Yes | K-file n°10 WL–1 mm | Protaper | 30 | 2.5%NaOCl/17%EDTA 2.5%NaOCl/9% and 18%HEDP 2.5%NaOCl/0.5%, 1% and 2%peracetic acid | MS 30 G WL–1–2 mm | 3 mL NS | 2,5 mL 1 min | No | Hülsmann (1–4) | Yes | 2000 |
| Erik et al., 2019 [58] | 78 | 13 | Lower PM | 14 mm | No | NS | Protaper Next | 40 | 2.5%NaOCl/17%EDTA 2.5%NaOCl/9%and 18%HEBP 1%NaOCl/9%HEBP 2%NaOCl/18%HEBP | MS 30 G WL | 2 mL NS | 5 mL 3 min | No | Torabinejad (1–3) | Yes | 2000 |
| Espinoza et al., 2021 [39] | Castagnola et al., 2024 [40] | Lottanti et al., 2009 [41] | Kfir et al., 2020 [42] | Kamil et al., 2025 [43] | Adham et al., 2023 [44] | Razumova et al., 2025 [45] | Hegde et al., 2019 [46] | Aoun et al., 2023 [47] | Hazar & Hazar, 2025 [48] | Mankeliya et al., 2021 [49] | Pendalwar et al., 2014 [50] | Patil et al., 2018 [51] | Yadav et al, 2017 [52] | Kour et al., 2019 [53] | Varma et al., 2023 [54] | Bajpe et al., 2023 [55] | Kuruvilla et al., 2015 [56] | Ulusoy et al., 2017 [57] | Erik et al., 2019 [58] | Yes (%) | No (%) | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 1 | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | Y | Y | Y | Y | N | N | N | 81 | 19 |
| 2a | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 100 | 0 |
| 2b | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 100 | 0 |
| 3 | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | N | N | Y | Y | Y | Y | Y | Y | Y | Y | 86 | 14 |
| 4 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 100 | 0 |
| 5 | Y | N | N | N | Y | Y | N | N | Y | Y | N | Y | N | N | N | N | N | N | N | N | 33 | 67 |
| 6 | N | N | Y | N | N | Y | N | N | N | N | N | N | N | N | N | N | N | N | N | N | 9 | 91 |
| 7 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | 0 | 100 |
| 8 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | 0 | 100 |
| 9 | N | Y | N | Y | N | N | N | Y | Y | N | Y | Y | Y | Y | N | Y | Y | Y | N | Y | 62 | 38 |
| 10 | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | 100 | 0 |
| 11 | Y | N | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | Y | Y | N | Y | Y | 81 | 19 |
| 12 | N | N | N | N | Y | Y | N | N | Y | Y | Y | Y | N | Y | N | N | N | Y | N | N | 38 | 62 |
| 13 | Y | Y | N | Y | Y | Y | Y | Y | Y | Y | Y | N | Y | N | Y | N | Y | Y | Y | Y | 76 | 24 |
| 14 | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | N | 0 | 100 |
| % | 60 | 53 | 53 | 60 | 67 | 73 | 47 | 60 | 73 | 60 | 60 | 60 | 60 | 53 | 53 | 53 | 60 | 53 | 47 | 53 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Vidal-Montolío, M.-I.; Sanz, J.L.; Ghilotti, J.; Folguera, S.; Llena, C. Efficacy of Etidronic Acid for Smear Layer Removal: A Systematic Review of In Vitro Studies. J. Funct. Biomater. 2026, 17, 48. https://doi.org/10.3390/jfb17010048
Vidal-Montolío M-I, Sanz JL, Ghilotti J, Folguera S, Llena C. Efficacy of Etidronic Acid for Smear Layer Removal: A Systematic Review of In Vitro Studies. Journal of Functional Biomaterials. 2026; 17(1):48. https://doi.org/10.3390/jfb17010048
Chicago/Turabian StyleVidal-Montolío, María-Inmaculada, José Luis Sanz, James Ghilotti, Sofía Folguera, and Carmen Llena. 2026. "Efficacy of Etidronic Acid for Smear Layer Removal: A Systematic Review of In Vitro Studies" Journal of Functional Biomaterials 17, no. 1: 48. https://doi.org/10.3390/jfb17010048
APA StyleVidal-Montolío, M.-I., Sanz, J. L., Ghilotti, J., Folguera, S., & Llena, C. (2026). Efficacy of Etidronic Acid for Smear Layer Removal: A Systematic Review of In Vitro Studies. Journal of Functional Biomaterials, 17(1), 48. https://doi.org/10.3390/jfb17010048

