Synergistic Effects of Simulated Energy Drink Exposure and Fatigue Loading on Bioactive and Conventional Resin Composites
Abstract
1. Introduction
2. Materials and Methods
2.1. Specimen Fabrication
2.2. Fatigue Loading
2.3. Flexural Strength Testing
2.4. Statistical Analysis
3. Results
3.1. Fatigue
3.2. Flexural Strength
4. Discussion
5. Conclusions
- Citric acid exposure, simulating energy drink acidity, reduced the fatigue survival and flexural strength of resin composites.
- These effects were material-dependent: Activa Presto and Beautifil Flow Plus F00 were more affected than Tetric N-Ceram.
- Tetric N-Ceram exhibited superior stability under acidic conditions.
- Frequent consumption of acidic beverages may compromise the longevity of bioactive and giomer restorations.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferracane, J.L. Resin composite—State of the art. Dent. Mater. 2011, 27, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Opdam, N.J.; van de Sande, F.H.; Bronkhorst, E.; Cenci, M.S.; Bottenberg, P.; Pallesen, U.; Gaengler, P.; Lindberg, A.; Huysmans, M.C.; van Dijken, J.W. Longevity of posterior composite restorations: A systematic review and meta-analysis. J. Dent. Res. 2014, 93, 943–949. [Google Scholar] [CrossRef] [PubMed]
- Santos, M.; Saadaldin, S.; Rego, H.; Tayan, N.; Melo, N.M.; El-Najar, M. Clinical Longevity of Complex Direct Posterior Resin Composite and Amalgam Restorations: A Systematic Review and Meta-analysis. Oper. Dent. 2025, 50, E30–E46. [Google Scholar] [CrossRef]
- Ferracane, J.L. A Historical Perspective on Dental Composite Restorative Materials. J. Funct. Biomater. 2024, 15, 173. [Google Scholar] [CrossRef]
- Heintze, S.D.; Loguercio, A.D.; Hanzen, T.A.; Reis, A.; Rousson, V. Clinical efficacy of resin-based direct posterior restorations and glass-ionomer restorations—An updated meta-analysis of clinical outcome parameters. Dent. Mater. 2022, 38, e109–e135. [Google Scholar] [CrossRef] [PubMed]
- Ilie, N.; Hickel, R. Investigations on mechanical behaviour of dental composites. Clin. Oral Investig. 2009, 13, 427–438. [Google Scholar] [CrossRef]
- Tsujimoto, A.; Barkmeier, W.W.; Fischer, N.G.; Nojiri, K.; Nagura, Y.; Takamizawa, T.; Latta, M.A.; Miazaki, M. Wear of resin composites: Current insights into underlying mechanisms, evaluation methods and influential factors. Jpn. Dent. Sci. Rev. 2018, 54, 76–87. [Google Scholar] [CrossRef]
- Aonso-Diego, G.; Krotter, A.; Garcia-Perez, A. Prevalence of energy drink consumption world-wide: A systematic review and meta-analysis. Addiction 2024, 119, 438–463. [Google Scholar] [CrossRef]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Study of water sorption, solubility and modulus of elasticity of light-cured dimethacrylate-based dental resins. Biomaterials 2003, 24, 655–665. [Google Scholar] [CrossRef]
- Ferracane, J.L. Hygroscopic and hydrolytic effects in dental polymer networks. Dent. Mater. 2006, 22, 211–222. [Google Scholar] [CrossRef]
- Santerre, J.P.; Shajii, L.; Leung, B.W. Relation of dental composite formulations to their degradation and the release of hydrolyzed polymeric-resin-derived products. Crit. Rev. Oral Biol. Med. 2001, 12, 136–151. [Google Scholar] [CrossRef] [PubMed]
- Geha, O.; Inagaki, L.T.; Favaro, J.C.; González, A.H.M.; Guiraldo, R.D.; Lopes, M.B.; Berger, S.B. Effect of Chemical Challenges on the Properties of Composite Resins. Int. J. Dent. 2021, 2021, 4895846. [Google Scholar] [CrossRef]
- Sauro, S.; Osorio, R.; Watson, T.F.; Toledano, M. Therapeutic effects of novel resin bonding systems containing bioactive glasses on mineral-depleted areas within the bonded-dentine interface. J. Mater. Sci. Mater. Med. 2012, 23, 1521–1532. [Google Scholar] [CrossRef]
- Sauro, S.; Carvalho, R.M.; Ferracane, J. The rise of advanced bioactive restorative materials: Are they redefining operative dentistry? Dent. Mater. 2025, 41, 1411–1429. [Google Scholar] [CrossRef]
- Rusnac, M.E.; Gasparik, C.; Irimie, A.I.; Grecu, A.G.; Mesaroş, A.; Dudea, D. Giomers in dentistry—At the boundary between dental composites and glass-ionomers. Med. Pharm. Rep. 2019, 92, 123–128. [Google Scholar] [CrossRef]
- Ong, J.; Yap, A.U.; Abdul Aziz, A.; Yahya, N.A. Flexural Properties of Contemporary Bioactive Restorative Materials: Effect of Environmental pH. Oper. Dent. 2023, 48, 90–97. [Google Scholar] [CrossRef]
- Kang, S.; Cho, B.H. Effects of an Acidic Environment on the Strength and Chemical Changes of Resin-based Composites. Oper. Dent. 2023, 48, E81–E94. [Google Scholar] [CrossRef]
- ISO 4049:2019; Dentistry—Polymer-Based Restorative Materials. International Organization for Standardization: Geneva, Switzerland, 2019.
- Elsharkawy, Y.M.M.; Mohamed, H.T.; Saeedi, T.; Farahat, A.M.S. Comparative in vitro study on wear resistance and colour stability of 3D-printed, milled, and conventional PMMA denture teeth. BMC Oral Health 2025, 25, 656. [Google Scholar] [CrossRef]
- Maier, E.; Ruben, J.; Palin, W.M.; Bronkhorst, E.; Olmos, M.; Matta, R.E.; Loomans, B. Developing an optimised method for accurate wear testing of dental materials using the ‘Rub&Roll’ device. Sci. Rep. 2024, 14, 17885. [Google Scholar] [CrossRef] [PubMed]
- Heintze, S.D.; Reichl, F.X.; Hickel, R. Wear of dental materials: Clinical significance and laboratory wear simulation methods -A review. Dent. Mater. J. 2019, 38, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Das, K.; Murthy, C.; Naganath, M.; Mehta, D.; Kumari, R.; Karobari, M.; Venkataiah, V.S. Insights Into the Effects and Implications of Acidic Beverages on Resin Composite Materials in Dental Restorations: An In Vitro Study. J. Esthet. Restor. Dent. 2024, 37, 1013–1023. [Google Scholar] [CrossRef]
- Degirmenci, A.; Degirmenci, B.U.; Salameh, M. Long-Term Effect of Acidic Beverages on Dental Injectable Composite Resin: Microhardness, Surface Roughness, Elastic Modulus, and Flexural Strength Patterns. Strength Mater. 2022, 54, 331–343. [Google Scholar] [CrossRef]
- Samir, N.K.M.; El-Hoshy, A.; Helal, H.; Khallaf, Y.S. One-Year Clinical Evaluation of a Fluoride, Calcium, and Phosphate-Releasing New Bioactive Material versus a Fluoride-Releasing Hybrid Restorative Material in Cervical Lesions: A Randomized Clinical Trial. Adv. Dent. J. 2025, 7, 457–472. [Google Scholar] [CrossRef]
- Bergantin, B.T.P.; Di Leone, C.C.L.; Cruvinel, T.; Wang, L.; Buzalaf, M.A.R.; Borges, A.B.; Honorio, H.M.; Rios, D. S-PRG-based composites erosive wear resistance and the effect on surrounding enamel. Sci. Rep. 2022, 12, 833. [Google Scholar] [CrossRef]
- Aldhafyan, M.; Khan, R.; Saeed, W.S.; Al-Odayni, A.B.; Asiri, R.; Althagfan, F.; Aldawsari, M.; Alneghimshi, M.; Alrahlah, A. In Vitro Hydrolytic Degradation of Giomer-Based and Fluoride-Releasing Bulk Fill Composites Simulated for Patients with Gastroesophageal Reflux Disease. ACS Omega 2025, 10, 21621–21629. [Google Scholar] [CrossRef]
- Alzraikat, H.; Burrow, M.F.; Maghaireh, G.A.; Taha, N.A. Nanofilled Resin Composite Properties and Clinical Performance: A Review. Oper. Dent. 2018, 43, E173–E190. [Google Scholar] [CrossRef] [PubMed]
- Lussi, A.; Jaeggi, T. Erosion--diagnosis and risk factors. Clin. Oral Investig. 2008, 12, S5–S13. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, T.S.; Niemeyer, S.H.; Young, A.; Lussi, A. Factors Related to Erosive Tooth Wear throughout a Lifetime. Monogr. Oral Sci. 2025, 33, 149–177. [Google Scholar] [CrossRef] [PubMed]
- Featherstone, J.D. The continuum of dental caries--evidence for a dynamic disease process. J. Dent. Res. 2004, 83, C39–C42. [Google Scholar] [CrossRef]
- Zero, D.; Fontana, M.; Lennon, A.M. Clinical applications and outcomes of using indicators of risk in caries management. J. Dent. Educ. 2001, 65, 1126–1132. [Google Scholar] [CrossRef]
- Featherstone, J.D.B.; Crystal, Y.O.; Alston, P.; Chaffee, B.W.; Doméjean, S.; Rechmann, P.; Zhan, L.; Ramos-Gomez, F. Evidence-Based Caries Management for All Ages-Practical Guidelines. Front. Oral Health 2021, 2, 657518. [Google Scholar] [CrossRef]
- Lussi, A.; Carvalho, T.S. Erosive tooth wear: A multifactorial condition of growing concern and increasing knowledge. Monogr. Oral Sci. 2014, 25, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Attin, T.; Wegehaupt, F.J. Impact of erosive conditions on tooth-colored restorative materials. Dent. Mater. 2014, 30, 43–49. [Google Scholar] [CrossRef]
- Shellis, R.P.; Featherstone, J.D.B.; Lussi, A. The Chemistry of Dental Erosion and Determination of Erosion Potential. Monogr. Oral Sci. 2025, 33, 104–127. [Google Scholar] [CrossRef] [PubMed]
- Schlueter, N.; Amaechi, B.T.; Bartlett, D.; Buzalaf, M.A.R.; Carvalho, T.S.; Ganss, C.; Hara, A.T.; Huysmans, M.; Lussi, A.; Moazzez, R.; et al. Terminology of Erosive Tooth Wear: Consensus Report of a Workshop Organized by the ORCA and the Cariology Research Group of the IADR. Caries Res. 2020, 54, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Gálvez-Bravo, F.; Edwards-Toro, F.; Contador-Cotroneo, R.; Opazo-García, C.; Contreras-Pulache, H.; Goicochea-Palomino, E.A.; Cruz-Gonzales, G.; Moya-Salazar, J. Erosive Potential of Sports, Energy Drinks, and Isotonic Solutions on Athletes’ Teeth: A Systematic Review. Nutrients 2025, 17, 403. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho Sales-Peres, S.H.; Magalhaes, A.C.; de Andrade Moreira Machado, M.A.; Buzalaf, M.A. Evaluation of the erosive potential of soft drinks. Eur. J. Dent. 2007, 1, 10–13. [Google Scholar] [CrossRef]
- Shroff, P.; Gondivkar, S.M.; Kumbhare, S.P.; Sarode, S.; Gadbail, A.R.; Patil, S. Analyses of the Erosive Potential of Various Soft Drinks and Packaged Fruit Juices on Teeth. J. Contemp. Dent. Pract. 2018, 19, 1546–1551. [Google Scholar] [CrossRef]
- Prakki, A.; Cilli, R.; Mondelli, R.F.L.; Kalachandra, S.; Pereira, J.C. Influence of pH environment on polymer based dental material properties. J. Dent. 2005, 33, 91–98. [Google Scholar] [CrossRef]
- Dionysopoulos, D.; Gerasimidou, O. Wear of contemporary dental composite resin restorations: A literature review. Restor. Dent. Endod. 2021, 46, e18. [Google Scholar] [CrossRef]
- Drummond, J.L.; Lin, L.; Al-Turki, L.A.; Hurley, R.K. Fatigue behaviour of dental composite materials. J. Dent. 2009, 37, 321–330. [Google Scholar] [CrossRef] [PubMed]


| Material Name Lot Number | Manufacturer | Resin(s) Used | Filler(s) |
|---|---|---|---|
| Beautifil Flow Plus F00 Lot: 082271 | Shofu Inc. (Kyoto, Japan) | Urethane dimethacrylate (UDMA), other monomers (not specified) | Surface pre-reacted glass ionomer (S-PRG) 75% by weight |
| Activa Presto Lot: 221129 | Pulpdent corp. (Watertown, MA, USA) | UDMA, other monomers (35%) | Ion-leachable glass 70% by weight |
| Tetric N-Ceram Lot: Z06P6D | Ivoclar (New York, NY, USA) | Bisphenol A-diglycidyl dimethacrylate (Bis-GMA) Ethoxylated bisphenol A dimethacrylate (Bis-EMA) UDMA | Barium glass Ytterbium trifluoride mixed oxide Pre-polymerized filler (prepolymers) (56% vol.) |
| Material | Solution | Surviving Samples | p-Value |
|---|---|---|---|
| Activa Presto | Water | 2 | |
| Activa Presto | Citric Acid | 0 | 0.474 |
| Beautifil F00 | Water | 9 | |
| Beautifil F00 | Citric Acid | 4 | 0.057 |
| Tetric N-Ceram | Water | 4 | |
| Tetric N-Ceram | Citric Acid | 4 | 1.000 |
| Storage Condition | Material | X2 | df | p-Value |
|---|---|---|---|---|
| Water | Activa Presto | 10.40 | 2 | 0.0055 |
| Beautifil F00 | ||||
| Tetric N- Ceram | ||||
| Citric Acid | Activa Presto | 5.45 | 2 | 0.065 |
| Beautifil F00 | ||||
| Tetric N-Ceram |
| Material Pairwise Comparison | Water | Citric Acid |
|---|---|---|
| Activa Presto vs. Beautifil F00 | 0.0055 | 0.0870 |
| Activa Preston vs. Tetric N-Ceram | 0.6285 | 0.0867 |
| Beautifil F00 vs. Tetric N-Ceram | 0.0573 | 1.000 |
| Material | Solution | n | Mean (N) | SD (N) | Median (N) | Min (N) | Max (N) |
|---|---|---|---|---|---|---|---|
| Activa Presto | Water | 2 | 10.52 | 1.11 | 10.52 | 9.73 | 11.30 |
| Activa Presto | Acid | 0 | – | – | – | – | – |
| Beautifil F00 | Water | 9 | 20.05 | 5.19 | 20.00 | 13.70 | 27.25 |
| Beautifil F00 | Acid | 4 | 11.25 | 0.90 | 11.50 | 10.00 | 12.00 |
| Tetric N-Ceram | Water | 4 | 28.07 | 3.90 | 28.80 | 22.68 | 32.00 |
| Tetric N-Ceram | Acid | 4 | 22.66 | 1.42 | 22.99 | 20.66 | 24.00 |
| Comparison Type | Group(s) Compared | p-Value |
|---|---|---|
| Between solutions (water vs. acid) | Activa Presto | — |
| Beautifil F00: Water vs. Acid | 0.0028 | |
| Tetric N-Ceram: Water vs. Acid | 0.20 | |
| Between materials (water only) | Activa Presto vs. Beautifil F00 | 0.036 |
| Activa Presto vs. Tetric N-Ceram | 0.133 | |
| Beautifil F00 vs. Tetric N-Ceram | 0.020 | |
| Between materials (Citric acid only) | Beautifil F00 vs. Tetric N-Ceram | 0.0286 |
| Activa Presto vs. Others | — |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Hasanain, F.A.; Turkistani, A. Synergistic Effects of Simulated Energy Drink Exposure and Fatigue Loading on Bioactive and Conventional Resin Composites. J. Funct. Biomater. 2026, 17, 29. https://doi.org/10.3390/jfb17010029
Hasanain FA, Turkistani A. Synergistic Effects of Simulated Energy Drink Exposure and Fatigue Loading on Bioactive and Conventional Resin Composites. Journal of Functional Biomaterials. 2026; 17(1):29. https://doi.org/10.3390/jfb17010029
Chicago/Turabian StyleHasanain, Fatin A., and Alaa Turkistani. 2026. "Synergistic Effects of Simulated Energy Drink Exposure and Fatigue Loading on Bioactive and Conventional Resin Composites" Journal of Functional Biomaterials 17, no. 1: 29. https://doi.org/10.3390/jfb17010029
APA StyleHasanain, F. A., & Turkistani, A. (2026). Synergistic Effects of Simulated Energy Drink Exposure and Fatigue Loading on Bioactive and Conventional Resin Composites. Journal of Functional Biomaterials, 17(1), 29. https://doi.org/10.3390/jfb17010029

