The Potential of Satellite Internet Technologies for Crisis Management During Urban Evacuation: A Case Study of Starlink in Italy
Abstract
1. Introduction
- -
- This study provides the first comprehensive framework for evaluating the integration of Starlink’s satellite internet into urban emergency evacuation systems specifically within the Italian context, considering unique infrastructural, regulatory, and social factors;
- -
- It systematically analyzes the technical, operational, and environmental advantages and limitations of Starlink compared to traditional communication methods during crisis scenarios;
- -
- This work proposes practical policy recommendations and deployment strategies tailored to the multi-level Italian emergency management structure, aiming to maximize the impact of satellite internet in real-world disaster conditions.
2. Literature Review
3. Overview of Emergency Communication Infrastructure in Italy
3.1. Structure of National and Regional Emergency Networks
3.2. Communication Failures in Recent Disasters (Case Examples)
3.3. Gaps and Needs in Current Urban Evacuation Systems
4. Technological Integration of Starlink in Urban Evacuation Frameworks
4.1. Communication Demands in Emergency Evacuation
- Real-Time Information Exchange: Communication systems must transmit alerts, updates, and situational data almost instantaneously. This rapid flow of information is essential for coordinating emergency services and disseminating evacuation instructions.
- Robust and Redundant Connectivity: Centralized, traditional communication media will fail under disaster pressure either by physical destruction or network overload. Therefore, access to alternative pathways, such as satellite networks, ensures continuity when terrestrial infrastructures collapse.
- Decentralized Network Architecture: The application of a decentralized communications model helps to prevent the possibility of system-wide failures. In networks with numerous independent nodes, when parts of the network go down due to disaster, the network, in general, can still function.
- Integration with Multilevel Emergency Operations: Urban evacuations require a seamless interface between government agencies, emergency responders, and local populations. Enhanced communication mechanisms should allow hierarchical coordination so that directions do not lose information while being passed through various levels of management.
4.2. Satellite Internet Capabilities in Crisis Scenarios
- Low Latency and High Bandwidth
- Rapid Deployment and Operational Flexibility
- Resilience Against Infrastructure Failures
- Enhanced Situational Awareness and Data Integration
4.3. Strategic Deployment of Starlink in Urban Environments
5. Opportunities and Limitations of Starlink in the Italian Context
5.1. Potential Benefits for Crisis Management
5.2. Technical and Environmental Constraints
5.3. Regulatory and Infrastructural Challenges
5.4. Financial Implications and Funding Strategies
6. Toward Resilient Emergency Communication Systems
6.1. Policy Implications and Strategic Recommendations
6.2. Integration with Existing Emergency Protocols and Future Research Direction
- Integration with Existing Protocols
- Future Research Directions
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hurley, J.; Insko, J. Introduction: The Infrastructure of Emergency. Am. Lit. 2021, 93, 345–359. [Google Scholar] [CrossRef]
- Cheng, R.; Hou, L.; Xu, S. A Review of Digital Twin Applications in Civil and Infrastructure Emergency Management. Buildings 2023, 13, 1143. [Google Scholar] [CrossRef]
- Astarita, V.; Guido, G.; Haghshenas, S.S.; Haghshenas, S.S. Risk Reduction in Transportation Systems: The Role of Digital Twins According to a Bibliometric-Based Literature Review. Sustainability 2024, 16, 3212. [Google Scholar] [CrossRef]
- Dalmastri, C.; Uccelli, R. Mortality from Extreme Meteorological and Hydrogeological Events in Italy: A Rising Health Threat Connected to Climate Change. Saf. Extrem. Environ. 2024, 6, 173–181. [Google Scholar] [CrossRef]
- Splendiani, S.; Capriello, A. Crisis Communication, Social Media and Natural Disasters–the Use of Twitter by Local Governments during the 2016 Italian Earthquake. Corp. Commun. Int. J. 2022, 27, 509–526. [Google Scholar] [CrossRef]
- Bignami, D.F.; Ambrosi, C.; Bertulessi, M.; Menduni, G.; Pozzoni, M.; Zambrini, F. Governance Strategies and Tools towards the Improvement of Emergency Management of Natural Disasters in Transboundary Areas. Int. J. Disaster Risk Reduct. 2024, 111, 104704. [Google Scholar] [CrossRef]
- Fascista, A. Toward Integrated Large-Scale Environmental Monitoring Using WSN/UAV/Crowdsensing: A Review of Applications, Signal Processing, and Future Perspectives. Sensors 2022, 22, 1824. [Google Scholar] [CrossRef]
- Alshamaila, Y.; Papagiannidis, S.; Alsawalqah, H.; Aljarah, I. Effective Use of Smart Cities in Crisis Cases: A Systematic Review of the Literature. Int. J. Disaster Risk Reduct. 2023, 85, 103521. [Google Scholar] [CrossRef]
- Graschew, G.; Roelofs, T.A.; Rakowsky, S.; Schlag, P.M.; Lieber, A.; Muller, U.; Czymek, R.; Dusel, W. DELTASS–Disaster Emergency Logistic Telemedicine Advanced Satellites System: Telemedical Services for Disaster Emergencies. Int. J. Risk Assess. Manag. 2008, 9, 351–366. [Google Scholar] [CrossRef]
- Kazemi Garajeh, M.; Guariglia, A.; Paridad, P.; Santangelo, R.; Satriano, V.; Tramutoli, V. Detecting Small-Scale Landslides along Electrical Lines Using Robust Satellite-Based Techniques. Geomat. Nat. Hazards Risk 2024, 15, 2409203. [Google Scholar] [CrossRef]
- Tedla, M.G.; Cho, Y.; Rasmy, M. Exploring the Dynamics of Flood and Drought Hazards and Adaptation Strategies in the Horn of Africa. Water Int. 2025, 50, 225–234. [Google Scholar] [CrossRef]
- Toyoshima, M.; Takahashi, T.; Miura, A.; Fujino, Y.; Akioka, M. Economic Effect of Satellite Communications Based on the Great East Japan Earthquake. Acta Astronaut. 2013, 91, 251–262. [Google Scholar] [CrossRef]
- Yamamura, H.; Kaneda, K.; Mizobata, Y. Communication Problems after the Great East Japan Earthquake of 2011. Disaster Med. Public Health Prep. 2014, 8, 293–296. [Google Scholar] [CrossRef]
- Choy, S.; Handmer, J.; Whittaker, J.; Shinohara, Y.; Hatori, T.; Kohtake, N. Application of Satellite Navigation System for Emergency Warning and Alerting. Comput. Environ. Urban Syst. 2016, 58, 12–18. [Google Scholar] [CrossRef]
- Akhtar, I.H.; Mehboob, B. Leveraging Space Science and Technology for Climate-Induced Disaster Management in Pakistan. CISS Insight J. 2025, 13, 22–44. [Google Scholar]
- Lawal, T.; Cantatore, F.; Jackson, M. The Role of Low Earth Orbit Satellites in Facilitating Internet Connectivity in the Asia-Pacific Region during Disaster Times. Yearb. Int. Disaster Law Online 2025, 6, 205–242. [Google Scholar] [CrossRef]
- Damaševičius, R.; Bacanin, N.; Misra, S. From Sensors to Safety: Internet of Emergency Services (IoES) for Emergency Response and Disaster Management. J. Sens. Actuator Netw. 2023, 12, 41. [Google Scholar] [CrossRef]
- Haupt, B. The Use of Crisis Communication Strategies in Emergency Management. J. Homel. Secur. Emerg. Manag. 2021, 18, 125–150. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, C.; Kang, Y.; Tu, S. Integrated Satellite-Ground Post-Disaster Emergency Communication Networking Technology. Nat. Hazards Res. 2021, 1, 4–10. [Google Scholar] [CrossRef]
- Zheng, J.; Shan, C.; Li, Q.; Xu, J.; Wang, X. Design of Emergency Rescue Command Platform Based on Satellite Mobile Communication System. In Proceedings of the 2021 IEEE 4th International Conference on Electronics and Communication Engineering (ICECE), Xi’an, China, 17–19 December 2021; pp. 118–122. [Google Scholar]
- Carreras-Coch, A.; Navarro, J.; Sans, C.; Zaballos, A. Communication Technologies in Emergency Situations. Electronics 2022, 11, 1155. [Google Scholar] [CrossRef]
- Lanigan, T.; Anderson, S.; Cottonham, A.; Marzolf, G. Expanding the Emergency Alert System Enterprise with Space-Based Emergency Alerts. In Proceedings of the 2024 IEEE 19th Annual System of Systems Engineering Conference (SoSE), Tacoma, WA, USA, 23–26 June 2024; pp. 220–226. [Google Scholar]
- Haghshenas, S.S.; Guido, G.; Haghshenas, S.S.; Astarita, V. The Role of Artificial Intelligence in Managing Emergencies and Crises within Smart Cities. In Proceedings of the 2023 IEEE International Conference on Information and Communication Technologies for Disaster Management (ICT-DM), Cosenza, Italy, 13–15 September 2023; pp. 1–5. [Google Scholar]
- Shaengchart, Y.; Kraiwanit, T.; Butcharoen, S. Factors Influencing the Effects of the Starlink Satellite Project on the Internet Service Provider Market in Thailand. Technol. Soc. 2023, 74, 102279. [Google Scholar] [CrossRef]
- Shaengchart, Y.; Kraiwanit, T. The SpaceX Starlink Satellite Project: Business Strategies and Perspectives. Corp. Bus. Strat. Rev. 2024, 5, 30–37. [Google Scholar] [CrossRef]
- Hui, M.; Zhai, S.; Wang, D.; Hui, T.; Wang, W.; Du, P.; Gong, F. A Review of LEO Satellite Communication Payloads for Integrated Communication, Navigation, and Remote Sensing: Opportunities, Challenges, Future Directions. IEEE Internet Things J. 2025, 12, 18954–18992. [Google Scholar] [CrossRef]
- Voigt, S.; Kemper, T.; Riedlinger, T.; Kiefl, R.; Scholte, K.; Mehl, H. Satellite Image Analysis for Disaster and Crisis-Management Support. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1520–1528. [Google Scholar] [CrossRef]
- Kose, S.; Koytak, E.; Hascicek, Y.S. An Overview on the Use of Satellite Communications for Disaster Management and Emergency Response. Int. J. Emerg. Manag. 2012, 8, 350–382. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, L.; Sotiriadis, S.; Asimakopoulou, E.; Li, M.; Bessis, N. CLOTHO: A Large-Scale Internet of Things-Based Crowd Evacuation Planning System for Disaster Management. IEEE Internet Things J. 2018, 5, 3559–3568. [Google Scholar] [CrossRef]
- Lourenco, R.B.R.; Figueiredo, G.B.; Tornatore, M.; Mukherjee, B. Data Evacuation from Data Centers in Disaster-Affected Regions through Software-Defined Satellite Networks. Comput. Netw. 2019, 148, 88–100. [Google Scholar] [CrossRef]
- Potutan, G.; Suzuki, K. Addressing Early Warning Challenges Using Satellites to Improve Emergency Evacuation. Emerg. Manag. Sci. Technol. 2023, 3, 4. [Google Scholar] [CrossRef]
- Chen, Y.; Ma, X.; Wu, C. The Concept, Technical Architecture, Applications and Impacts of Satellite Internet: A Systematic Literature Review. Heliyon 2024, 10, e33793. [Google Scholar] [CrossRef]
- Kagai, F.; Branch, P.; But, J.; Allen, R.; Rice, M. Rapidly Deployable Satellite-Based Emergency Communications Infrastructure. IEEE Access 2024, 12, 139368–139410. [Google Scholar] [CrossRef]
- Remili, K.D.; Bouzourine, N.; Hartani, R.; Belouchrani, A. Tech Diplomacy and Critical Technologies: Case of the LEO Satellite Internet. Telecomm. Policy 2025, 49, 102947. [Google Scholar] [CrossRef]
- Righi, E.; Lauriola, P.; Ghinoi, A.; Giovannetti, E.; Soldati, M. Disaster Risk Reduction and Interdisciplinary Education and Training. Prog. Disaster Sci. 2021, 10, 100165. [Google Scholar] [CrossRef]
- Intrieri, E.; Dotta, G.; Raspini, F.; Rosi, A.; Segoni, S.; Casagli, N. Early Warning Systems in Italy: State-of-the-Art and Future Trends. In Workshop on World Landslide Forum; Springer: Cham, Switzerland, 2021; pp. 537–543. [Google Scholar]
- Casciello, R. Early Warning Indicators: An Empirical Investigation in Italian Context and First Implications for Corporate Governance. Corp. Gov. Organ. Behav. Rev. 2021, 5, 56–65. [Google Scholar] [CrossRef]
- Zinno, R.; Haghshenas, S.S.; Guido, G.; Vitale, A. Artificial Intelligence and Structural Health Monitoring of Bridges: A Review of the State-of-the-Art. IEEE Access 2022, 10, 88058–88078. [Google Scholar] [CrossRef]
- Fagà, G.; Casarotti, C. A Fast Assessment Methodology for Screening of Local Civil Protection Plans on a Territorial Scale Basis: A Case Study of an Italian Province. Int. J. Disaster Risk Reduct. 2022, 81, 103284. [Google Scholar] [CrossRef]
- Del Pinto, M.; Chmutina, K.; Bosher, L.; Palaiologou, G.F. The National and Local Dimension of the Italian Civil Protection System: Evolution and Implementation of Disaster Risk Reduction Policies. In Disasters and Changes in Society and Politics; Bristol University Press: Bristol, UK, 2024; pp. 204–221. ISBN 1529226775. [Google Scholar]
- Vitale, C.; Meijerink, S.; Moccia, F.D. Urban Flood Resilience, a Multi-Level Institutional Analysis of Planning Practices in the Metropolitan City of Naples. J. Environ. Plan. Manag. 2023, 66, 813–835. [Google Scholar] [CrossRef]
- Esposito, M.; Palma, L.; Belli, A.; Sabbatini, L.; Pierleoni, P. Recent Advances in Internet of Things Solutions for Early Warning Systems: A Review. Sensors 2022, 22, 2124. [Google Scholar] [CrossRef]
- Cremen, G.; Galasso, C.; Zuccolo, E. Investigating the Potential Effectiveness of Earthquake Early Warning across Europe. Nat. Commun. 2022, 13, 639. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Li, W.; Yu, Z.; Abbasi, Q.; Imran, M.; Ansari, S.; Sambo, Y.; Wu, L.; Li, Q.; Zhu, T. An Overview of Emergency Communication Networks. Remote Sens. 2023, 15, 1595. [Google Scholar] [CrossRef]
- Siddique, I. Digital Satellite Technology: Innovations and Applications in the Modern Era. Eur. J. Adv. Eng. Technol. 2024, 11, 39–46. [Google Scholar]
- Völk, F.; Schwarz, R.T.; Lorenz, M.; Knopp, A. Emergency 5G Communication On-the-Move: Concept and Field Trial of a Mobile Satellite Backhaul for Public Protection and Disaster Relief. Int. J. Satell. Commun. Netw. 2021, 39, 417–430. [Google Scholar] [CrossRef]
- Asimakisa, F.; Anastasia, Y. Using Remote Sensing to Predict Earthquake Impacts. Proc. SPIE 2017, 10444, 104440L-1. [Google Scholar]
- Di Giovine, M.; Ascione, E. The Effects of Natural Disasters on Religious Tourism Sites: Earthquakes in the Spiritual Heart of Italy. In Religious Tourism and the Environment; CABI: Wallingford, UK, 2020; pp. 144–161. [Google Scholar]
- Cavaleri, L.; Bajo, M.; Barbariol, F.; Bastianini, M.; Benetazzo, A.; Bertotti, L.; Chiggiato, J.; Ferrarin, C.; Trincardi, F.; Umgiesser, G. The 2019 Flooding of Venice and Its Implications for Future Predictions. Oceanography 2020, 33, 42–49. [Google Scholar] [CrossRef]
- Ferrarin, C.; Bajo, M.; Benetazzo, A.; Cavaleri, L.; Chiggiato, J.; Davison, S.; Davolio, S.; Lionello, P.; Orlić, M.; Umgiesser, G. Local and Large-Scale Controls of the Exceptional Venice Floods of November 2019. Prog. Oceanogr. 2021, 197, 102628. [Google Scholar] [CrossRef]
- Faranda, D.; Ginesta, M.; Alberti, T.; Coppola, E.; Anzidei, M. Attributing Venice Acqua Alta Events to a Changing Climate and Evaluating the Efficacy of MoSE Adaptation Strategy. npj Clim. Atmos. Sci. 2023, 6, 181. [Google Scholar] [CrossRef]
- Sempere-Torres, D.; Karakostas, A.; Rossi, C.; Quevauviller, P. Responding to Extreme Weather Events; John Wiley & Sons: Hoboken, NJ, USA, 2024; ISBN 1119741580. [Google Scholar]
- Loglisci, N.; Boni, G.; Cauteruccio, A.; Faccini, F.; Milelli, M.; Paliaga, G.; Parodi, A. The Role of Citizen Science in Assessing the Spatiotemporal Pattern of Rainfall Events in Urban Areas: A Case Study in the City of Genoa, Italy. Nat. Hazards Earth Syst. Sci. 2024, 24, 2495–2510. [Google Scholar] [CrossRef]
- Paliaga, G.; Ward, S.N.; Luino, F.; Faccini, F.; Turconi, L. What If an Intense Rain Event Should Trigger Diffuse Shallow Landslides in a Small Mediterranean Catchment? Numerical Modeling Through Remote Sensing Techniques. Remote Sens. 2024, 16, 4658. [Google Scholar] [CrossRef]
- Flood in Tuscany: An Analysis of the 14 March 2025, Event. Available online: https://www.cimafoundation.org/en/news/flood-in-tuscany-an-analysis-of-the-march-14-2025-event/ (accessed on 1 August 2025).
- Bernardini, G.; Lovreglio, R.; Quagliarini, E. Proposing Behavior-Oriented Strategies for Earthquake Emergency Evacuation: A Behavioral Data Analysis from New Zealand, Italy and Japan. Saf. Sci. 2019, 116, 295–309. [Google Scholar] [CrossRef]
- Confuorto, P.; Sepe, C.; Del Gaudio, C.; Di Martire, D.; Verderame, G.M.; Calcaterra, D. Intervention Model for Natural and Anthropogenic Risk Scenarios in the Framework of Municipal Emergency Plans. Int. J. Disaster Risk Reduct. 2021, 58, 102204. [Google Scholar] [CrossRef]
- Mancini, L.; Cianchino, G.; Masciotta, M.G.; Spacone, E.; Brando, G. Preliminary Assessments for Evacuation Plans: The Case Study of Popoli Terme, Pescara, Italy. In Proceedings of the International Conference on Protection of Historical Constructions, Naples, Italy, 26–28 March 2025; Springer: Cham, Switzerland, 2025; pp. 444–451. [Google Scholar]
- Morosi, S.; Jayousi, S.; Falletti, E.; Araniti, G. Cooperative Strategies in Satellite Assisted Emergency Services. Int. J. Satell. Commun. Netw. 2013, 31, 141–156. [Google Scholar] [CrossRef]
- Francini, M.; Artese, S.; Gaudio, S.; Palermo, A.; Viapiana, M.F. To Support Urban Emergency Planning: A GIS Instrument for the Choice of Optimal Routes Based on Seismic Hazards. Int. J. Disaster Risk Reduct. 2018, 31, 121–134. [Google Scholar] [CrossRef]
- Franck, L.; Berioli, M.; Boutry, P.; Harles, G.; Ronga, L.S.; Suffritti, R.; Thomasson, L. On the Role of Satellite Communications for Emergency Situations with a Focus on Europe. Int. J. Satell. Commun. Netw. 2011, 29, 387–399. [Google Scholar] [CrossRef]
- Del Re, E.; Jayousi, S.; Morosi, S.; Ronga, L.S.; De Sanctis, M.; Cianca, E.; Ruggieri, M.; Falletti, E.; Iera, A.; Araniti, G. SALICE Project: Satellite-Assisted Localization and Communication Systems for Emergency Services. IEEE Aerosp. Electron. Syst. Mag. 2013, 28, 4–15. [Google Scholar] [CrossRef]
- Astarita, V.; Giofrè, V.P.; Guido, G.; Stefano, G.; Vitale, A. Mobile Computing for Disaster Emergency Management: Empirical Requirements Analysis for a Cooperative Crowdsourced System for Emergency Management Operation. Smart Cities 2020, 3, 31–47. [Google Scholar] [CrossRef]
- Palestini, L. Communication and Decision Support Systems. Int. J. Saf. Secur. Eng. 2021, 11, 397–407. [Google Scholar] [CrossRef]
- Blum, J.R.; Eichhorn, A.; Smith, S.; Sterle-Contala, M.; Cooperstock, J.R. Real-Time Emergency Response: Improved Management of Real-Time Information during Crisis Situations. J. Multimodal User Interfaces 2014, 8, 161–173. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, G.; Jiang, Z.; Qian, J.; Chen, Y. An Integrated Decision Support System for Emergency Evacuation Management. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest, Hungary, 9–12 October 2016; pp. 940–946. [Google Scholar]
- Idoudi, H.; Li, W.; Ameli, M.; González, M.C.; Zargayouna, M. Population Evacuation in Motion: Harnessing Disaster Evolution for Effective Dynamic Emergency Response. IEEE Trans. Intell. Veh. 2024, 1–14. [Google Scholar] [CrossRef]
- Gomes, T.; Tapolcai, J.; Esposito, C.; Hutchison, D.; Kuipers, F.; Rak, J.; De Sousa, A.; Iossifides, A.; Travanca, R.; André, J. A Survey of Strategies for Communication Networks to Protect against Large-Scale Natural Disasters. In Proceedings of the 2016 8th International Workshop on Resilient Networks Design and Modeling (RNDM), Halmstad, Sweden, 13–15 September 2016; pp. 11–22. [Google Scholar]
- Grace, R. Technologies in Crisis Communication: Tools, Systems, and Infrastructures. Handb. Int. Cris. Risk Commun. Res. 2025, 637–655. [Google Scholar] [CrossRef]
- McDowell, J.C. The Low Earth Orbit Satellite Population and Impacts of the SpaceX Starlink Constellation. Astrophys. J. Lett. 2020, 892, L36. [Google Scholar] [CrossRef]
- Cakaj, S. The Parameters Comparison of the “Starlink” LEO Satellites Constellation for Different Orbital Shells. Front. Commun. Netw. 2021, 2, 643095. [Google Scholar] [CrossRef]
- Ma, S.; Chou, Y.C.; Zhao, H.; Chen, L.; Ma, X.; Liu, J. Network Characteristics of Leo Satellite Constellations: A Starlink-Based Measurement from End Users. In Proceedings of the IEEE INFOCOM 2023-IEEE Conference on Computer Communications, New York, YN, USA, 17–20 May 2023; pp. 1–10. [Google Scholar]
- Vatalaro, F.; Corazza, G.E.; Caini, C.; Ferrarelli, C. Analysis of LEO, MEO, and GEO Global Mobile Satellite Systems in the Presence of Interference and Fading. IEEE J. Sel. Areas Commun. 1995, 13, 291–300. [Google Scholar] [CrossRef]
- Ercetin, O.; Ball, M.O.; Tassiulas, L. Next Generation Satellite Systems for Aeronautical Communications. Int. J. Satell. Commun. Netw. 2004, 22, 157–179. [Google Scholar] [CrossRef]
- Kopp, B.; Harris, J.; Lauand, C. Utilizing Existing Commercial Geostationary Earth Orbit Fixed Satellite Services for Low Earth Orbit Satellite Communication Relays with Earth. New Sp. 2019, 7, 19–30. [Google Scholar] [CrossRef]
- Kralfallah, M.; Wu, F.; Tahir, A.; Oubara, A.; Sui, X. Optimizing the Deployment of Ground Tracking Stations for Low Earth Orbit Satellite Constellations Based on Evolutionary Algorithms. Remote Sens. 2024, 16, 810. [Google Scholar] [CrossRef]
- Darwish, T.; Kurt, G.K.; Yanikomeroglu, H.; Bellemare, M.; Lamontagne, G. LEO Satellites in 5G and beyond Networks: A Review from a Standardization Perspective. IEEE Access 2022, 10, 35040–35060. [Google Scholar] [CrossRef]
- Prol, F.S.; Ferre, R.M.; Saleem, Z.; Välisuo, P.; Pinell, C.; Lohan, E.S.; Elsanhoury, M.; Elmusrati, M.; Islam, S.; Çelikbilek, K. Position, Navigation, and Timing (PNT) through Low Earth Orbit (LEO) Satellites: A Survey on Current Status, Challenges, and Opportunities. IEEE Access 2022, 10, 83971–84002. [Google Scholar] [CrossRef]
- Shayea, I.; El-Saleh, A.A.; Ergen, M.; Saoud, B.; Hartani, R.; Turan, D.; Kabbani, A. Integration of 5G, 6G and IoT with Low Earth Orbit (LEO) Networks: Opportunity, Challenges and Future Trends. Results Eng. 2024, 23, 102409. [Google Scholar] [CrossRef]
- Ambas, J.P.; Badol, S.M.S.; Pongdad, J.A.; Shog-Oy, I.M.; Licay, A.C.; Fianza-Buya, M.A.P. Comparative Analysis of Starlink, Cellular Networks and Fiber Optics: Benefits, Applications, and Future Trends. Southeast Asian J. Sci. Technol. 2024, 9, 29–41. [Google Scholar]
- Lagunas, E.; Chatzinotas, S.; Ottersten, B. Low-Earth Orbit Satellite Constellations for Global Communication Network Connectivity. Nat. Rev. Electr. Eng. 2024, 1, 656–665. [Google Scholar] [CrossRef]
- Shaengchart, Y.; Kraiwanit, T. An Impact of Starlink Project on Regulations and National Security. J. Infrastruct. Policy Dev. 2024, 8, 3223. [Google Scholar] [CrossRef]
- Osoro, O.B.; Oughton, E.J. A Techno-Economic Framework for Satellite Networks Applied to Low Earth Orbit Constellations: Assessing Starlink, OneWeb and Kuiper. IEEE Access 2021, 9, 141611–141625. [Google Scholar] [CrossRef]
- Kyi, R.; Laishram, N. Concerns, Implications and Possible Barriers to Licensing: A Legal and Operational Analysis on Setting up Starlink in India. Jus Corpus LJ 2022, 3, 575. [Google Scholar]
- Ma, S.; Chou, Y.C.; Zhang, M.; Fang, H.; Zhao, H.; Liu, J.; Atlas, W.I. LEO Satellite Network Access in the Wild: Potentials, Experiences, and Challenges. IEEE Netw. 2024, 38, 396–403. [Google Scholar] [CrossRef]
- Abbas, S. Challenges to Space Activities in the Context of Mega Satellite Constellations: A Focus on Environmental Impacts. J. Astron. Sp. Sci. 2025, 42, 1–13. [Google Scholar] [CrossRef]
- Evroux, C. EU Secure Connectivity Programme 2023–2027: Building a Multi-Orbital Satellite Constellation; European Parliament Research Service; European Parliament: Strasbourg, France, 2023. [Google Scholar]
- Au, E. A Short Update on 3GPP Release 16 and Release 17 [Standards]. IEEE Veh. Technol. Mag. 2020, 15, 160. [Google Scholar] [CrossRef]
- Penttinen, J.T.J. 5G Second Phase Explained: The 3GPP Release 16 Enhancements; John Wiley & Sons: Hoboken, NJ, USA, 2021; ISBN 1119645506. [Google Scholar]
- Shrivastava, V.K.; Baek, S.; Baek, Y. 5G Evolution for Multicast and Broadcast Services in 3GPP Release 17. IEEE Commun. Stand. Mag. 2022, 6, 70–76. [Google Scholar] [CrossRef]
Criteria | LEO (e.g., Starlink) | MEO | GEO |
---|---|---|---|
Latency | Very Low (20–40 ms)—Ideal for real-time response | Medium (100–200 ms)—May hinder interaction | High (RTT typically ~500–600 ms; one-way space-path ~240 ms)—Not suitable for live services |
Deployment Speed | Fast—Pre-deployed constellation, quick auto-pointing terminal setup | Moderate—Fewer operational options | Slower on site—Precise pointing and bulkier gear increase setup time (Lacks rapid deployability) |
Terminal Portability | High—Lightweight, field-deployable | Medium—May require fixed ground station | Low—Bulky parabolic equipment required |
Power Requirements | Low to moderate—Can run on solar | Moderate | High—Not suitable for mobile setups |
Coverage Reliability | High—Global redundancy via constellation | Medium—Partial regional coverage | High—Fixed but wide area |
Best Use Case in Disaster | Live drone feeds, VoIP, mobile field HQ | Navigation, backup comms | TV/radio alerts, passive updates only |
Deployment Domain | Italian Urban Emergency Context | Strategic Response for Starlink Integration |
---|---|---|
Historical Infrastructure | Narrow streets, protected architectural sites, and limited rooftop access | Use lightweight, non-invasive terminals; prioritize mobile units and pre-approved sites |
Seismic Risk Zones | Active faults in central and southern Italy with history of communication failure | Pre-position Starlink kits in seismic areas; integrate with regional civil protection plans |
Power Grid Fragility | Aging infrastructure prone to blackout during storms or quakes | Equip terminals with solar/battery backups; deploy mobile energy kits |
Multi-Agency Operations | Civil protection, fire brigade, police, and Red Cross often act in parallel | Develop interoperable Starlink channels with shared priority access protocols |
Island and Mountain Regions | Geographic isolation limits terrestrial coverage (e.g., Sicily, Sardinia, Alps) | Use Starlink to bridge communication gaps where fiber or mobile networks are absent |
Constraint Type | Technical Description | Impact on Emergency Operations |
---|---|---|
Line-of-sight dependency | Requires unobstructed sky view for optimal satellite connection | Limited use in dense urban or forested areas |
Severe weather interference | Snow, rain, or fog can reduce signal quality or cause temporary disconnection | Slower communication during critical response periods |
Specialized equipment needs | Requires terminals, power supplies, and precise antenna alignment | Logistical challenges during rapid deployment |
Maintenance and updates | Needs continuous software and system upgrades | Risk of service degradation without timely updates or support |
Signal interference | Vulnerability to electromagnetic disruptions or signal congestion | Reduced reliability in high-traffic or industrial zones |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaffiee Haghshenas, S.; Astarita, V.; Shaffiee Haghshenas, S.; Martino, G.; Guido, G. The Potential of Satellite Internet Technologies for Crisis Management During Urban Evacuation: A Case Study of Starlink in Italy. Information 2025, 16, 840. https://doi.org/10.3390/info16100840
Shaffiee Haghshenas S, Astarita V, Shaffiee Haghshenas S, Martino G, Guido G. The Potential of Satellite Internet Technologies for Crisis Management During Urban Evacuation: A Case Study of Starlink in Italy. Information. 2025; 16(10):840. https://doi.org/10.3390/info16100840
Chicago/Turabian StyleShaffiee Haghshenas, Sina, Vittorio Astarita, Sami Shaffiee Haghshenas, Giulia Martino, and Giuseppe Guido. 2025. "The Potential of Satellite Internet Technologies for Crisis Management During Urban Evacuation: A Case Study of Starlink in Italy" Information 16, no. 10: 840. https://doi.org/10.3390/info16100840
APA StyleShaffiee Haghshenas, S., Astarita, V., Shaffiee Haghshenas, S., Martino, G., & Guido, G. (2025). The Potential of Satellite Internet Technologies for Crisis Management During Urban Evacuation: A Case Study of Starlink in Italy. Information, 16(10), 840. https://doi.org/10.3390/info16100840