# The One-Way FSI Method Based on RANS-FEM for the Open Water Test of a Marine Propeller at the Different Loading Conditions

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Governing Equations of the Flow Around the Propeller

_{i}denotes the body forces presented as forces per unit volume and in the present study assumed that ${f}_{i}=0$. Moreover, u, $\rho $, and P are fluid velocity vectors, density, and pressure, respectively. The Boussinesq assumption is considered to represent the Reynolds stress for incompressible flows, which is commented below:

#### 2.2. Governing the Structural Equations

#### 2.3. Modeling and Computational Setup

#### 2.3.1. Open Water Test Characteristic

#### 2.3.2. Applied Boundry Condition and Dynamic Motions Method

## 3. Results and Discussion

#### 3.1. CFD Validation

#### Hydrodynamic Analysis of the vp1304 Propeller

#### 3.2. Fluid–Structure Interaction Validation

#### 3.2.1. Finite-Element Method

_{1}, ϕ

_{2}). Moreover, weight functions (δu, δv, δW

_{1}, δw

_{2}, δw

_{3}) are approximated:

_{i}) are substituted in the differential equations’ weak form [32]. These functions are nodal parameters (x and y) in which x and y are nodal displacements. At the finite element methods based on displacement, the displacement’s manner in the element boundaries is not separated; unlike the strains, that the manner of strain is continuous only within one element. The point here is, choose between the linear or quadratic elements. Indeed, the strains have a constant value in linear elements, but in quadratic elements, the strains are nonlinear with more accurate strain or stress results than linear elements. According to Barlow [33], strains and stresses can be solved without limitation in the element, just for points, including defined nodes.

#### 3.2.2. One-Way Coupling Approach

- Decrease the complexity of the numerical solution by dividing it into two parts;
- Create two distinct mesh generation schemes depending on the grid dimension needed;
- The ability to use one hydrodynamic solution for many structural sets, using different materials, thickness and different structural design;
- Lower numerical solution cost and time rather than a two-way approach, the solution time is evaluated in the present study illustrated in Table 10;
- High-fidelity results for the cases with low deflection;
- One-way coupling is more useful for cases with large domain and multiphase systems like investigations on marine vessels, propellers, etc.

#### 3.3. Structural Behavior of Propellers’ Blade

#### 3.4. Propellers’ Structural Behavior in Rotation

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Abbreviations

Arbitrary mesh interface | AMI |

Boundary element method | BEM |

Computational fluid dynamic | CFD |

Fluid–structure interaction | FSI |

Finite element method | FEM |

International Towing Tank Conference | ITTC |

Large eddy simulation | LES |

Multi-reference frame | MRF |

Pressure implicit with splitting of operators | PISO |

Potsdam propeller test case | PPTC |

Vortex lattice method | VLM |

Volume of fluid | VOF |

Reynolds-averaged Navier–Stokes | RANS |

Rigid/quasi-static | RQS |

Semi-implicit method for pressure-linked equations | SIMPLE |

Turbulent kinetic energy | TKE |

Wetting time equation | WQ |

## Nomenclature

${K}_{t}$ | Thrust coefficient |

${K}_{q}$ | Torque coefficient |

${V}_{a}$ | Advance velocity |

$\eta $ | Efficiency |

J | Advance coefficient |

E | Elasticity |

$\rho $ | Density |

υ | Poissons’ ratio |

ω | Angular frequency |

S | von Mises stress |

${P}_{i}$ | Pressure gauge (i = 1–2–3) |

ε | Strain |

F | Force |

T,t | Time |

e | Error percentage |

rev | Propeller revolution |

## References

- Young, Y.L. Hydroelastic behavior of flexible composite propellers in wake inflow. In Proceedings of the 16th International Conference on Composite Materials, Kyoto, Japan, 8–13 July 2007. [Google Scholar]
- Olsen, A.S. Optimisation of propellers using the vortex-lattice method. In Mechanical Engineering, Maritime Engineering; Technical Univercity Of Denmark: Lyngby, Denmark, 2002. [Google Scholar]
- Cokljat, D.; Caridi, D. Embedded LES methodology for general-purpose CFD solvers. In Sixth International Symposium on Turbulence and Shear Flow Phenomena; Begel House Inc.: Danbury, CT, USA, 2009. [Google Scholar]
- Yao, J. Investigation on hydrodynamic performance of a marine propeller in oblique flow by RANS computations. Int. J. Nav. Archit. Ocean Eng.
**2015**, 7, 56–69. [Google Scholar] [CrossRef] [Green Version] - Krasilnikov, V.; Zhang, Z.; Hong, F. Analysis of unsteady propeller blade forces by RANS. In Proceedings of the First International Symposium on Marine Propulsors smp, Trondheim, Norway, 6 June 2009. [Google Scholar]
- Dubbioso, G.; Muscari, R.; Di Mascio, A. Analysis of a marine propeller operating in oblique flow. Part 2: Very high incidence angles. Comput. Fluids
**2014**, 92, 56–81. [Google Scholar] [CrossRef] - Abdel-Maksoud, M.; Hellwig, K.; Blaurock, J. Numerical and experimental investigation of the hub vortex flow of a marine propeller. In Proceedings of the 25th Symposium on Naval Hydrodynamics, St. John’s, NL, Canada, 12 June 2004. [Google Scholar]
- Simonsen, C.D.; Stern, F. RANS maneuvering simulation of Esso Osaka with rudder and a body-force propeller. J. Ship Res.
**2005**, 49, 98–120. [Google Scholar] [CrossRef] - Valentine, D.T. Reynolds-Averaged Navier-Stokes Codes and Marine Propulsor Analysis; Carderock Division, Naval Surface Warfare Center: Bethesda, MD, USA, 1993. [Google Scholar]
- Das, H. CFD Analysis for Cavitation of a Marine Propeller. In Proceedings of the 8th Symposium on High Speed Marine Vehicles, Naples, Italy, 22–23 May 2008. [Google Scholar]
- Mulcahy, N.; Prusty, B.; Gardiner, C. Hydroelastic tailoring of flexible composite propellers. Ships Offshore Struct.
**2010**, 5, 359–370. [Google Scholar] [CrossRef] - Blasques, J.P.; Berggreen, C.; Andersen, P. Hydro-elastic analysis and optimization of a composite marine propeller. Mar. Struct.
**2010**, 23, 22–38. [Google Scholar] [CrossRef] - Young, Y.L. Fluid–structure interaction analysis of flexible composite marine propellers. J. Fluids Struct.
**2008**, 24, 799–818. [Google Scholar] [CrossRef] - Lee, H.; Song, M.-C.; Suh, J.-C.; Chang, B.-J. Hydro-elastic analysis of marine propellers based on a BEM-FEM coupled FSI algorithm. Int. J. Nav. Archit. Ocean Eng.
**2014**, 6, 562–577. [Google Scholar] [CrossRef] [Green Version] - He, X.; Hong, Y.; Wang, R. Hydroelastic optimisation of a composite marine propeller in a non-uniform wake. Ocean Eng.
**2012**, 39, 14–23. [Google Scholar] [CrossRef] - Maljaars, P.; Bronswijk, L.; Windt, J.; Grasso, N.; Kaminski, M. Experimental validation of fluid–structure interaction computations of flexible composite propellers in open water conditions using BEM-FEM and RANS-FEM methods. J. Mar. Sci. Eng.
**2018**, 6, 51. [Google Scholar] [CrossRef] [Green Version] - Hong, Y.; Hao, L.F.; Wang, P.C.; Liu, W.B.; Zhang, H.M.; Wang, R.G. Structural design and multi-objective evaluation of composite bladed propeller. Polym. Polym. Compos.
**2014**, 22, 275–282. [Google Scholar] [CrossRef] - Han, S.; Lee, H.; Song, M.C.; Chang, B.J. Investigation of Hydro-Elastic Performance of Marine Propellers Using Fluid-Structure Interaction Analysis. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Houston, TX, USA, 13–19 November 2015; American Society of Mechanical Engineers: New York, NY, USA, 2015. [Google Scholar]
- Paik, B.-G.; Kim, G.-D.; Kim, K.-Y.; Seol, H.-S.; Hyun, B.-S.; Lee, S.-G.; Jung, Y.-R. Investigation on the performance characteristics of the flexible propellers. Ocean Eng.
**2013**, 73, 139–148. [Google Scholar] [CrossRef] - Shayanpoor, A.A.; Hajivand, A.; Moore, M. Hydroelastic analysis of composite marine propeller basis Fluid-Structure Interaction (FSI). Int. J. Marit. Technol.
**2020**, 13, 51–59. [Google Scholar] - Vassen, J.-M.; De Vincenzo, P.; Hirsch, C.; Leonard, B. Strong coupling algorithm to solve fluid-structure-interaction problems with a staggered approach. ESASP
**2011**, 692, 128. [Google Scholar] - Piro, D.J. A Hydroelastic Method for the Analysis of Global Ship Response Due to Slamming Events. In Naval Architecture and Marine Engineering; University of Michigan: Ann Arbor, MI, USA, 2013. [Google Scholar]
- Moukalled, F.; Mangani, L.; Darwish, M. The Finite Volume Method in Computational Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2016; Volume 6. [Google Scholar]
- Aagaard, O. Hydroelastic Analysis of Flexible Wedges; Department of Marine Technology, Norwegian University of Science and Technology: Trondheim, Norway, 2013. [Google Scholar]
- Taylor, D. The Speed and Power of Ships; Ransdell Inc.: Washington, DC, USA, 1933.
- Cohen, J.W. On stress calculations in helicoidal shells and propeller blades. In Mechanical, Maritime and Materials Engineering; Delft University of Technology: Delft, The Netherlands, 1955. [Google Scholar]
- Conolly, J. Strength of propellers. Trans. RINA
**1974**, 103, 139–204. [Google Scholar] - Greening, P.D. Dynamic Finite Element Modelling and Updating of Loaded Structures; University of Bristol: Bristol, UK, 1999. [Google Scholar]
- Taghipour, R. Efficient prediction of dynamic response for flexible and multi-body marine structures. In Marine Technology; Norwegian University of Science and Technology: Trondheim, Norway, 2008. [Google Scholar]
- Cosden, I.A.; Lukes, J.R. A hybrid atomistic–continuum model for fluid flow using LAMMPS and OpenFOAM. Comput. Phys. Commun.
**2013**, 184, 1958–1965. [Google Scholar] [CrossRef] - Klasson, O.K.; Huuva, T. Potsdam propeller test case (PPTC). In Proceedings of the Second International Symposium on Marine Propulsors, SMP, Hamburg, Germany, 15–17 June 2011. [Google Scholar]
- Khan, A.M. Flexible composite propeller design using constrained optimization techniques. In Aerospace Engineering; Iowa State University: Ames, IA, USA, 1997. [Google Scholar]
- Barlow, J. More on optimal stress points—reduced integration, element distortions and error estimation. Int. J. Numer. Methods Eng.
**1989**, 28, 1487–1504. [Google Scholar] [CrossRef] - Panciroli, R. Dynamic Failure of Composite and Sandwich Structures; Springer: Dordrecht, The Netherlands, 2013; Volume 192. [Google Scholar]
- Heller, S.; Jasper, N. Strength on the Structural Design of Planing Craft. Available online: https://repository.tudelft.nl/islandora/object/uuid%3Adc7516f5-6d26-4419-8955-37af96d86878 (accessed on 22 March 2021).
- Taylor, J.L. Natural vibration frequencies of flexible rotor blades. Aircr. Eng. Aerosp. Technol.
**1958**, 30, 331. [Google Scholar] [CrossRef] - Ekinci, S. A Practical Approach for Design of Marine Propellers with Systematic Propeller Series. Brodogr. Teor. Praksa Brodogr. Pomor. Teh.
**2011**, 62, 123–129. [Google Scholar]

**Figure 1.**Numerical solution domain used for computational fluid dynamics (CFD) part of the present study.

**Figure 5.**Gauge pressure variations of one rotation (t = 0.12 s-t = 0.18 s) for different advanced coefficients.

**Figure 7.**Present method (by considering the wedge impact) verification versus two-way coupling [24].

Propeller Model | Vp1304 |
---|---|

Diameter | 0.25 m |

Hub coefficient | 0.3 |

Number of blades | 5 |

pitch coefficient (r/R = 0.7) | 1.635 |

A_{E}/A_{0} | 0.779 |

Material | Al-Alloy |
---|---|

Elasticity | 120 Gpa |

Poisson’s ratio | 0.34 |

Mass density | 7400 kg/m^{3} |

Parameter | Unit | Model | Real |
---|---|---|---|

Density (water) | kg m^{−3} | 999.0 | 1025 |

Kinematic viscosity (water) | m^{2} s^{−1} | 1.139 × 10^{−6} | 1.188 × 10^{−6} |

Revolution (propeller) | s^{−1} | 15 | 4.33 |

Quality | Base Grid | Cell.NUM | $\frac{{\mathit{k}}_{\mathit{t}}}{{({\mathit{k}}_{\mathit{t}})}_{\mathit{e}\mathit{x}\mathit{c}\mathit{e}\mathit{l}\mathit{l}\mathit{e}\mathit{n}\mathit{t}}}$ | $\frac{{\mathit{k}}_{\mathit{q}}}{{({\mathit{k}}_{\mathit{q}})}_{\mathit{e}\mathit{x}\mathit{c}\mathit{e}\mathit{l}\mathit{l}\mathit{e}\mathit{n}\mathit{t}}}$ | NUM |
---|---|---|---|---|---|

Coarse | 0.11 | 245,210 | 1.1 | 1.11 | (I) |

Mid | 0.09 | 315,402 | 1.05 | 1.055 | (II) |

Mid-fine | 0.08 | 335,183 | 1.025 | 1.024 | (III) |

Fine | 0.064 | 425,060 | 1.015 | 1.013 | (IIII) |

Excellent | 0.0325 | 835,205 | ≈1 | ≈1 | (V) |

J [-] | ω [rps] | V_{a} [m/s] | Number |
---|---|---|---|

0.266 | 15 | 1 | I |

0.533 | 15 | 2 | II |

0.8 | 15 | 3 | III |

1.06 | 15 | 4 | IIII |

1.23 | 15 | 5 | V |

1.6 | 15 | 6 | VI |

Gauge | Distance from the Center | |

p-1 | 0.04 m | |

p-2 | 0.08 m | |

p-3 | 0.12 m |

Characters | Wedge Length | Wedge Thickness | Deadrise Angle |
---|---|---|---|

value | 0.3 m | 0.002 m | 20° |

Characters | Material | E [Gpa] | $\mathit{\rho}$ [kg/m^{3}]
| ν [-] |
---|---|---|---|---|

value | Aluminum | 68 | 2700 | 0.3 |

Case (FEM) | 1 | 2 | 3 | 4 | 5 | 6 | 7 |

Time step(s) | 0.07 | 0.075 | 0.08 | 0.085 | 0.09 | 0.095 | 0.1 |

Rotation Angle | 18° | 45° | 72° | 99° | 126° | 153° | 180° |

Stress (pa) | 6.01 × 10^{6} | 5.92 × 10^{6} | 5.47 × 10^{6} | 5.59 × 10^{6} | 5.91 × 10^{6} | 9.16 × 10^{6} | 5.90 × 10^{6} |

Strain (m) | 4.7 × 10^{−5} | 4.67 × 10^{−5} | 4.34 × 10^{−5} | 4.4 × 10^{−5} | 4.6 × 10^{−5} | 8.4 × 10^{−5} | 4.6 × 10^{−5} |

8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |

0.105 | 0.11 | 0.115 | 0.12 | 0.125 | 0.13 | 0.135 | 0.14 |

207° | 234° | 261° | 288° | 315° | 342° | 369° | 396° |

8.87 × 10^{5} | 8.40 × 10^{5} | 5.20 × 10^{6} | 5.70 × 10^{6} | 5.80 × 10^{6} | 5.80 × 10^{6} | 5.70 × 10^{6} | 5.70 × 10^{6} |

8.2 × 10^{−6} | 7.8 × 10^{−6} | 4.11 × 10^{−5} | 4.5 × 10^{−5} | 4.6 × 10^{−5} | 4.59 × 10^{−5} | 4.56 × 10^{−5} | 4.56 × 10^{−5} |

16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 |

0.145 | 0.15 | 0.155 | 0.16 | 0.165 | 0.17 | 0.175 | 0.18 |

423° | 450° | 477° | 504° | 531° | 558° | 585° | 612° |

5.70 × 10^{6} | 5.60 × 10^{6} | 5.68 × 10^{6} | 5.63 × 10^{6} | 5.60 × 10^{6} | 5.55 × 10^{6} | 5.40 × 10^{6} | 5.30 × 10^{6} |

4.51 × 10^{−5} | 4.44 × 10^{−5} | 4.45 × 10^{−5} | 4.44 × 10^{−5} | 4.41 × 10^{−5} | 4.36 × 10^{−5} | 4.28 × 10^{−5} | 4.17 × 10^{−5} |

Advance Velocity | V = (1, 2, 3, 4, 5) | m/s |
---|---|---|

FEM solution time + gathering datasheet | 2 + 1 | hour |

CFD solution time | 24 | hour |

Cumulative time (present method) | 27 | hour |

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Masoomi, M.; Mosavi, A.
The One-Way FSI Method Based on RANS-FEM for the Open Water Test of a Marine Propeller at the Different Loading Conditions. *J. Mar. Sci. Eng.* **2021**, *9*, 351.
https://doi.org/10.3390/jmse9040351

**AMA Style**

Masoomi M, Mosavi A.
The One-Way FSI Method Based on RANS-FEM for the Open Water Test of a Marine Propeller at the Different Loading Conditions. *Journal of Marine Science and Engineering*. 2021; 9(4):351.
https://doi.org/10.3390/jmse9040351

**Chicago/Turabian Style**

Masoomi, Mobin, and Amir Mosavi.
2021. "The One-Way FSI Method Based on RANS-FEM for the Open Water Test of a Marine Propeller at the Different Loading Conditions" *Journal of Marine Science and Engineering* 9, no. 4: 351.
https://doi.org/10.3390/jmse9040351