A High-Resolution Numerical Model of the North Aegean Sea Aimed at Climatological Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. Model Description
2.2. Data for Model Validation
2.3. Methods for Model Validation
3. Results
3.1. Model Validation
3.1.1. Sea-Surface Temperature
3.1.2. Sea Level Anomaly
3.1.3. Hydrographic Properties—θ/S Profiles
3.1.4. Surface Circulation
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nielsen, J.N. Hydrography of the Mediterranean and adjacent waters. In Report of the Danish Oceanographic Expeditions 1908–1910 to the Mediterranean and Adjacent Seas; Schmidt, J., Ed.; Andr. Høst and Søn: Copenhagen, Denmark, 1912; pp. 77–192. [Google Scholar]
- Gertman, I.; Pinardi, N.; Popov, Y.; Hecht, A. Aegean Sea Water Masses during the Early Stages of the Eastern Mediterranean Climatic Transient (1988–90). J. Phys. Oceanogr. 2006, 36, 1841–1859. [Google Scholar] [CrossRef]
- Tragou, E.; Petalas, S.; Mamoutos, I. Air-Sea Interaction—Heat and freshwater fluxes in the Aegean Sea. In The Aegean Sea Environment: The Natural System; Barcelo, D., Kostianoy, A.G., Eds.; The Handbook of Environmental Chemistry; Springer: Berlin/Heidelberg, Germany, 2021; Chapter A-10; Accepted for publication. [Google Scholar]
- Zervakis, V.; Georgopoulos, D.; Drakopoulos, P.G. The role of the North Aegean in triggering the recent Eastern Mediterranean climatic changes. J. Geophys. Res. Ocean. 2000, 105, 26103–26116. [Google Scholar] [CrossRef]
- Roether, W.; Klein, B.; Manca, B.B.; Theocharis, A.; Kioroglou, S. Transient eastern Mediterranean deep waters in response to the massive dense-water output of the Aegean Sea in the 1990s. Prog. Oceanogr. 2007, 74, 540–571. [Google Scholar] [CrossRef]
- Tzali, M.; Sofianos, S.; Mantziafou, A.; Skliris, N. Modelling the impact of Black Sea water inflow on the North Aegean Sea hydrodynamics. Ocean. Dyn. 2010, 60, 585–596. [Google Scholar] [CrossRef]
- Ignatiades, L.; Psarra, S.; Zervakis, V.; Pagou, K.; Souvermezoglou, E.; Assimakopoulou, G.; Gotsis-Skretas, O. Phytoplankton size-based dynamics in the Aegean Sea (Eastern Mediterranean). J. Mar. Syst. 2002, 36, 11–28. [Google Scholar] [CrossRef]
- Zervoudaki, S.; Nielsen, T.G.; Christou, E.D.; Siokou-Frangou, I. Zooplankton distribution and diversity in a frontal area of the Aegean Sea. Mar. Biol. Res. 2006, 2, 149–168. [Google Scholar] [CrossRef]
- Siokou-Frangou, I.; Zerviudaki, S.; Christou, E.D.; Zervakis, V.; Georgopoulos, D. Variability of mesozooplankton spatial distribution in the North Aegean Sea, as influenced by the Black Sea water outflow. J. Mar. Syst. 2009, 78, 557–575. [Google Scholar] [CrossRef]
- Maina, I.; Kavadas, S.; Katsanevakis, S.; Somarakis, S.; Tserpes, G.; Georgakarakos, S. A methodological approach to identify fishing grounds: A case study on Greek trawlers. Fish. Res. 2016, 183, 326–339. [Google Scholar] [CrossRef]
- Korres, G.; Lascaratos, A.; Hatziapostolou, E.; Katsafados, P. Towards an Ocean Forecasting System for the Aegean Sea. J. Oper. Oceanogr. 2002, 8, 191–218. [Google Scholar] [CrossRef]
- Korres, G.; Nittis, K.; Perivoliotis, L.; Tsiaras, K.; Papadopoulos, A.; Triantafyllou, G.; Hoteit, I. Forecasting the Aegean Sea hydrodynamics within the POSEIDON-II operational system. J. Oper. Oceanogr. 2010, 3, 37–49. [Google Scholar] [CrossRef]
- Nittis, K.; Zervakis, V.; Perivoliotis, L.; Papadopoulos, A.; Chronis, G. Operational Monitoring and Forecasting in the Aegean Sea: System Limitations and Forecasting Skill Evaluation. Mar. Pollut. Bull. 2001, 43, 154–163. [Google Scholar] [CrossRef] [PubMed]
- Nittis, K.; Perivoliotis, L.; Korres, G.; Tziavos, C.; Thanos, I. Operational monitoring and forecasting for marine environmental applications in the Aegean Sea. Environ. Model. Softw. 2006, 21, 243–257. [Google Scholar] [CrossRef]
- Kourafalou, V.H.; Barbopoulos, K. High resolution simulations on the North Aegean Sea seasonal circulation. Ann. Geophys. 2003, 21, 251–265. [Google Scholar] [CrossRef]
- Vervatis, V.; Skliris, N.; Sofianos, S. INTER-annual/decadal variability of the north Aegean Sea hydrodynamics over 1960–2000. Mediterr. Mar. Sci. 2014, 15, 696–705. [Google Scholar] [CrossRef][Green Version]
- Vervatis, V.D.; Sofianos, S.; Skliris, N.; Somot, S.; Lascaratos, A.; Rixen, M. Mechanisms Controlling the Thermohaline Circulation Pattern Variability in the Aegean-Levantine Region. A Hindcast Simulation (1960–2000) with an Eddy Resolving Model. Deep Sea Res. Part I Oceanogr. Res. Pap. 2013, 74, 82–97. [Google Scholar] [CrossRef]
- Androulidakis, Y.S.; Krestenitis, Y.N.; Kourafalou, V.H. Connectivity of North Aegean circulation to the Black Sea water budget. Cont. Shelf Res. 2012, 48, 8–26. [Google Scholar] [CrossRef]
- Mavropoulou, A.M.; Mantziafou, A.; Jarosz, E.; Sofianos, S. The influence of Black Sea Water inflow and its synoptic time-scale variability in the North Aegean Sea hydrodynamics. Ocean. Dyn. 2016, 66, 195–206. [Google Scholar] [CrossRef]
- Maderich, V.; Ilyin, Y.; Lemeshko, E. Seasonal and interannual variability of the water exchange in the Turkish Straits System estimated by modelling. Mediterr. Mar. Sci. 2015, 16, 444–459. [Google Scholar] [CrossRef][Green Version]
- Shchepetkin, A.F.; McWilliams, J.C. A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. J. Geophys. Res. 2003, 108, 3. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Sikirić, M.D.; Janeković, I.; Kuzmić, M. A new approach to bathymetry smoothing in sigma coordinate ocean models. Ocean Model. 2009, 29, 128–136. [Google Scholar] [CrossRef]
- Beckmann, A.; Haidvogel, D.B. Numerical Simulation of Flow around a Tall Isolated Seamount. Part I: Problem Formulation and Model Accuracy. J. Phys. Oceanogr. 1993, 23, 1736–1753. [Google Scholar] [CrossRef]
- Haney, R.L. On the Pressure Gradient Force over Steep Topography in Sigma Coordinate Ocean Models. J. Phys. Oceanogr. 1991, 21, 610–619. [Google Scholar] [CrossRef]
- Marchesiello, P.; Debreu, L.; Couvelard, X. Spurious diapycnal mixing in terrain-following coordinate models: The problem and a solution. Ocean Model. 2009, 26, 156–169. [Google Scholar] [CrossRef]
- Holland, W.R.; Chow, J.C.; Bryan, F.O. Application of a third-order upwind scheme in the ncar ocean model. J. Clim. 1998, 11, 1487–1493. [Google Scholar] [CrossRef]
- Webb, D.J.; De Cuevas, B.A.; Richmond, C.S. Improved advection schemes for ocean models. J. Atmos. Ocean. Technol. 1998, 15, 1171–1187. [Google Scholar] [CrossRef]
- Smolarkiewicz, P.K.; Margolin, L.G. MPDATA: A finite-difference solver for geophysical flows. J. Comput. Phys. 1998, 140, 459–480. [Google Scholar] [CrossRef]
- Mellor, G.L.; Yamada, T. Development of a turbulence closure model for geophysical fluid problems. Rev. Geophys. 1982, 20, 851–875. [Google Scholar] [CrossRef]
- Iona, A.; Theodorou, A.; Watelet, S.; Troupin, C.; Beckers, J.M.; Simoncelli, S. Mediterranean sea hydrographic atlas: Towards optimal data analysis by including time-dependent statistical parameters. Earth Syst. Sci. Data 2018, 10, 1281–1300. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Hornyi, A.; Muoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The era5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Simoncelli, S.; Fratianni, C.; Pinardi, N.; Grandi, A.; Drudi, M.; Oddo, P.; Dobricic, S. Mediterranean sea physical reanalysis (cmems med-physics). Copernic. Monit. Environ. Mar. Serv. 2019. [Google Scholar] [CrossRef]
- Marchesiello, P.; McWilliams, J.C.; Shchepetkin, A. Open boundary conditions for long term integration of regional oceanic models. Ocean Model. 2001, 3, 1–20. [Google Scholar] [CrossRef]
- Chapman, D.C. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr. 1985, 15, 1060–1075. [Google Scholar] [CrossRef]
- Flather, R.A. A tidal model of the northwest European continental shelf. Mem. Soc. R. Sci. Liege 1976, 10, 141–164. [Google Scholar] [CrossRef]
- Lindstrom, G.; Pers, C.; Rosberg, J.; Strmqvist, J.; Arheimer, B. Development and testing of the HYPE (Hydrological Predictions for the Environment) water quality model for different spatial scales. Hydrol. Res. 2010, 41, 295–319. [Google Scholar] [CrossRef]
- Fairall, C.W.; Bradley, E.F.; Rogers, D.P.; Edson, J.B.; Young, G.S. Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment. J. Geophys. Res. 1996, 101, 3747–3764. [Google Scholar] [CrossRef]
- Merchant, C.J.; Emburry, O.; Bulgin, C.E.; Block, T.; Corlett, G.K.; Fiedler, E.; Good, S.A.; Mittaz, J.; Rayner, N.A.; Berry, D.; et al. Satellite-based time-series of sea-surface temperature since 1981 for climate applications. Sci. Data 2019, 6, 223. [Google Scholar] [CrossRef] [PubMed]
- Nardelli, B.; Tronconi, C.; Pisano, A.; Santoleri, R. High and Ultra-High resolution processing of satellite Sea Surface Temperature data over Southern European Seas in the framework of MyOcean project. Remote Sens. Environ. 2013, 129, 1–16. [Google Scholar] [CrossRef]
- Simoncelli, S.; Schaap, D.; Schlitzer, R. Mediterranean Sea—Temperature and salinity Historical Data Collection SeaDataCloud V2, 2020. Available online: https://www.cmcc.it/mediterranean-sea-physical-reanalysis-cmems-med-physics (accessed on 1 September 2021).
- Murphy Allan, H. Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Weather Rev. 1988, 116, 2417–2424. [Google Scholar] [CrossRef]
- Kanarska, Y.; Maderich, V. Modelling of seasonal exchange flows through the Dardanelles Strait. Estuar. Coast. Shelf Sci. 2008, 79, 449–458. [Google Scholar] [CrossRef]
- Zodiatis, G.; Balopoulos, E. Structure and characteristics of fronts in the north Aegean Sea. Bollettino Oceanologia Teorica Applicata 1993, 11, 113–124. [Google Scholar]
- Zervakis, V.; Kokkini, Z.; Potiris, E. Estimating mixed layer depth with the use of a coastal high-frequency radar. Cont. Shelf Res. 2017, 149, 4–16. [Google Scholar] [CrossRef]
- Sylaios, G. Meteorological influences on the surface hydrographic patterns of the North Aegean Sea. Oceanologia 2011, 53, 57–80. [Google Scholar] [CrossRef]
- Kokkini, Z.; Potiris, M.; Kalampokis, A.; Zervakis, V. HF Radar observations of the Dardanelles outflow current in North Eastern Aegean using validated WERA HF radar data. Mediterr. Mar. Sci. 2014, 15, 753–768. [Google Scholar] [CrossRef]
- Zervakis, V.; Karageorgis, A.P.; Kontoyiannis, H.; Papadopoulos, V.; Lykousis, V. Hydrology, Circulation and distribution of particular matter in Thermaikos Gulf (NW Aegean Sea), during September 2001–October 2001 and February 2002. Cont. Shelf Res. 2005, 25, 2332–2349. [Google Scholar] [CrossRef]
- Poulos, S.; Drakopoulos, P.; Collins, M. Seasonal variability in sea surface oceanographic conditions in the Aegean Sea (Eastern Mediterranean): An overview. J. Mar. Syst. 1997, 13, 225–244. [Google Scholar] [CrossRef]
- Androulidakis, Y.S.; Krestenitis, Y.N.; Psarra, S. Coastal upwelling over the North Aegean Sea: Observations and simulations. Cont. Shelf Res. 2017, 149, 32–51. [Google Scholar] [CrossRef]
- Chaniotaki, M.; Kolovoyiannis, V.; Tragou, E.; Herold, L.A.; Batjakas, I.E.; Zervakis, V. Investigation of the response of the Aegean Sea to the Etesian wind forcing. Cont. Shelf Res. 2021, 225, 104485. [Google Scholar] [CrossRef]
- Ciappa, A.C. The summer upwelling of the Eastern Aegean Sea detected from MODIS SST scenes from 2003 to 2015. Int. J. Remote Sens. 2019, 40, 3105–3117. [Google Scholar] [CrossRef]
- Demirov, E.; Pinardi, N. Simulation of the Mediterranean Sea circulation from 1979 to 1993: Part, I. The interannual variability. J. Mar. Syst. 2002, 33–34, 23–50. [Google Scholar] [CrossRef]
- Mamoutos, I.; Zervakis, V.; Tragou, M.; Karydis, M.; Frangoulis, C.; Kolovoyiannis, V.; Georgopoulos, D.; Psarra, S. The role of wind-forced coastal upwelling on the thermohaline functioning of the North Aegean Sea. Cont. Shelf Res. 2017, 149, 52–68. [Google Scholar] [CrossRef]
- Greatbatch, J. A note on the representation of steric sea level in models that conserve volume rather than mass. J. Geophys. Res. 1994, 99, 12767–12771. [Google Scholar] [CrossRef]
- Griffies, S.M.; Greatbatch, R.J. Physical processes that impact the evolution of global mean sea level in ocean climate models. Ocean Model. 2012, 51, 37–72. [Google Scholar] [CrossRef]
- Pinardi, N.; Zavatarelli, M.; Adani, M.; Coppini, G.; Fratianni, C.; Oddo, P.; Simoncelli, S.; Tonani, M.; Lyubartsev, V.; Dobricic, S.; et al. Mediterranean Sea large-scale low-frequency ocean variability and water mass formation rates from 1987 to 2007: A retrospective analysis. Prog. Oceanogr. 2015, 132, 318–332. [Google Scholar] [CrossRef]
- McDougal, T.J.; Barker, T.M. Getting Started with TEOS-10 and the Gibbs Seawater (GSW) Oceanographic Toolbox; SCOR/IAPSO WG127; UNESCO: Paris, France, 2011; 28p, ISBN 978-0-646-55621-5. [Google Scholar]
- Andersen, O.B.; Scharroo, R. Range and Geophysical Corrections in Coastal Regions: And Implications for Mean Sea Surface Determination; Coastal Altimetry; Springer: Berlin/Heidelberg, Germany, 2011; pp. 103–145. [Google Scholar] [CrossRef]
- Ponte, R.M.; Ray, R.D. Atmospheric pressure corrections in geodesy and oceanography: A strategy for handling air tides. Geophys. Res. Lett. 2002, 29, 2–5. [Google Scholar] [CrossRef]
- Jerlov, N.G. Marine Optics; Volume 14 of Elsevier Oceanography Series; Elsevier: Amsterdam, The Netherlands, 1976. [Google Scholar]
- Tsiaras, K.P.; Kourafalou, V.H.; Raitsos, D.E.; Triantafyllou, G.; Petihakis, G.; Korres, G. Inter-annual productivity variability in the North Aegean Sea: Influence of thermohaline circulation during the Eastern Mediterranean Transient. J. Mar. Syst. 2012, 96, 72–81. [Google Scholar] [CrossRef]
- Rixen, M.; Book, J.W.; Carta, A.; Grandi, V.; Gualdesi, L.; Stoner, R.; Ranelli, P.; Cavanna, A.; Zanasca, P.; Baldasserini, G.; et al. Improved ocean prediction skill and reduced uncertainty in the coastal region from multi-model super-ensembles. J. Mar. Sysstems 2009, 78, 282–289. [Google Scholar] [CrossRef]
- Olson, D.B.; Kourafalou, V.H.; Johns, W.E.; Geoff Samuels, G.; Veneziani, M. Aegean Surface Circulation from a Satellite-Tracked Drifter Array. J. Phys. Oceanogr. 2007, 37, 1898–1917. [Google Scholar] [CrossRef]
- Pettenuzzo, D.; Large, W.G.; Pinardi, N. On the corrections of ERA-40 surface flux products consistent with the Mediterranean heat and water budgets and the connection between basin surface total heat flux and NAO. J. Geophys. Res. 2010, 115, 6. [Google Scholar] [CrossRef]
- Harzallah, A.; Jordà, G.; Dubois, C.; Sannino, G.; Carillo, A.; Li, L.; Arsouze, T.; Cavicchia, L.; Beuvier, J.; Akhtar, N. Long term evolution of heat budget in the Mediterranean Sea from Med-CORDEX forced and coupled simulations. Clim. Dyn. 2018, 51, 1145–1165. [Google Scholar] [CrossRef]
- Jordà, G.; Gomis, D. On the interpretation of the steric and mass components of sea level variability: The case of the Mediterranean basin. J. Geophys. Res. 2012, 118, 953–963. [Google Scholar] [CrossRef]
- Landerer, F.W.; Volkov, D.L. The anatomy of recent large sea level fluctuations in the Mediterranean Sea. J. Geophys. Lett. 2013, 40, 553–557. [Google Scholar] [CrossRef]
- Zervakis, V.; Krasakopoulou, E.; Georgopoulos, D.; Souvermezoglou, E. Vertical diffusion and oxygen consumption during stagnation periods in the deep North Aegean. Deep Sea Res. Part I 2003, 50, 53–71. [Google Scholar] [CrossRef]
- Zervakis, V.; Krauzig, N.; Tragou, E.; Kunze, E. Estimating vertical mixing in the deep North Aegean Sea using Argo data corrected for conductivity sensor drift. Deep Sea Res. Part I Oceanogr. Res. Pap. 2019, 154, 103144. [Google Scholar] [CrossRef]

















Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mamoutos, I.G.; Potiris, E.; Tragou, E.; Zervakis, V.; Petalas, S. A High-Resolution Numerical Model of the North Aegean Sea Aimed at Climatological Studies. J. Mar. Sci. Eng. 2021, 9, 1463. https://doi.org/10.3390/jmse9121463
Mamoutos IG, Potiris E, Tragou E, Zervakis V, Petalas S. A High-Resolution Numerical Model of the North Aegean Sea Aimed at Climatological Studies. Journal of Marine Science and Engineering. 2021; 9(12):1463. https://doi.org/10.3390/jmse9121463
Chicago/Turabian StyleMamoutos, Ioannis G., Emmanuel Potiris, Elina Tragou, Vassilis Zervakis, and Stamatios Petalas. 2021. "A High-Resolution Numerical Model of the North Aegean Sea Aimed at Climatological Studies" Journal of Marine Science and Engineering 9, no. 12: 1463. https://doi.org/10.3390/jmse9121463
APA StyleMamoutos, I. G., Potiris, E., Tragou, E., Zervakis, V., & Petalas, S. (2021). A High-Resolution Numerical Model of the North Aegean Sea Aimed at Climatological Studies. Journal of Marine Science and Engineering, 9(12), 1463. https://doi.org/10.3390/jmse9121463

