Editorial for Special Issue “Radar Technology for Coastal Areas and Open Sea Monitoring”
1. Overview
2. Contributions
3. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bastos, L.; Bio, A.; Iglesias, I. The importance of marine observatories and of RAIA in particular. Front. Mar. Sci. 2016, 3, 140. [Google Scholar] [CrossRef] [Green Version]
- Crise, A.; Ribera d’Alcalà, M.; Mariani, P.; Petihakis, G.; Robidart, J.; Iudicone, D.; Bachmayer, R.; Malfatti, F. A conceptual framework for developing the next generation of Marine OBservatories (MOBs) for science and society. Front. Mar. Sci. 2018, 5, 318. [Google Scholar] [CrossRef]
- Shearman, E.D.R. Radio science and oceanography. Radio Sci. 1983, 18, 299–320. [Google Scholar] [CrossRef]
- Paduan, J.D.; Washburn, L. High-Frequency radar observations of ocean surface currents. Ann. Rev. Mar. Sci. 2013, 5, 115–136. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, W.; Wu, X.; Lund, B.; El-Darymli, K. Advances in coastal HF and Microwave (S- or X-band) radars. Int. J. Antennas Propag. 2017, 2017, 3089046. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Li, X.; Nunziata, F.; Mouche, A. (Eds.) Ocean Remote Sensing with Synthetic Aperture Radar; MDPI: Basel, Switzerland, 2018; p. 352. [Google Scholar] [CrossRef] [Green Version]
- Lorente, P.; Piedracoba, S.; Sotillo, M.G.; Álvarez-Fanjul, E. Long-term monitoring of the Atlantic Jet through the Strait of Gibraltar with HF radar observations. J. Mar. Sci. Eng. 2019, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Ren, L.; Miao, J.; Li, Y.; Luo, X.; Li, J.; Hartnett, M. Estimation of coastal currents using a soft computing method: A case study in Galway Bay, Ireland. J. Mar. Sci. Eng. 2019, 7, 157. [Google Scholar] [CrossRef] [Green Version]
- Cosoli, S.; Pattiaratchi, C.; Hetzel, Y. High-Frequency radar observations of surface circulation features along the South-Western Australian coast. J. Mar. Sci. Eng. 2020, 8, 97. [Google Scholar] [CrossRef] [Green Version]
- Lopez, G.; Conley, D.C. Comparison of HF radar fields of directional wave spectra against in situ measurements at multiple locations. J. Mar. Sci. Eng. 2019, 7, 271. [Google Scholar] [CrossRef] [Green Version]
- Saviano, S.; Cianelli, D.; Zambianchi, E.; Conversano, F.; Uttieri, M. An integrated reconstruction of the multiannual wave pattern in the Gulf of Naples (South-Eastern Tyrrhenian Sea, Western Mediterranean Sea). J. Mar. Sci. Eng. 2020, 8, 372. [Google Scholar] [CrossRef]
- Lipa, B.; Barrick, D.; Whelan, C. A quality control method for broad-beam HF radar current velocity measurements. J. Mar. Sci. Eng. 2019, 7, 112. [Google Scholar] [CrossRef] [Green Version]
- Hardman, R.L.; Wyatt, L.R. Inversion of HF radar Doppler spectra using a neural network. J. Mar. Sci. Eng. 2019, 7, 255. [Google Scholar] [CrossRef] [Green Version]
- Cosoli, S. Implementation of the Listen-Before-Talk mode for SeaSonde High-Frequency ocean radars. J. Mar. Sci. Eng. 2020, 8, 57. [Google Scholar] [CrossRef] [Green Version]
- Kumar, D.; Takewaka, S. Automatic shoreline position and intertidal foreshore slope detection from X-band radar images using modified Temporal Waterline Method with corrected wave run-up. J. Mar. Sci. Eng. 2019, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Ludeno, G.; Serafino, F. Estimation of the significant wave height from marine radar images without external reference. J. Mar. Sci. Eng. 2019, 7, 432. [Google Scholar] [CrossRef] [Green Version]
- Zamparelli, V.; De Santi, F.; Cucco, A.; Zecchetto, S.; De Carolis, G.; Fornaro, G. Surface currents derived from SAR Doppler processing: An analysis over the Naples coastal region in South Italy. J. Mar. Sci. Eng. 2020, 8, 203. [Google Scholar] [CrossRef] [Green Version]
- De Santi, F.; Luciani, G.; Bresciani, M.; Giardino, C.; Lovergine, F.P.; Pasquariello, G.; Vaiciute, D.; De Carolis, G. Synergistic use of Synthetic Aperture Radar and optical imagery to monitor surface accumulation of cyanobacteria in the Curonian Lagoon. J. Mar. Sci. Eng. 2019, 7, 461. [Google Scholar] [CrossRef] [Green Version]
- Reale, F.; Pugliese Carratelli, E.; Di Leo, A.; Dentale, F. Wave orbital velocity effects on radar Doppler altimeter for sea monitoring. J. Mar. Sci. Eng. 2020, 8, 447. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ludeno, G.; Uttieri, M. Editorial for Special Issue “Radar Technology for Coastal Areas and Open Sea Monitoring”. J. Mar. Sci. Eng. 2020, 8, 560. https://doi.org/10.3390/jmse8080560
Ludeno G, Uttieri M. Editorial for Special Issue “Radar Technology for Coastal Areas and Open Sea Monitoring”. Journal of Marine Science and Engineering. 2020; 8(8):560. https://doi.org/10.3390/jmse8080560
Chicago/Turabian StyleLudeno, Giovanni, and Marco Uttieri. 2020. "Editorial for Special Issue “Radar Technology for Coastal Areas and Open Sea Monitoring”" Journal of Marine Science and Engineering 8, no. 8: 560. https://doi.org/10.3390/jmse8080560
APA StyleLudeno, G., & Uttieri, M. (2020). Editorial for Special Issue “Radar Technology for Coastal Areas and Open Sea Monitoring”. Journal of Marine Science and Engineering, 8(8), 560. https://doi.org/10.3390/jmse8080560