Seaweed Potential in the Animal Feed: A Review
Abstract
:1. Introduction
2. Seaweeds: Nutritional Profile
2.1. Green Seaweeds
2.2. Red Seaweeds
2.3. Brown Seaweeds
3. Seaweed as Valuable Nutritional and Nutraceutical Animal Feed
3.1. Feed Safety
3.2. Fish Farming
3.3. Oyster Feed
3.4. Poultry Feeds
3.4.1. Broiler Poultry
3.4.2. Laying Poultry
3.5. Ruminat Feed
Asparagopsis armata: The Future for Methane Emissions Reduction from Ruminant Animals?
3.6. Other Animals Feeds
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Evans, F.D.; Critchley, A.T. Seaweeds for animal production use. J. Appl. Phycol. 2014, 26, 891–899. [Google Scholar] [CrossRef]
- Makkar, H.P.S.; Tran, G.; Heuzé, V.; Giger-Reverdin, S.; Lessire, M.; Lebas, F.; Ankers, P. Seaweeds for livestock diets: A review. Anim. Feed Sci. Technol. 2016, 212, 1–17. [Google Scholar] [CrossRef]
- Jamal, P.; Olorunnisola, K.S.; Jaswir, I.; Tijani, I.D.R.; Ansari, A.H. Bioprocessing of seaweed into protein enriched feedstock: Process optimization and validation in reactor. Int. Food Res. J. 2017, 24, 382–386. [Google Scholar]
- Corino, C.; Modina, S.C.; Di Giancamillo, A.; Chiapparini, S.; Rossi, R. Seaweeds in pig nutrition. Animals 2019, 9, 1126. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Øverland, M.; Mydland, L.T.; Skrede, A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Food Agric. 2019, 99, 13–24. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Probst, L.; Frideres, L.; Pedersen, B.; Amato, F. Sustainable, Safe and Nutritious Food: New Nutrient Sources; Publications Office of the European Union: Luxembourg, 2015; p. 17. [Google Scholar]
- Norziah, M.H.; Ching, C.Y. Nutritional composition of edible seaweed Gracilaria changgi. Food Chem. 2000, 68, 69–76. [Google Scholar] [CrossRef]
- Mišurcová, L.; Machů, L.; Orsavová, J. Seaweed minerals as nutraceuticals. In Advances in Food and Nutrition Research; Elsevier: Amsterdam, The Netherlands, 2011; pp. 371–390. [Google Scholar]
- Misurcova, L. Isolation and chemical properties of molecules derived from seaweeds chemical composition of seaweeds. Handb. Mar. Macroalgae 2011, 171–192. [Google Scholar] [CrossRef]
- Dawczynski, C.; Schubert, R.; Jahreis, G. Amino acids, fatty acids, and dietary fibre in edible seaweed products. Food Chem. 2007, 103, 891–899. [Google Scholar] [CrossRef]
- Moreda-Piñeiro, J.; Moreda-Piñeiro, A.; Romarís-Hortas, V.; Domínguez-González, R.; Alonso-Rodríguez, E.; López-Mahía, P.; Muniategui-Lorenzo, S.; Prada-Rodríguez, D.; Bermejo-Barrera, P. Trace metals in marine foodstuff: Bioavailability estimation and effect of major food constituents. Food Chem. 2012, 134, 339–345. [Google Scholar] [CrossRef]
- Gaillard, C.; Bhatti, H.S.; Novoa-Garrido, M.; Lind, V.; Roleda, M.Y.; Weisbjerg, M.R. Amino acid profiles of nine seaweed species and their in situ degradability in dairy cows. Anim. Feed Sci. Technol. 2018, 241, 210–222. [Google Scholar] [CrossRef]
- Angell, A.R.; Angell, S.F.; de Nys, R.; Paul, N.A. Seaweed as a protein source for mono-gastric livestock. Trends Food Sci. Technol. 2016, 54, 74–84. [Google Scholar] [CrossRef]
- Maehre, H.K.; Malde, M.K.; Eilertsen, K.-E.; Elvevoll, E.O. Characterization of protein, lipid and mineral contents in common Norwegian seaweeds and evaluation of their potential as food and feed. J. Sci. Food Agric. 2014, 94, 3281–3290. [Google Scholar] [CrossRef] [PubMed]
- Maehre, H.K. Seaweed Proteins—How to Get to Them? Ph.D. Thesis, Arctic University of Norway, Tromsø, Norway, 2015. [Google Scholar]
- Li, Q.; Luo, J.; Wang, C.; Tai, W.; Wang, H.; Zhang, X.; Liu, K.; Jia, Y.; Lyv, X.; Wang, L.; et al. Ulvan extracted from green seaweeds as new natural additives in diets for laying hens. J. Appl. Phycol. 2018, 30, 2017–2027. [Google Scholar] [CrossRef]
- Azenha, I. Cultivo e Avaliação Nutricional de Ulva sp. Comparação com Exemplares Recolhidos em Ambiente Natural. Bachelor’s Thesis, Escola Superior Agrária de Coimbra, Coimbra, Portugal, 2019. [Google Scholar]
- Pereira, L. Biological and therapeutic properties of the seaweed polysaccharides. Int. Biol. Rev. 2018, 2, 1–50. [Google Scholar] [CrossRef] [Green Version]
- Guiry, M.D.; Guiry, G.M. Algaebase: Listing the World’s Algae. Available online: https://www.algaebase.org/ (accessed on 27 June 2020).
- Kidgell, J.T.; Magnusson, M.; de Nys, R.; Glasson, C.R.K. Ulvan: A systematic review of extraction, composition and function. Algal Res. 2019, 39, 101422. [Google Scholar] [CrossRef]
- O’Sullivan, L.; Murphy, B.; McLoughlin, P.; Duggan, P.; Lawlor, P.G.; Hughes, H.; Gardiner, G.E. Prebiotics from marine macroalgae for human and animal health applications. Mar. Drugs 2010, 8, 2038–2064. [Google Scholar] [CrossRef] [Green Version]
- Usov, A.I. Polysaccharides of the red algae. In Advances in Carbohydrate Chemistry and Biochemistry; Horton, D., Ed.; Academic Press: New York, NY, USA, 2011; pp. 115–217. [Google Scholar]
- Koizumi, J.; Takatani, N.; Kobayashi, N.; Mikami, K.; Miyashita, K.; Yamano, Y.; Wada, A.; Maoka, T.; Hosokawa, M. Carotenoid profiling of a red seaweed Pyropia yezoensis: Insights into biosynthetic pathways in the order Bangiales. Mar. Drugs 2018, 16, 426. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peng, J.; Yuan, J.-P.; Wu, C.-F.; Wang, J.-H. Fucoxanthin, a marine carotenoid present in brown seaweeds and diatoms: Metabolism and bioactivities relevant to human health. Mar. Drugs 2011, 9, 1806–1828. [Google Scholar] [CrossRef]
- Peng, Y.; Hu, J.; Yang, B.; Lin, X.P.; Zhou, X.F.; Yang, X.W.; Liu, Y. Chemical composition of seaweeds. In Seaweed Sustainability: Food and Non-Food Applications; Elsevier Inc.: Amsterdam, The Netherlands, 2015; pp. 79–124. ISBN 9780124199583. [Google Scholar]
- Haberecht, S.; Wilkinson, S.; Roberts, J.; Wu, S.; Swick, R. Unlocking the potential health and growth benefits of macroscopic algae for poultry. Worlds. Poult. Sci. J. 2017, 74, 5–20. [Google Scholar] [CrossRef]
- Ponce, M.; Zuasti, E.; Anguís, V.; Fernández-Díaz, C. Effects of the sulfated polysaccharide ulvan from Ulva ohnoi on the modulation of the immune response in Senegalese sole (Solea senegalensis). Fish Shellfish Immunol. 2020, 100, 27–40. [Google Scholar] [CrossRef]
- Gupta, S.; Abu-Ghannam, N. Recent developments in the application of seaweeds or seaweed extracts as a means for enhancing the safety and quality attributes of foods. Innov. Food Sci. Emerg. Technol. 2011, 12, 600–609. [Google Scholar] [CrossRef]
- Hamed, I.; Özogul, F.; Özogul, Y.; Regenstein, J.M. Marine bioactive compounds and their health benefits: A Review. Compr. Rev. Food Sci. Food Saf. 2015, 14, 446–465. [Google Scholar] [CrossRef]
- Valente, L.M.P.; Rema, P.; Ferraro, V.; Pintado, M.; Sousa-Pinto, I.; Cunha, L.M.; Oliveira, M.B.; Araújo, M. Iodine enrichment of rainbow trout flesh by dietary supplementation with the red seaweed Gracilaria vermiculophylla. Aquaculture 2015, 446, 132–139. [Google Scholar] [CrossRef]
- Holdt, S.L.; Kraan, S. Bioactive compounds in seaweed: Functional food applications and legislation. J. Appl. Phycol. 2011, 23, 543–597. [Google Scholar] [CrossRef]
- Cian, R.E.; Drago, S.R.; De Medina, F.S.; Martínez-Augustin, O. Proteins and carbohydrates from red seaweeds: Evidence for beneficial effects on gut function and microbiota. Mar. Drugs 2015, 13, 5358–5383. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Černá, M. Seaweed Proteins and Amino Acids as Nutraceuticals, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2011; Volume 64, ISBN 9780123876690. [Google Scholar]
- Pereira, L. A review of the nutrient composition of selected edible seaweeds. In Seaweed: Ecology, Nutrient Composition and Medicinal Uses; Pomin, V.H., Ed.; Nova Science Publishers, Inc.: New York, NY, USA, 2011; pp. 15–47. ISBN 978-1-61470-878-0. [Google Scholar]
- Kodner, R.B.; Pearson, A.; Summons, R.E.; Knoll, A.H. Sterols in red and green algae: Quantification, phylogeny, and relevance for the interpretation of geologic steranes. Geobiology 2008, 6, 411–420. [Google Scholar] [CrossRef]
- Hayes, M. Seaweeds: A Nutraceutical and Health Food; Elsevier Inc.: Amsterdam, The Netherlands, 2015; ISBN 9780124199583. [Google Scholar]
- Sánchez-Machado, D.I.; López-Cervantes, J.; López-Hernández, J.; Paseiro-Losada, P. Fatty acids, total lipid, protein and ash contents of processed edible seaweeds. Food Chem. 2004, 85, 439–444. [Google Scholar] [CrossRef]
- Sá, A.R. Illustrated Guide of Macroalgae of the Bay of Buarcos. Master’ Thesis, University of Coimbra, Coimbra, Portugal, 2019. [Google Scholar]
- Pomin, V.H. Seaweed: Ecology, Nutrient Composition, and Medicinal Uses; Nova Science Publishers: New York, NY, USA, 2012; ISBN 9781614708780. [Google Scholar]
- Laudadio, V.; Lorusso, V.; Lastella, N.M.B.; Dhama, K.; Karthik, K.; Tiwari, R.; Alam, G.M.; Tufarelli, V. Enhancement of Nutraceutical Value of Table Eggs Through Poultry Feeding Strategies. Int. J. Pharmacol. 2015, 11, 201–212. [Google Scholar] [CrossRef]
- Vilà, B. Improvement of Biologic and Nutritional Value of Eggs; CIHEAM Options Méditerranéennes: Montpellier, France, 2008; Volume 390. [Google Scholar]
- Cherry, P.; O’hara, C.; Magee, P.J.; Mcsorley, E.M.; Allsopp, P.J. Risks and benefits of consuming edible seaweeds. Nutr. Rev. 2019, 77, 307–329. [Google Scholar] [CrossRef] [Green Version]
- Why Feed Safety?|Global Feed Safety Platform|Food and Agriculture Organization of the United Nations. Available online: http://www.fao.org/feed-safety/background/why-feed-safety/en/ (accessed on 18 July 2020).
- Chen, Q.; Pan, X.D.; Huang, B.F.; Han, J.L. Distribution of metals and metalloids in dried seaweeds and health risk to population in southeastern China. Sci. Rep. 2018, 8, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Desideri, D.; Cantaluppi, C.; Ceccotto, F.; Meli, M.A.; Roselli, C.; Feduzi, L. Essential and toxic elements in seaweeds for human consumption. J. Toxicol. Environ. Health Part A Curr. Issues 2016, 79, 112–122. [Google Scholar] [CrossRef] [PubMed]
- Bampidis, V.; Bastos, M.; Christensen, H.; Dusemund, B.; Kouba, M.; Kos Durjava, M.; López-Alonso, M.; López Puente, S.; Marcon, F.; Mayo, B.; et al. Guidance on the assessment of the safety of feed additives for the environment. EFSA J. 2019, 17. [Google Scholar] [CrossRef] [Green Version]
- Lovell, R.T. Diet and fish husbandry. In Fish Nutrition; Elsevier: Amsterdam, The Netherlands, 2003; pp. 703–754. [Google Scholar]
- Al-Asgah, N.A.; Younis, E.S.M.; Abdel-Warith, A.W.A.; Shamlol, F.S. Evaluation of red seaweed Gracilaria arcuata as dietary ingredient in African catfish, Clarias gariepinus. Saudi J. Biol. Sci. 2016, 23, 205–210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glencross, B.D.; Booth, M.; Allan, G.L. A feed is only as good as its ingredients—A review of ingredient evaluation strategies for aquaculture feeds. Aquac. Nutr. 2007, 13, 17–34. [Google Scholar] [CrossRef]
- Borquez, A.; Serrano, E.; Dantagnan, P.; Carrasco, J.; Hernandez, A. Feeding high inclusion of whole grain white lupin (Lupinus albus) to rainbow trout (Oncorhynchus mykiss): Effects on growth, nutrient digestibility, liver and intestine histology and muscle fatty acid composition. Aquac. Res. 2011, 42, 1067–1078. [Google Scholar] [CrossRef] [Green Version]
- Francis, G.; Makkar, H.P.S.; Becker, K. Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish. Aquaculture 2001, 199, 197–227. [Google Scholar] [CrossRef]
- Geurden, I.; Cuvier, A.; Gondouin, E.; Olsen, R.E.; Ruohonen, K.; Kaushik, S.; Boujard, T. Rainbow trout can discriminate between feeds with different oil sources. Physiol. Behav. 2005, 85, 107–114. [Google Scholar] [CrossRef]
- Hardy, R.W. Alternate protein sources for salmon and trout diets. Anim. Feed Sci. Technol. 1996, 59, 71–80. [Google Scholar] [CrossRef]
- Drew, M.D.; Borgeson, T.L.; Thiessen, D.L. A review of processing of feed ingredients to enhance diet digestibility in finfish. Anim. Feed Sci. Technol. 2007, 138, 118–136. [Google Scholar] [CrossRef]
- Al-Hafedh, Y.S.; Alam, A.; Buschmann, A.H.; Fitzsimmons, K.M. Experiments on an integrated aquaculture system (seaweeds and marine fish) on the Red Sea coast of Saudi Arabia: Efficiency comparison of two local seaweed species for nutrient biofiltration and production. Rev. Aquac. 2012, 4, 21–31. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture—Opportunities and Challenges; FAO: Rome, Italy, 2014; ISBN 9789251082751. [Google Scholar]
- Khalil, M.T.; El-Rakman, N.S.A. Abundance and diversity of surface zooplankton in the Gulf of Aqaba, Red Sea, Egypt. J. Plankton Res. 1997, 19, 927–936. [Google Scholar] [CrossRef]
- Baars, M.; Schalk, P.; Veldhuis, J. easonal fluctuations in plankton biomass and productivity in the ecosystems of the Somali Current, Gulf of Aden, and southern Red Sea: Large marine ecosystems of the Indian Ocean: Assessment, sustainability, and management. In Large Marine Ecosystems of the Indian Ocean: Assessment, Sustainability, and Management.; Sherman, K., Okemwa, E.N., Ntiba, M.J., Eds.; Blackwell Science: Malden, MA, USA, 1998; pp. 143–174. [Google Scholar]
- Pereira, R.; Yarish, C. Mass production of marine macroalgae. Encycl. Ecol. Five-Volume Set 2008, 2236–2247. [Google Scholar] [CrossRef]
- Casas-Valdez, M.; Hernández-Contreras, H.; Marín-Álvarez, A.; Aguila-Ramírez, R.N.; Hernández-Guerrero, C.J.; Sánchez-Rodríguez, I.; Carrillo-Domínguez, S. The seaweed Sargassum (Sargassaceae) as tropical alternative for goats’ feeding. Rev. Biol. Trop. 2006, 54, 83–92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakagawa, H.; Umino, T.; Tasaka, Y. Usefulness of Ascophyllum meal as a feed additive for red sea bream, Pagrus major. Aquaculture 1997, 151, 275–281. [Google Scholar] [CrossRef]
- Davies, S.J.; Brown, M.T.; Camilleri, M. Preliminary assessment of the seaweed Porphyra purpurea in artificial diets for thick-lipped grey mullet (Chelon labrosus). Aquaculture 1997, 152, 249–258. [Google Scholar] [CrossRef]
- Wassef, E.A.; El Masry, M.H.; Mikhail, F.R. Growth enhancement and muscle structure of striped mullet, Mugil cephalus L., fingerlings by feeding algal meal-based diets. Aquac. Res. 2001, 32, 315–322. [Google Scholar] [CrossRef]
- Ma, W.C.J.; Chung, H.Y.; Ang, P.O.; Kim, J.-S. Enhancement of bromophenol levels in aquacultured Silver Seabream (Sparus sarba). J. Agric. Food Chem. 2005, 53, 2133–2139. [Google Scholar] [CrossRef]
- Valente, L.M.P.; Gouveia, A.; Rema, P.; Matos, J.; Gomes, E.F.; Pinto, I.S. Evaluation of three seaweeds Gracilaria bursa-pastoris, Ulva rigida and Gracilaria cornea as dietary ingredients in European sea bass (Dicentrarchus labrax) juveniles. Aquaculture 2006, 252, 85–91. [Google Scholar] [CrossRef]
- Pham, M.A.; Lee, K.-J.; Lee, B.-J.; Lim, S.-J.; Kim, S.-S.; Lee, Y.-D.; Heo, M.-S.; Lee, K.-W. Effects of dietary Hizikia fusiformis on growth and immune responses in juvenile Olive Flounder (Paralichthys olivaceus). Asian-Australas. J. Anim. Sci. 2006, 19, 1769–1775. [Google Scholar] [CrossRef]
- Kalla, A.; Yoshimatsu, T.; Araki, T.; Zhang, D.-M.; Yamamoto, T.; Sakamoto, S. Use of Porphyra spheroplasts as feed additive for red sea bream. Fish. Sci. 2008, 74, 104–108. [Google Scholar] [CrossRef]
- Khan, M.N.D.; Yoshimatsu, T.; Kalla, A.; Araki, T.; Sakamoto, S. Supplemental effect of Porphyra spheroplasts on the growth and feed utilization of black sea bream. Fish. Sci. 2008, 74, 397–404. [Google Scholar] [CrossRef]
- Soler-Vila, A.; Coughlan, S.; Guiry, M.D.; Kraan, S. The red alga Porphyra dioica as a fish-feed ingredient for rainbow trout (Oncorhynchus mykiss): Effects on growth, feed efficiency, and carcass composition. J. Appl. Phycol. 2009, 21, 617–624. [Google Scholar] [CrossRef]
- Ergün, S.; Soyutürk, M.; Güroy, B.; Güroy, D.; Merrifield, D. Influence of Ulva meal on growth, feed utilization, and body composition of juvenile Nile tilapia (Oreochromis niloticus) at two levels of dietary lipid. Aquac. Int. 2009, 17, 355–361. [Google Scholar] [CrossRef]
- Güroy, D.; Güroy, B.; Merrifield, D.L.; Ergün, S.; Tekinay, A.A.; Yiğit, M. Effect of dietary Ulva and Spirulina on weight loss and body composition of rainbow trout, Oncorhynchus mykiss (Walbaum), during a starvation period. J. Anim. Physiol. Anim. Nutr. (Berl). 2011, 95, 320–327. [Google Scholar] [CrossRef]
- Güroy, B.; Ergün, S.; Merrifield, D.L.; Güroy, D. Effect of autoclaved Ulva meal on growth performance, nutrient utilization and fatty acid profile of rainbow trout, Oncorhynchus mykiss. Aquac. Int. 2013, 21, 605–615. [Google Scholar] [CrossRef]
- Kamunde, C.; Sappal, R.; Melegy, T.M. Brown seaweed (AquaArom) supplementation increases food intake and improves growth, antioxidant status and resistance to temperature stress in Atlantic salmon, Salmo salar. PLoS ONE 2019, 14, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Ferreira, M.; Larsen, B.K.; Granby, K.; Cunha, S.C.; Monteiro, C.; Fernandes, J.O.; Nunes, M.L.; Marques, A.; Dias, J.; Cunha, I.; et al. Diets supplemented with Saccharina latissima influence the expression of genes related to lipid metabolism and oxidative stress modulating rainbow trout (Oncorhynchus mykiss) fillet composition. Food Chem. Toxicol. 2020, 140, 111332. [Google Scholar] [CrossRef]
- Utting, S.D.; Millican, P.F. Techniques for the hatchery conditioning of bivalve broodstocks and the subsequent effect on egg quality and larval viability. Aquaculture 1997, 155, 45–54. [Google Scholar] [CrossRef]
- Gonzalez Araya, R.; Mingant, C.; Petton, B.; Robert, R. Influence of diet assemblage on Ostrea edulis broodstock conditioning and subsequent larval development. Aquaculture 2012, 364–365, 272–280. [Google Scholar] [CrossRef] [Green Version]
- Gallager, S.M.; Mann, R. Growth and survival of larvae of Mercenaria mercenaria (L.) and Crassostrea virginica (Gmelin) relative to broodstock conditioning and lipid content of eggs. Aquaculture 1986, 56, 105–121. [Google Scholar] [CrossRef]
- Pronker, A.E.; Nevejan, N.M.; Peene, F.; Geijsen, P.; Sorgeloos, P. Hatchery broodstock conditioning of the blue mussel Mytilus edulis (Linnaeus 1758). Part I. Impact of different micro-algae mixtures on broodstock performance. Aquac. Int. 2008, 16, 297–307. [Google Scholar] [CrossRef] [Green Version]
- González-Araya, R.; Quéau, I.; Quéré, C.; Moal, J.; Robert, R. A physiological and biochemical approach to selecting the ideal diet for Ostrea edulis (L.) broodstock conditioning (part A). Aquac. Res. 2011, 42, 710–726. [Google Scholar] [CrossRef] [Green Version]
- González-Araya, R.; Lebrun, L.; Quéré, C.; Robert, R. The selection of an ideal diet for Ostrea edulis (L.) broodstock conditioning (part B). Aquaculture 2012, 362–363, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Anjos, C.; Baptista, T.; Joaquim, S.; Mendes, S.; Matias, A.M.; Moura, P.; Simões, T.; Matias, D. Broodstock conditioning of the Portuguese oyster (Crassostrea angulata, Lamarck, 1819): Influence of different diets. Aquac. Res. 2017, 48, 3859–3878. [Google Scholar] [CrossRef]
- Brown, M.; Robert, R. Preparation and assessment of microalgal concentrates as feeds for larval and juvenile Pacific oyster (Crassostrea gigas). Aquaculture 2002, 207, 289–309. [Google Scholar] [CrossRef]
- Coutteau, P.; Sorgeloos, P. The use of algal substitutes and the requirement for live algae in the hatchery and nursery rearing of bivalve molluscs: An international survey. J. Shellfish Res. 1992, 11, 118–128. [Google Scholar]
- Boeing, P.; Escondido, C. Use of spray-dried Schizochytrium sp. as a partial algal replacement for juvenile bivalves. J. Shellfish Res. 1997, 16, 284. [Google Scholar]
- Arney, B.; Liu, W.; Forster, I.P.; McKinley, R.S.; Pearce, C.M. Feasibility of dietary substitution of live microalgae with spray-dried Schizochytrium sp. or Spirulina in the hatchery culture of juveniles of the Pacific geoduck clam (Panopea generosa). Aquaculture 2015, 444, 117–133. [Google Scholar] [CrossRef]
- Matias, D.; Joaquim, S.; Leitão, A.; Massapina, C. Effect of geographic origin, temperature and timing of broodstock collection on conditioning, spawning success and larval viability of Ruditapes decussatus (Linné, 1758). Aquac. Int. 2009, 17, 257–271. [Google Scholar] [CrossRef]
- Joaquim, S.; Matias, D.; Matias, A.M.; Moura, P.; Arnold, W.S.; Chícharo, L.; Baptista Gaspar, M. Reproductive activity and biochemical composition of the pullet carpet shell Venerupis senegalensis (Gmelin, 1791) (Mollusca: Bivalvia) from Ria de Aveiro (northwestern coast of Portugal). Sci. Mar. 2010, 75, 217–226. [Google Scholar] [CrossRef] [Green Version]
- Noël, L.; Chekri, R.; Millour, S.; Vastel, C.; Kadar, A.; Sirot, V.; Leblanc, J.C.; Guérin, T. Li, Cr, Mn, Co, Ni, Cu, Zn, Se and Mo levels in foodstuffs from the Second French TDS. Food Chem. 2012, 132, 1502–1513. [Google Scholar] [CrossRef]
- Fleurence, J.; Morançais, M.; Dumay, J.; Decottignies, P.; Turpin, V.; Munier, M.; Garcia-Bueno, N.; Jaouen, P. What are the prospects for using seaweed in human nutrition and for marine animals raised through aquaculture? Trends Food Sci. Technol. 2012, 27, 57–61. [Google Scholar] [CrossRef]
- Cardoso, C.; Afonso, C.; Lourenço, H.; Costa, S.; Nunes, M.L. Bioaccessibility assessment methodologies and their consequences for the risk-benefit evaluation of food. Trends Food Sci. Technol. 2015, 41, 5–23. [Google Scholar] [CrossRef]
- Cardoso, C.; Gomes, R.; Rato, A.; Joaquim, S.; Machado, J.; Gonçalves, J.F.; Vaz-Pires, P.; Magnoni, L.; Matias, D.; Coelho, I.; et al. Elemental composition and bioaccessibility of farmed oysters (Crassostrea gigas) fed different ratios of dietary seaweed and microalgae during broodstock conditioning. Food Sci. Nutr. 2019, 7, 2495–2504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zahid, P.B.; Ali, A.; Zahid, M.-J. Brown seaweeds as supplement for broiler feed. Hamdard Med. 2001, 2, 98–101. [Google Scholar]
- Ali, A.; Memon, M.S. Green seaweed as component of poultry feed. Int. J. Biol. Biotechn. 2014, 5, 211–214. [Google Scholar]
- Abudabos, A.M.; Okab, A.B.; Aljumaah, R.S.; Samara, E.M.; Abdoun, K.A.; Al-Haidary, A.A. Nutritional value of green seaweed (Ulva Lactuca) for broiler chickens. Ital. J. Anim. Sci. 2013, 12, e28. [Google Scholar] [CrossRef]
- Wang, S.; Shi, X.; Zhou, C.; Lin, Y. Entermorpha prolifera: Effects on performance, carcass quality and small intestinal digestive enzyme activities of broilers. Chin. J. Anim. Nutr. 2013, 25, 1332–1337. [Google Scholar]
- Wang, S.; Jia, Y.; Wang, L.; Zhu, F.; Lin, Y. Enteromorpha prolifera supplemental level: Effects on laying performance, egg quality, immune function and microflora in feces of laying hens. Chin. J. Anim. Nutr. 2013, 25, 1346–1352. [Google Scholar]
- Asar, M. The Use of Some Weeds in Poultry Nutrition; University of Alexandria: Alexandria, Egypt, 1972. [Google Scholar]
- El-Deek, A.A.; Al-Harthi, M.A.; Abdalla, A.A.; Elbanoby, M.M. The use of brown algae meal in finisher broiler diets. Egypt. Poult. Sci 2011, 31, 767–781. [Google Scholar]
- Gu, H.Y.; Shu, Z.Z.; Liu, Y.G. Nutrient composition of marine algae and their feeding on broilers. Chin. J. Anim. Sci. 1988, 3, 12–14. [Google Scholar]
- Ventura, M.R.; Castañon, J.I.R.; McNab, J.M. Nutritional value of seaweed (Ulva rigida) for poultry. Anim. Feed Sci. Technol. 1994, 49, 87–92. [Google Scholar] [CrossRef]
- Zahid, P.B.; Aisha, K.; Ali, A. Green seaweeds as component of poultry feed. Bangladesh J. Bot. 1995, 24, 146–153. [Google Scholar]
- Kulshreshtha, G.; Rathgeber, B.; Stratton, G.; Thomas, N.; Evans, F.; Critchley, A.; Hafting, J.; Prithiviraj, B. Immunology, health, and disease: Feed supplementation with red seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, affects performance, egg quality, and gut microbiota of layer hens. Poult. Sci. 2014, 93, 2991–3001. [Google Scholar] [CrossRef] [PubMed]
- Baurhoo, B.; Phillip, L.; Ruiz-Feria, C.A.A. Effects of purified lignin and mannan oligosaccharides on intestinal integrity and microbial populations in the ceca and litter of broiler chickens. Poult. Sci. 2007, 86, 1070–1078. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, L.; Li, K.; Hao, K.; Xu, C. Effect of fructooligosaccharides and antibiotics on laying performance of chickens and cholesterol content of egg yolk. Br. Poult. Sci. 2007, 48, 185–189. [Google Scholar] [CrossRef] [PubMed]
- Awad, W.A.; Ghareeb, K.; Abdel-Raheem, S.; Böhm, J. Effects of dietary inclusion of probiotic and synbiotic on growth performance, organ weights, and intestinal histomorphology of broiler chickens. Poult. Sci. 2009, 88, 49–55. [Google Scholar] [CrossRef]
- Filazi, A.; Sireli, U.T.; Cadirci, O. Residues of gentamicin in eggs following medication of laying hens. Br. Poult. Sci. 2005, 46, 580–583. [Google Scholar] [CrossRef]
- Shams Shargh, M.; Dastar, B.; Zerehdaran, S.; Khomeiri, M.; Moradi, A. Effects of using plant extracts and a probiotic on performance, intestinal morphology, and microflora population in broilers. J. Appl. Poult. Res. 2012, 21, 201–208. [Google Scholar] [CrossRef]
- Tellez, G.; Pixley, C.; Wolfenden, R.E.; Layton, S.L.; Hargis, B.M. Probiotics/direct fed microbials for Salmonella control in poultry. Food Res. Int. 2012, 45, 628–633. [Google Scholar] [CrossRef]
- Kulshreshtha, G.; Rathgeber, B.; MacIsaac, J.; Boulianne, M.; Brigitte, L.; Stratton, G.; Thomas, N.A.; Critchley, A.T.; Hafting, J.; Prithiviraj, B. Feed supplementation with red seaweeds, Chondrus crispus and Sarcodiotheca gaudichaudii, reduce Salmonella Enteritidis in laying hens. Front. Microbiol. 2017, 8, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wijesekara, I.; Pangestuti, R.; Kim, S.K. Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr. Polym. 2011, 84, 14–21. [Google Scholar] [CrossRef]
- Ngo, D.H.; Kim, S.K. Sulfated polysaccharides as bioactive agents from marine algae. Int. J. Biol. Macromol. 2013, 62, 70–75. [Google Scholar] [CrossRef] [PubMed]
- Fredriksson, S.; Elwinger, K.; Pickova, J. Fatty acid and carotenoid composition of egg yolk as an effect of microalgae addition to feed formula for laying hens. Food Chem. 2006, 99, 530–537. [Google Scholar] [CrossRef]
- Anton, M. Composition and structure of hen egg yolk. Bioact. Egg Compd. 2007, 1–6. [Google Scholar] [CrossRef]
- Laudadio, V.; Ceci, E.; Lastella, N.M.B.; Introna, M.; Tufarelli, V. Low-fiber alfalfa (Medicago sativa L.) meal in the laying hen diet: Effects on productive traits and egg quality. Poult. Sci. 2014, 93, 1868–1874. [Google Scholar] [CrossRef]
- Schiavone, A.; Barroeta, A.C. Egg enrichment with vitamins and trace minerals. In Improving the Safety and Quality of Eggs and Egg Products; Elsevier: Amsterdam, The Netherlands, 2011; pp. 289–320. [Google Scholar]
- Ehr, I.J.; Persia, M.E.; Bobeck, E.A. Comparative omega-3 fatty acid enrichment of egg yolks from first-cycle laying hens fed flaxseed oil or ground flaxseed. Poult. Sci. 2017, 96, 1791–1799. [Google Scholar] [CrossRef]
- Choi, Y.; Lee, E.C.; Na, Y.; Lee, S.R. Effects of dietary supplementation with fermented and non-fermented brown algae by-products on laying performance, egg quality, and blood profile in laying hens. Asian-Australasian J. Anim. Sci. 2018, 31, 1654–1659. [Google Scholar] [CrossRef] [Green Version]
- Al-Harthi, M.A.; El-Deek, A.A. Effect of different dietary concentrations of brown marine algae (Sargassum dentifebium) prepared by different methods on plasma and yolk lipid profiles, yolk total carotene and lutein plus zeaxanthin of laying hens. Ital. J. Anim. Sci. 2012, 11, 347–353. [Google Scholar] [CrossRef]
- Arieli, A.; Sklan, D.; Kissil, G. A note on the nutritive value of Ulva lactuca for ruminants. Anim. Sci. 1993, 57, 329–331. [Google Scholar] [CrossRef]
- Rjiba Ktita, S.; Chermiti, A.; Mahouachi, M. The use of seaweeds (Ruppia maritima and Chaetomorpha linum) for lamb fattening during drought periods. Small Rumin. Res. 2010, 91, 116–119. [Google Scholar] [CrossRef]
- Montañez-Valdez, O.D.; Pinos-Rodríguez, J.M.; Rojo-Rubio, R.; Salinas-Chavira, J.; Martíneztinajero, J.J.; Salem, A.Z.M.; Avellaneda-Cevallos, J.H. Effect of a calcified-seaweed extract as rumen buffer on ruminal disappearance and fermentation in steers. Indian J. Anim. Sci. 2012, 82, 430–432. [Google Scholar]
- Hansen, H.; Hector, B.; Feldmann, J. A qualitative and quantitative evaluation of the seaweed diet of North Ronaldsay sheep. Anim. Feed Sci. Technol. 2003, 105, 21–28. [Google Scholar] [CrossRef]
- Marín, A.; Casas, M.; Carrillo, S.; Hernández, H.; Monroy, A. Performance of sheep fed rations with Sargassum spp. sea algae. Cuba. J. Agric. Sci. 2003, 37, 119–123. [Google Scholar]
- Marín, A.; Casas-Valdez, M.; Carrillo, S.; Hernández, H.; Monroy, A.; Sanginés, L.; Pérez-Gil, F. The marine algae Sargassum spp. (Sargassaceae) as feed for sheep in tropical and subtropical regions. Rev. Biol. Trop. 2009, 57, 1271–1281. [Google Scholar] [CrossRef] [Green Version]
- Gerber, P.J.; Steinfeld, H.; Henderson, B.; Mottet, A.; Opio, C.; Dijkman, J.; Falcucci, A.; Tempio, G. A global Assessment of emissions and mitigation opportunities. In Tackling Climate Change Through Livestock: A Global Assessment of Emissions and Mitigation Opportunities; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013; ISBN 9789251079201. [Google Scholar]
- Roque, B.M.; Salwen, J.K.; Kinley, R.; Kebreab, E. Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. J. Clean. Prod. 2019, 234, 132–138. [Google Scholar] [CrossRef]
- NASEM. Improving Characterization of Anthropogenic Methane Emissions in the United States; National Academies Press: Washington, DC, USA, 2018; ISBN 978-0-309-47050-6. [Google Scholar]
- US EPA. Overview of Greenhouse Gases|Greenhouse Gas (GHG) Emissions|US EPA. Available online: https://www.epa.gov/ghgemissions/overview-greenhouse-gases (accessed on 16 June 2020).
- Machado, L.; Magnusson, M.; Paul, N.A.; De Nys, R.; Tomkins, N. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Kinley, R.D.; de Nys, R.; Vucko, M.J.; Machado, L.; Tomkins, N.W. The red macroalgae Asparagopsis taxiformis is a potent natural antimethanogenic that reduces methane production during in vitro fermentation with rumen fluid. Anim. Prod. Sci. 2016, 56, 282. [Google Scholar] [CrossRef]
- Li, X.; Norman, H.C.; Kinley, R.D.; Laurence, M.; Wilmot, M.; Bender, H.; de Nys, R.; Tomkins, N. Asparagopsis taxiformis decreases enteric methane production from sheep. Anim. Prod. Sci. 2018, 58, 681. [Google Scholar] [CrossRef]
- Dubois, B.; Tomkins, N.W.D.; Kinley, R.; Bai, M.; Seymour, S.; Paul, N.A.; de Nys, R. Effect of tropical algae as additives on rumen in Vitro gas production and fermentation characteristics. Am. J. Plant Sci. 2013, 4, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Machado, L.; Magnusson, M.; Paul, N.A.; Kinley, R.; de Nys, R.; Tomkins, N. Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. on in vitro fermentation and methane production. J. Appl. Phycol. 2016, 28, 1443–1452. [Google Scholar] [CrossRef]
- Machado, L.; Magnusson, M.; Paul, N.A.; Kinley, R.; de Nys, R.; Tomkins, N. Identification of bioactives from the red seaweed Asparagopsis taxiformis that promote antimethanogenic activity in vitro. J. Appl. Phycol. 2016, 28, 3117–3126. [Google Scholar] [CrossRef]
- Kinley, R.D.; Martinez-Fernandez, G.; Matthews, M.K.; de Nys, R.; Magnusson, M.; Tomkins, N.W. Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. J. Clean. Prod. 2020, 259, 120836. [Google Scholar] [CrossRef]
- El-banna, S.G.; Hassan, A.A.; Okab, A.B.; Koriem, A.A.; Ayoub, M.A. Effect of feeding diets supplemented with seaweed on growth performance and some blood hematological and biochemical characteristics of male Baladi rabbits. In Proceedings of the 4th International Conference on Rabbit Production in Hot Climates, Sharm Elsheikh, Egypt, 24–27 February 2005; pp. 373–382. [Google Scholar]
- Raju, K.V.S.; Sreemannarayana, O. Feeding of Ulva fasciata to rabbits—Feed efficiency and carcass characteristics. Indian Vet. J. 1995, 72, 1331–1332. [Google Scholar]
- Sreemannarayana, O.; Raju, K.V.S.; Ramaraju, G.V.A.N.S.; Prasad, J.R. The use of Ulva fasciata, a marine alga as rabbit feed: Growth and conversion efficiency. Indian Vet. J. 1995, 72, 989–991. [Google Scholar]
- Chermiti, A.; Rjiba, S.; Mahouachi, M. Marine plants: A new alternative feed resource for livestock. In Proceedings of the 2009 FAO/IAEA International Symposium on Sustainable Improvement of Animal Production and Health, Vienna, Austria, 8–11 June 2009; p. 240. [Google Scholar]
- Okab, A.B.; Samara, E.M.; Abdoun, K.A.; Rafay, J.; Ondruska, L.; Parkanyi, V.; Pivko, J.; Ayoub, M.A.; Al-Haidary, A.A.; Aljumaah, R.S.; et al. Effects of dietary seaweed (Ulva lactuca) supplementation on the reproductive performance of buck and doe rabbits. J. Appl. Anim. Res. 2013, 41, 347–355. [Google Scholar] [CrossRef]
- Euler, A.C.C.; Ferreira, W.M.; Maurício, R.; Sousa, L.; Carvalho, W.; Teixeira, E.D.A.; Coelho, C.C.G.M.; Matos, C. In Vitro gas production of diets with inclusion of seaweed (Lithothamnium sp.) flour for white New Zealand Rabbits. In Proceedings of the 9th World Rabbit Congress, Verona, Italy, 10–13 June 2008; pp. 655–660. [Google Scholar]
- Leroyer, J.; Coulombel, A. Chez Pascal et Myriam Orain, un atelier cunicole biologique qui fonctionne! Cunicult. Mag. 2009, 36, 1–4. [Google Scholar]
- Euler, A.C.C.; Ferreira, W.M.; Teixeira, E.D.A.; Lana, A.; Guedes, R.M.C.; Avelar, A.C. Performance, digestibility and morphometry of ileal villi of rabbits fed with levels of inclusion of Lithothamnium. Rev. Bras. Saúde e Produção Anim. 2010, 11, 91–103. [Google Scholar]
- Sauvageau, C. Utilisation des Algues Marines; Librairie Octave Doin: Paris, France, 1920. [Google Scholar]
- Chapman, V.J.; Chapman, D.J. Seaweeds and Their Uses; Springer: Berlin/Heidelberg, Germany, 1980; ISBN 9400958064. [Google Scholar]
- Jones, R.T.; Blunden, G.; Probert, A.J. Effects of dietary Ascophyllum nodosum on blood parameters of rats and pigs. Bot. Mar. 1979, 22, 393–402. [Google Scholar] [CrossRef]
- Gahan, D.A.; Lynch, M.B.; Callan, J.J.; O’Sullivan, J.T.; O’Doherty, J.V. Performance of weanling piglets offered low-, medium- or high-lactose diets supplemented with a seaweed extract from Laminaria spp. Animal 2009, 3, 24–31. [Google Scholar] [CrossRef] [Green Version]
- McDonnell, P.; Figat, S.; O’Doherty, J.V. The effect of dietary laminarin and fucoidan in the diet of the weanling piglet on performance, selected faecal microbial populations and volatile fatty acid concentrations. Animal 2010, 4, 579–585. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Katayama, M.; Fukuda, T.; Okamura, T.; Suzuki, E.; Tamura, K.; Shimizu, Y.; Suda, Y.; Suzuki, K. Effect of dietary addition of seaweed and licorice on the immune performance of pigs. Anim. Sci. J. 2011, 82, 274–281. [Google Scholar] [CrossRef]
- Dierick, N.; Ovyn, A.; De Smet, S. Effect of feeding intact brown seaweed Ascophyllum nodosum on some digestive parameters and on iodine content in edible tissues in pigs. J. Sci. Food Agric. 2009, 89, 584–594. [Google Scholar] [CrossRef]
- Dierick, N.; Ovyn, A.; De Smet, S. In vitro assessment of the effect of intact marine brown macro-algae Ascophyllum nodosum on the gut flora of piglets. Livest. Sci. 2010, 133, 154–156. [Google Scholar] [CrossRef]
- Michiels, J.; Skrivanova, E.; Missotten, J.; Ovyn, A.; Mrazek, J.; De Smet, S.; Dierick, N. Intact brown seaweed (Ascophyllum nodosum) in diets of weaned piglets: Effects on performance, gut bacteria and morphology and plasma oxidative status. J. Anim. Physiol. Anim. Nutr. 2012, 96, 1101–1111. [Google Scholar] [CrossRef] [PubMed]
- Banoch, T.; Fajt, Z.; Drabek, J.; Svoboda, M. Iodine and its importance in human and pigs. Veterinarstvi 2010, 60, 690–694. [Google Scholar]
Nutrient Composition (%) | Mineral Composition (mg.100 g−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Species | Protein | Ash | Dietary Fiber | Carbohydrate | Lipid | Na | K | P | Ca | Mg |
Green seaweed | ||||||||||
Caulerpa lentillifera | 10–13 | 24–37 | 33 | 38–59 | 0.86–1.11 | 8917 | 700–1142 | 1030 | 780–1874 | 630–1650 |
C. racemosa | 17.8–18.4 | 7–19 | 64.9 | 33–41 | 9.8 | 2574 | 318 | 29.71 | 1852 | 384–1610 |
Codium fragile | 8–11 | 21–39 | 5.1 | 39–67 | 0.5–1.5 | - | - | - | - | - |
Ulva compressa | 21–32 | 17–19 | 29–45 | 48.2 | 0.3–4.2 | - | - | - | - | - |
U. lactuca | 10–25 | 12.9 | 29–55 | 36–43 | 0.6–1.6 | - | - | 140 | 840 | - |
U. pertusa | 20–26 | - | - | 47.0 | - | - | - | - | - | - |
U. rigida | 18–19 | 28.6 | 38–41 | 43–56 | 0.9–2.0 | 1595 | 1561 | 210 | 524 | 2094 |
U. reticulta | 17–20 | - | 65.7 | 50–58 | 1.7–2.3 | - | - | - | - | - |
Red seaweed | ||||||||||
Chondrus crispus | 11–21 | 21 | 10–34 | 55–68 | 1.0–3.0 | 1200–4270 | 1350–3184 | 135 | 420–1120 | 600–732 |
Crassiphycus changii | 6.9 | 22.7 | 24.7 | - | 3.3 | 5465 | 3417 | - | 402 | 565 |
Agarophyton chilense | 13.7 | 18.9 | - | 66.1 | 1.3 | |||||
Palmaria palmata | 8–35 | 12–37 | 29–46 | 46–56 | 0.7–3 | 1600–2500 | 7000–9000 | 235 | 560–1200 | 170–610 |
Neopyropia teneraNeopyropia tenera | 28–47 | 8–21 | 12–35 | 44.3 | 0.7–1.3 | 3627 | 3500 | - | 390 | 565 |
Porphyra umbilicalis | 29–39 | 12 | 29–35 | 43 | 0.3 | 940 | 2030 | 235 | 330 | 370 |
Neopyropia yezoensis | 31–44 | 7.8 | 30–59 | 44.4 | 2.1 | 570 | 2400 | - | 440 | 650 |
Brown seaweed | ||||||||||
Alaria esculenta | 9–20 | - | 42.86 | 46–51 | 1–2 | - | - | - | - | - |
Eisenia bicyclis | 7.5 | 9.72 | 10–75 | 60.6 | 0.1 | - | - | - | - | - |
Fucus spiralis | 10.77 | - | 63.88 | - | - | - | - | - | - | - |
F. vesiculosus | 3–14 | 14–30 | 45–59 | 46.8 | 1.9 | 2450–5469 | 2500–4322 | 315 | 725–938 | 670–994 |
Himanthalia elongata | 5–15 | 27–36 | 33–37 | 44–61 | 0.5–1.1 | 4100 | 8250 | 240 | 720 | 435 |
Laminaria digitata | 8–15 | 38 | 37–37 | 48 | 1.0 | 3818 | 11.5–79 | - | 1005 | 659 |
L. ochroleuca | 7.49 | 29.47 | - | - | 0.92 | - | - | - | - | - |
Saccharina japonica | 7–8 | 27–33 | 10–41 | 51.9 | 1.0–1.9 | 2532–3260 | 4350–5951 | 150–300 | 225–910 | 550–757 |
S. latissima | 6–6.26 | 34.78 | 30 | 52–61 | 0.5–1.1 | 2620 | 4330 | 165 | 810 | 715 |
Sargassum fusiforme | 11.6 | 19.77 | 17–69 | 30.6 | 1.4 | - | - | - | 1860 | 687 |
Undaria pinnatifida | 12–23 | 26–40 | 16–51 | 45–51 | 1.05–45 | 1600–7000 | 5500–6810 | 235–450 | 680–1380 | 405–680 |
Vitamins (mg 100 g−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Species | A | B1 | B2 | B3 | B5 | B6 | B8 | C | E | Fatty Acids |
Green seaweed | ||||||||||
Caulerpa lentillifera | - | 0.05 | 0.02 | 1.09 | - | - | - | 1.00 | 2.22 | - |
C. racemosa | - | - | - | - | - | - | - | - | - | - |
Codium fragile | 0.527 | 0.223 | 0.559 | - | - | - | - | <0.223 | - | - |
Ulva compressa | - | - | - | - | - | - | - | - | - | - |
U. lactuca | 0.017 | <0.024 | 0.533 | 98 * | - | 6 * | - | <0.242 | - | - |
U. pertusa | - | - | - | - | - | - | - | 30–241 ** | - | - |
U. rigida | 9581 | 0.47 | 0.199 | <0.5 | 1.70 | <0.1 | 0.012 | 9.42 | 19.70 | 0.108 |
U. reticulta | - | - | - | - | - | - | - | - | - | - |
Red seaweed | ||||||||||
Chondrus crispus | - | - | - | - | - | - | - | 10–13 * | - | - |
Crassiphycus changii | - | - | - | - | - | - | - | 16–149 ** | - | - |
Agarophyton chilense | ||||||||||
Palmaria palmata | 1.59 | 0.073–1.56 | 0.51–1.91 | 1.89 | - | 8.99 | - | 6.34.34.5 | 2.2–13.9 | 0.267 |
Neopyropia tenera | - | - | - | - | - | - | - | - | - | - |
Porphyra umbilicalis | 3.65 | 0.144 | 0.36 | - | - | - | - | 4.214 | - | 0.363 |
Neopyropia yezoensis | 16,000 *** | 0.129 | 0.382 | 11.0 | - | - | - | - | - | - |
Brown seaweed | ||||||||||
Alaria esculenta | - | - | 0.3–1 * | 5 * | - | 0.1 * | - | 100–500 * | - | - |
Eisenia bicyclis | - | - | - | - | - | - | - | - | - | - |
Fucus spiralis | - | - | - | - | - | - | - | - | - | - |
F. vesiculosus | 0.30–7 | 0.02 | 0.035 | - | - | - | - | 14.124 | - | - |
Himanthalia elongata | 0.079 | 0.020 | 0.020 | - | - | - | - | 28.56 | - | 0.176–0.258 |
Laminaria digitata | - | 1.250 | 0.138 | 61.2 | - | 6.41 | 6.41 | 35.5 | 3.43 | - |
L. ochroleuca | 0.042 | 0.058 | 0.212 | - | - | - | - | 0.353 | - | 0.479 |
Saccharina japonica | 0.48 | 0.2 | 0.85 | 1.58 | - | 0.09 | - | - | - | - |
S. latissimi | 0.04 | 0.05 | 0.21 | - | - | - | - | 0.35 | 1.6 | - |
Sargassum fusiforme | - | - | - | - | - | - | - | - | - | - |
Undaria pinnatifida | 0.04–0.22 | 0.17–0.30 | 0.23–1.4 | 2.56 | - | 0.18 | - | 5.29 | 1.4–2.5 | 0.479 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morais, T.; Inácio, A.; Coutinho, T.; Ministro, M.; Cotas, J.; Pereira, L.; Bahcevandziev, K. Seaweed Potential in the Animal Feed: A Review. J. Mar. Sci. Eng. 2020, 8, 559. https://doi.org/10.3390/jmse8080559
Morais T, Inácio A, Coutinho T, Ministro M, Cotas J, Pereira L, Bahcevandziev K. Seaweed Potential in the Animal Feed: A Review. Journal of Marine Science and Engineering. 2020; 8(8):559. https://doi.org/10.3390/jmse8080559
Chicago/Turabian StyleMorais, Tiago, Ana Inácio, Tiago Coutinho, Mariana Ministro, João Cotas, Leonel Pereira, and Kiril Bahcevandziev. 2020. "Seaweed Potential in the Animal Feed: A Review" Journal of Marine Science and Engineering 8, no. 8: 559. https://doi.org/10.3390/jmse8080559
APA StyleMorais, T., Inácio, A., Coutinho, T., Ministro, M., Cotas, J., Pereira, L., & Bahcevandziev, K. (2020). Seaweed Potential in the Animal Feed: A Review. Journal of Marine Science and Engineering, 8(8), 559. https://doi.org/10.3390/jmse8080559