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Abstract: In order to obtain forward states of coastal currents, numerical models are a commonly
used approach. However, the accurate definition of initial conditions, boundary conditions and
other model parameters are challenging. In this paper, a novel application of a soft computing
approach, random forests (RF), was adopted to estimate surface currents for three analysis points
in Galway Bay, Ireland. Outputs from a numerical model and observations from a high frequency
radar system were used as inputs to develop soft computing models. The input variable structure of
soft computing models was examined in detail through sensitivity experiments. High correlation of
surface currents between predictions from RF models and radar data indicated that the RF algorithm
is a most promising means of generating satisfactory surface currents over a long prediction period.
Furthermore, training dataset lengths were examined to investigate influences on prediction accuracy.
The largest improvement for zonal and meridional surface velocity components over a 59-h forecasting
period was 14% and 37% of root mean square error (RMSE) values separately. Results indicate that
the combination of RF models with a numerical model can significantly improve forecasting accuracy
for surface currents, especially for the meridional surface velocity component.

Keywords: coastal surface currents; soft computing; radar; sensitivity experiments; numerical model

1. Introduction

Interaction between atmospheric forces such as wind, river inflows and tide drive the movement
of coastal water bodies. The horizontal phenomenon related to this movement is surface current. Good
understanding of coastal surface currents is of great importance for many coastal economic operations,
in particular marine renewable energy exploration/exploitation. In general, numerical models and
observation platforms are powerful and conventional tools to study patterns of coastal surface currents,
providing useful information [1]. However, model approximations and simplifications in defining
initial and boundary conditions, model grid structure and other factors lead to a reduction in model
performance and accuracy. Model prediction accuracy over the long term is hard to guarantee. Oceanic
observation tools such as satellites and radars based on electro communication technologies are useful
means to record surface flow information over a large coastal domain [2]. However, these observation
tools cannot provide forecasts.
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In order to accurately forecast states of parameters of interest by making the best use of available
observations, soft computing approaches such as artificial neural networks (ANNs), support vector
machines (SVMs) and random forests (RF) have been widely used as an alternative in a number
of fields [3–5]. Soft computing models are computationally more efficient since they construct
the relationship between input variables and output variables directly. In soft computing models,
predictions are generated from a trained soft computing model, which is based on relationships
between inputs variables and output variables. According to some case studies such as the prediction
of renewable energy sources [6], forecasting urban water demand [7] and ecological prediction [8],
RF is a powerful and efficient soft computing approach used to establish internal relationships
among datasets and ultimately provide forecasting states with high accuracy. Since the RF algorithm
is capable of dealing with large numbers of predictor variables even in the presence of complex
interaction, it has been successfully applied in genetics, clinical medicine and bioinformatics within
the past decades [9]. Currently, it has become increasingly a more popular approach in oceanographic
engineering. For example, Ibarra-Berastegi et al. [6] applied the RF algorithm to produce short-term
forecasting of the wave energy flux in comparison to using a physical model—wave model (WAM) and
analogues. Their comparative results indicate that the RF model outperforms other statistical techniques
when compared with the WAM, and a window of forecasting horizons emerges in which the use of RF
outperforms any other solutions. Lahouar and Slama [10] applied the RF algorithm to predict electrical
load demand of the day ahead, finding that RF coupled with expert selection was able to capture
complex load behavior and solve some special cases that are specific to culture, high temperature,
religious events and moving holidays owing to appropriate input variable structure. Catani et al. [11]
used a RF algorithm to estimate landslide susceptibility and found that the dimension of parameter
space, the mapping scale and the training process strongly influenced the classification accuracy and
the prediction process. They also showed that the choice of the training set was of key importance
for obtaining accurate results. Mahjoobi and Mosabbeb [12] used present time and previous time
data as input variables to predict significant wave heights using a support vector machine. Moreover,
Balas et al. [13] used historical data to predict missing wave parameters using a soft computing
approach. Soft computing models are commonly established based only on observational data. In this
research, a three-dimensional coastal hydrodynamic model i.e., environment fluid dynamics code
(EFDC) of Galway Bay has been set up by Ren et al. [14]. This is the first time that the RF algorithm
has been used to predict surface currents and the first time RF has been used in combination with
high frequency coastal radar data. The predictive model described herein was developed in order
to further improve forecasting capability of surface currents in this area and to provide continuous
and operational predictions in the future. Outputs of surface currents u(t) and u(t − 1) from the
EFDC model were chosen as main input variables to establish RF models in this research. Reasons for
including previous observations lies in that the variation of surface current patterns is continuous in
time at each physical location, development of surface currents at the present time step is related to
previous states. Galway Bay is located on the west coast of Ireland, tidal water elevation and winds are
known to be the main driving forces that generate surface currents in the bay. Tidal water elevation,
wind speeds and wind directions were examined as input variables to examine the input variable
structure of the RF model developed.

In this research, the soft computing approach RF was adopted to predict surface currents at the
1/4-scale marine energy test site Galway Bay area using surface current data measured by a high
frequency coastal ocean dynamic application radar (CODAR) system and outputs from a numerical
model. Surface current speeds at the present time step are denoted by u(t), and surface currents i
hour(s) before the present time are denoted as u(t − i).

The main objective of this research was to use model data and observations from radars to run a
soft computing model for coastal surface current prediction. The layout of this paper is as follows:
Section 2 describes the methodologies used and outlines the study domain; this section summarizes the
numerical model, the high frequency radar (HFR) system, the random forests algorithm and criteria
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assessment skills. Results are presented in Section 3, followed by a discussion in Section 4. Research
conclusions are presented in Section 5.

2. Methodologies

2.1. Study Domain

Galway Bay is located on the west coast of Ireland with an entrance opening onto the northeast
Atlantic Ocean. The bay is semi-enclosed as it is partially shielded from the harsh Atlantic conditions
by three small islands. Hydrodynamics within the bay are mainly affected by oceanic flows to the bay
from the adjacent continental shelf and wind-driven currents. Figure 1 shows the extents of the model
domain and the measurement deployment locations. The water depth of the inner bay covered by the
radar system ranged from 10–40 m. Meteorological conditions in Galway Bay are mainly influenced by
Atlantic weather systems [15]. Effects of wind forcing on surface flow patterns has been studies in
details by Ren et al. [16].
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Figure 1. Galway Bay domain; (C1 and C2 indicate radar stations; P1–P3 indicate three analysis points).

2.2. Numerical Model

EFDC is a finite difference based model which can simulate three-dimensional flows and transport
processes in surface water systems, rivers, lakes, estuaries, wetlands and coastal areas [17]. The model
structure includes four major modules: (1) A hydrodynamic module; (2) a water quality module;
(3) a sediment transport module; and (4) a toxics module. The EFDC model solves the three dimensional,
vertically hydrostatic, free surface, turbulent-averaged equations of motion for a variable density fluid
and can simulate both barotropic and baroclinic circulation. The model uses a stretched (sigma) vertical
coordinate system and a Cartesian or curvilinear orthogonal horizontal coordinate system [18–20].
The EFDC model has been successfully applied in a number of areas [21–23].

A three-dimensional computational model of Galway Bay had been developed previously.
A bathymetric model of the Galway Bay was developed using data from the Integrated Mapping
for the Sustainable Development of Ireland’s Marine Resource (INFOMAR) program. The deepest
area is approximately 70 m near the south west corner of the open boundaries. The mean water
depth in the domain is 30.7 m. Tidal elevation for boundary conditions obtained from the Oregon
Tide Prediction Software (OTPS), wind data obtained from the Europe Centre for Mid-Range Weather
Forecasts (ECMWF) and River Corrib flow data provided by the Irish Open Public Work (OPW) were
used to drive the models. Detailed EFDC modeling setup for Galway Bay such as wind forcing and
vertical layer structure is described in Ren et al. [14], O’Donncha et al. [24] and Ren et al. [25].
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2.3. Radar Data

There are two commonly used types of HFR observation systems: Beam-forming (e.g., CODAR
and ocean state measuring and analyzing radar (OSMAR) system) and direction-finding (e.g., WERA
HFR system) [26–28]. The former HFR system uses a distributed array of elements to electronically scan
ocean surface with a relatively narrow beam; while the latter HFR system uses a small-aperture antenna
to from a quite broad beam for obtaining sea echoes [29]. A land-based CODAR HFR observation
system consisting of two radars has been deployed in the Galway Bay area since 2011, as shown in
Figure 1. Each radar station is capable of monitoring radial surface currents toward or away from
the station. The raw ocean surface information is obtained from radar signals, which are scattered in
360◦, measurement information returns to the radar receiver when the radar signal scatters off a wave
that is exactly half of the transmitted signal wavelength [30–32]. The information in the radio-wave
backscatter exploited from the ocean surface is used to infer movement of the near surface layer,
including parameters of surface currents, waves and winds [33–36]. Surface flow fields in the area
covered by both radars were combined based on the radial current maps for at least two stations [37,38].
Measurements obtained from the HFR systems are available in near real time. Temporal and spatial
resolution of surface flow fields are sixty minutes and 300 m, respectively. The operating frequency is
25 MHz for both radars. The measured surface currents at the three analysis points (P1, P2 and P3)
by the HFR system were taken as target fields to train and assess the RF models. Validation of radar
surface currents have been undertaken by Ren et al. [14], O’Donncha et al. [24] and Ren et al. [25],
and reasonably good agreement between radar data and ADCP observations provided confidence in
using radar data for other applications such as establishing RF models.

2.4. Random Forests

The RF algorithm proposed by Breiman [39] is an improved version of the decision tree learning
approach, which integrates the prediction of multiple uncorrelated decision trees [40]. The RF algorithm
is based on bagging that builds a large collection of de-correlated trees, and then averages them [41,42].
The RF algorithm has been implemented in a number of fields due to its robustness and satisfactory
predictions with high accuracy.

The RF methodology does not only produce one decision tree, but produces a variety of trees
using subsets of a training dataset. The RF algorithm can be expressed in the following steps [43].

(1) Select nRF multiple bootstrap samples from the dataset;
(2) Develop an unpruned regression tree for each of the bootstrap samples by randomly sampling

mtry of the predictors and select the best split among those variables;
(3) Forecast new data by aggregating the predictions of the nRF trees; for a regression analysis,

the averaged value is taken as output.

For the classification case, a random forest obtains a class vote from every tree, and then classifies
them using a majority vote; for the regression case, predictions from every tree are averaged as final
outputs [41]. The RF approach is to build nRF multiple decision trees and merge them together to
generate a prediction with higher accuracy. In each decision tree, nRF features were selected and used.

In this research, the RF algorithm was applied to establish regression models, input variables
including historical outputs of surface currents from both the EFDC model and radar observations
were taken as the target field was viewed as a full dataset.

The nRF trees were separately developed. Each tree includes m samples, which were randomly
selected. In the selection process for all trees, the number of predictors mtry was the same.
The recommend values of mtry for the classification and regression were given as [11]:

Classification:
mtry =

√
p (1)
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Regression:

mtry =
p
3

(2)

where, p is the number of predictors.
Each tree was developed by training the selected samples. R packages named “randomForest”

from the Comprehensive Archive R Network (CRAN) was used in this research [8,43]. An estimate of
the error rate can be obtained in RF approach based on the training data: Firstly, out of bag (OOB)
data not used in the training were used for prediction using the tree grown with the bootstrap sample;
secondly, the OOB predictions were aggregated and the error rate computed which was called the
OOB estimate of error rate [43,44].

Advantages of the RF algorithm are: (a) RF is capable of dealing with high-dimensional datasets,
twice randomly sampling reduces the dimension of the datasets; (b) bootstrapping sampling process
results in around one third data are out of bag (OOB) samples, OOB samples are used to compute
the unbiased error rate and variable importance; (c) the prediction only depends on one user-selected
parameter, the number of predictors are chosen randomly at each node [8].

In this research, outputs of surface currents from EFDC model, tidal water elevation, wind speed
and wind direction were considered as input variables to establish RF models. River discharge was not
considered here because it had weak impacts on the three analysis points located far from the estuary.
Selection of input variable structure was presented in detail in Section 3.1.

2.5. Criteria Skills

In order to quantify performances of the RF models developed in a quantitative way, multiple
statistics including correlation (R), bias, root mean square error (RMSE) and scatter index (SI) were
computed using the following Equations (3)–(6) [45]. The correlation coefficient is an indicator of
the linear relationship between two datasets; bias indicates the trend of a measurement process to
systematically over- or underestimate the magnitude of a predicted parameter; RMSE is an error index
presenting an overall error distribution; SI gives the percentage of expected error for the parameter.

bias = y−x (3)

RMSE =

√∑n
i=1 (yi − xi)

n
(4)

SI =
RMSE

x
(5)

R =

∑n
i=1 (xi − x)(yi − y)√∑n

i=1 (xi − x)2
√∑n

i=1 (yi − y)2
(6)

where,

xi is an observed value;
yi is a predicted value;
n is the number of observations;
x and y is the mean of x and y, respectively.

Statistics were computed for each RF model at every analysis point respectively.

3. Results

3.1. RF Models

A full dataset consisting of 305 hourly values starting from Julian Day 220 01:00, 2013 was used
in this research. Based on division principles proposed by Aydogan et al. [46], the full dataset was
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subdivided as follows: (i) A training dataset accounting for 60% of the total; (ii) a test dataset accounting
for 20% of the total and (iii) a prediction dataset accounting for 20% of the total. Surface currents from
the EFDC model were outputted at the same time steps as the HFR observations. Tidal elevations
and wind stresses were used as boundary conditions for the numerical model simulations; in order to
further explore the relationship between surface flows and the dominant forcing factors tidal elevations,
wind speeds and wind directions were adopted as input variables in establishing the RF models as
well as surface current outputs from the numerical model. RF models for predicting surface current
components at each of the three analysis points were established separately. The functional equation
for RF models is expressed as:

URF(t) = f (UEF(t), UEF(t− 1), TWL(t), WS(t), WD(t)) (7)

where,

URF(t) is the output of surface current components from RF models at time step t (cm/s);
f (•) indicates the random forests function;
UEF(t) is the EFDC model surface current output at time step t (cm/s);
UEF(t− 1) is the EFDC model surface current output at time step (t− 1) (cm/s);
TWL(t) is the tidal water level from OTPS at time step t (m);
WS(t) is the ECMWF wind speed at time step t (m/s);
WD(t) is the ECMWF wind direction at time step t (◦).

RF models were established for predicting surface currents based on training the relationship
between two datasets. A schematic of the development process of proposed models is shown in
Figure 2. HFR data were only used as target variables during the procedure of training RF models;
HFR data were used to evaluate the RF modeling performance when the test dataset was adopted;
HFR data were not applied in the RF models during the forecasting period.
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To define an appropriate input variable structure, sensitivity experiments were performed to
determine the appropriate number of input variables. Tidal water elevation, wind speed and wind
direction were linearly interpolated to the radar data observation time step. Mean and range of these
variables of the training dataset, test dataset and forecasting dataset are presented in Tables 1–3.



J. Mar. Sci. Eng. 2019, 7, 157 7 of 17

Table 1. Mean and range of training dataset (60% of total dataset).

Point Variable Mean Minimum Maximum

P1

U(HFR)
(cm/s) 16.29 0.81 35.63

UEF (cm/s) 14.43 1.26 36.89
TWL (m) 0 −2.12 2.08
WS (m/s) 5.35 1.81 7.98
WD (degrees) 186.39 102.40 255.01

P2

U(HFR)
(cm/s) 17.19 1.20 35.80

UEF (cm/s) 15.55 0.78 32.64
TWL (m) 0.00 −2.12 2.08
WS (m/s) 5.36 1.81 7.98
WD (degrees) 185.77 97.35 255.01

P3

U(HFR)
(cm/s) 16.71 2.41 34.54

UEF (cm/s) 17.87 2.54 35.53
TWL (m) 0.00 −2.12 2.08
WS (m/s) 5.36 1.81 7.98
WD (degrees) 185.77 97.35 255.01

Note that U(HFR) indicates total surface velocity from high frequency radar; TWL indicates tidal water elevation
from the Oregon Tide Prediction Software (OTPS) prediction model; WS and WD indicates wind speed and wind
direction from the European Centre for Medium-Range Weather Forecasts (ECMWF) forecasting model respectively.

Table 2. Mean and range of testing dataset (20% of total dataset).

Point Variable Mean Minimum Maximum

P1

U(HFR)
(cm/s) 14.23 2.03 32.34

UEF (cm/s) 10.87 1.15 25.61
TWL (m) −0.03 −1.51 1.44
WS (m/s) 6.21 3.38 8.41
WD (degrees) 198.72 171.64 247.65

P2

U(HFR)
(cm/s) 14.69 2.76 27.18

UEF (cm/s) 11.88 0.98 25.66
TWL (m) −0.02 −1.51 1.44
WS (m/s) 6.13 3.38 8.41
WD (degrees) 198.15 166.09 247.65

P3

U(HFR)
(cm/s) 13.91 4.96 24.59

UEF (cm/s) 12.14 2.01 21.89
TWL (m) −0.02 −1.51 1.44
WS (m/s) 6.13 3.38 8.41
WD (degrees) 198.15 166.09 247.65

Tables 1–3 show mean, minimum and maximum values of the three datasets at each analysis point
(P1, P2, and P3). The mean values, minimum and maximum values varied in these datasets at each
analysis point. Variations among these datasets is of great significance when examining and assessing
the effectiveness of the proposed RF models. The datasets are important in determining whether or
not the proposed RF models are robust enough to generate accurate predictions.

Sensitivity experiments of the input variable structure were performed for surface velocity
components separately at each analysis point, as presented in Tables 4 and 5. Table 4 presents statistics
of each RF model on testing input variable structure for the zonal surface velocity component; statistics
for the meridional surface velocity component are presented in Table 5. The test dataset, accounting
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for 20% of the total dataset, was used to evaluate the performance of each RF model based on statistics
between RF model results and radar data.

Table 3. Mean and range of prediction dataset (20% of total dataset).

Point Variable Mean Minimum Maximum

P1

U(HFR)
(cm/s) 17.44 2.94 34.91

UEF (cm/s) 16.51 1.92 32.79
TWL (m) −0.04 −2.53 2.36
WS (m/s) 6.09 4.21 8.84

WD (degrees) 211.88 167.31 250.24

P2

U(HFR)
(cm/s) 17.65 3.20 31.83

UEF (cm/s) 17.74 1.55 30.75
TWL (m) 0.07 −2.43 2.36
WS (m/s) 6.02 4.21 8.84

WD (degrees) 210.12 167.31 250.24

P3

U(HFR)
(cm/s) 16.49 1.68 28.13

UEF (cm/s) 17.74 3.14 32.42
TWL (m) 0.07 −2.43 2.36
WS (m/s) 6.02 4.21 8.84

WD (degrees) 210.12 167.31 250.24

Table 4. Statistics of zonal surface velocity component (testing dataset).

Model Input Variables R1 R2 Bias RMSE1 (cm/s) RMSE2 (cm/s) SI

UP1RF1 UEF(t), UEF(t − 1) 0.9259 0.9429 −3.3166 5.8804 7.1152 0.7323
UP1RF2 UEF(t), UEF(t − 1),TWL(t) 0.9204 0.9429 −3.5441 6.1199 7.1152 0.7621
UP1RF3 UEF(t), UEF(t − 1),WS(t) 0.9457 0.9429 −3.0766 5.2315 7.1152 0.6515
UP1RF4 UEF(t), UEF(t − 1),WD(t) 0.9337 0.9429 −2.3496 5.1282 7.1152 0.6396
UP1RF5 UEF(t), UEF(t − 1),TWL(t),WS(t) 0.9420 0.9429 −3.4323 5.5389 7.1152 0.6897
UP1RF6 UEF(t), UEF(t − 1),TWL(t),WD(t) 0.9271 0.9429 −2.8268 5.5479 7.1152 0.6909
UP1RF7 UEF(t), UEF(t − 1),WS(t),WD(t) 0.9450 0.9429 −2.2880 4.7701 7.1152 0.5940
UP1RF8 UEF(t), UEF(t − 1),TWL(t),WS(t),WD(t) 0.9428 0.9429 −2.7379 5.0978 7.1152 0.6348

UP2RF1 UEF(t), UEF(t − 1) 0.8733 0.8446 0.9801 6.2389 7.1729 0.8376
UP2RF2 UEF(t), UEF(t − 1),TWL(t) 0.8729 0.8446 1.6002 6.1501 7.1729 0.8256
UP2RF3 UEF(t), UEF(t − 1), WS(t) 0.8862 0.8446 1.0590 5.9567 7.1729 0.7997
UP2RF4 UEF(t), UEF(t − 1),WD(t) 0.8831 0.8446 1.4787 6.0854 7.1729 0.8170
UP2RF5 UEF(t), UEF(t − 1),TWL(t),WS(t) 0.8823 0.8446 1.1141 6.0047 7.1729 0.8061
UP2RF6 UEF(t), UEF(t − 1),TWL(t),WD(t) 0.8744 0.8446 1.4671 6.2523 7.1729 0.8394
UP2RF7 UEF(t), UEF(t − 1),WS(t),WD(t) 0.8851 0.8446 1.4156 6.0472 7.1729 0.8118
UP2RF8 UEF(t), UEF(t − 1),TWL(t),WS(t),WD(t) 0.8821 0.8446 1.1639 6.1089 7.1729 0.8201

UP3RF1 UEF(t), UEF(t − 1) 0.8661 0.8764 −4.3970 6.9525 6.2198 1.0892
UP3RF2 UEF(t), UEF(t − 1),TWL(t) 0.8682 0.8764 −4.8322 7.2423 6.2198 1.1346
UP3RF3 UEF(t), UEF(t − 1),WS(t) 0.9029 0.8764 −4.2053 6.2616 6.2198 0.9810
UP3RF4 UEF(t), UEF(t − 1),WD(t) 0.8696 0.8764 −3.7031 6.4570 6.2198 1.0116
UP3RF5 UEF(t), UEF(t − 1),TWL(t),WS(t) 0.9004 0.8764 −4.6492 6.6429 6.2198 1.0407
UP3RF6 UEF(t), UEF(t − 1),TWL(t),WD(t) 0.8700 0.8764 −4.1360 6.7427 6.2198 1.0564
UP3RF7 UEF(t), UEF(t − 1),WS(t), WD(t) 0.8988 0.8764 −3.4843 5.8521 6.2198 0.9168
UP3RF8 UEF(t), UEF(t − 1),TWL(t),WS(t),WD(t) 0.8995 0.8764 −3.9344 6.1614 6.2198 0.9653

Note that R1 indicates the correlation coefficient between radar data and RF model results; R2 indicates the correlation
coefficient between radar data and numerical model outputs only; RMSE1 indicates root mean square error between
radar data and RF model results; RMSE2 indicates root mean square error between radar data and numerical model
outputs; SI indicates the scatter index between radar data and RF model results; bias is the difference between radar
data and RF model results. The same parameters are used as follows.

Table 4 shows that model UP1RF7, which used EFDC model outputs, wind speed and wind
direction as input variables, produced the minimum root mean square error (RMSE) value (RMSE1)
for the zonal surface velocity component at point P1; the same input variable structure for point P3
generated the minimum RMSE (RMSE1); while the best input variables for point P2 were EFDC model
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outputs and wind speed. This indicates that inclusion of wind speed was a highly significant parameter
and improves RF model performance for the zonal surface velocity component. However, the effect of
wind directions varied from location to location. Improvement of RMSE1 values for P1, P2 and P3
were 33%, 17% and 6% in comparison with RMSE2 respectively. Additionally, correlation (R1) between
RF model results and radar data was enhanced as well at these locations comparing with correlation
(R2) between EFDC model results and radar data. The maximum improvement in correlation was
at point P2, by 5%. Table 4 shows that using (i) EFDC model outputs at two time-steps; (ii) wind
speeds and (iii) wind directions to establish RF models can further improve estimation of zonal surface
velocity components.

Table 5. Statistics of meridional surface velocity component (testing dataset).

Model Input Variables R1 R2 Bias RMSE1 (cm/s) RMSE2 (cm/s) SI

VP1RF1 VEF(t), VEF(t − 1) 0.1722 0.3670 −0.2246 5.7549 5.5092 −23.8347
VP1RF2 VEF(t), VEF(t − 1),TWL(t) 0.3217 0.3670 0.1495 5.2536 5.5092 −21.7586
VP1RF3 VEF(t), VEF(t − 1),WS(t) 0.2996 0.3670 0.8936 5.5466 5.5092 −22.9719
VP1RF4 VEF(t), VEF(t − 1),WD(t) 0.6852 0.3670 0.7174 4.1340 5.5092 −17.1215
VP1RF5 VEF(t), VEF(t − 1),TWL(t),WS(t) 0.4922 0.3670 1.0752 4.9408 5.5092 −20.4630
VP1RF6 VEF(t), VEF(t − 1),TWL(t),WD(t) 0.7941 0.3670 0.9206 3.6745 5.5092 −12.2185
VP1RF7 VEF(t), VEF(t − 1),WS(t),WD(t) 0.5934 0.3670 1.9665 4.9099 5.5092 −20.3348
VP1RF8 VEF(t), VEF(t − 1),TWL(t),WS(t),WD(t) 0.7270 0.3670 1.8684 4.2173 5.5092 −17.4663

VP2RF1 VEF(t), VEF(t − 1) 0.1779 0.5097 −0.0881 7.4797 6.9956 17.7816
VP2RF2 VEF(t), VEF(t − 1),TWL(t) 0.1350 0.5097 1.5291 7.7613 6.9956 18.4510
VP2RF3 VEF(t), VEF(t − 1),WS(t) 0.4335 0.5097 0.9096 7.0880 6.9956 16.8503
VP2RF4 VEF(t), VEF(t − 1),WD(t) 0.7307 0.5097 0.2646 5.1449 6.9956 12.2310
VP2RF5 VEF(t), VEF(t − 1),TWL(t),WS(t) 0.4789 0.5097 1.8376 6.8769 6.9956 16.3485
VP2RF6 VEF(t), VEF(t − 1),TWL(t),WD(t) 0.8180 0.5097 1.3854 4.7285 6.9956 11.2410
VP2RF7 VEF(t), VEF(t − 1),WS(t),WD(t) 0.6424 0.5097 0.8763 5.8199 6.9956 13.8357
VP2RF8 VEF(t), VEF(t − 1),TWL(t),WS(t),WD(t) 0.7440 0.5097 1.5349 5.2029 6.9956 12.3688

VP3RF1 VEF(t), VEF(t − 1) 0.0127 0.4749 2.4416 8.9829 9.9814 6.4104
VP3RF2 VEF(t), VEF(t − 1),TWL(t) 0.0479 0.4749 1.6222 8.9451 9.9814 6.3835
VP3RF3 VEF(t), VEF(t − 1),WS(t) 0.4449 0.4749 −0.4086 7.4830 9.9814 5.3401
VP3RF4 VEF(t), VEF(t − 1),WD(t) 0.8133 0.4749 −1.3446 5.0184 9.9814 3.5812
VP3RF5 VEF(t), VEF(t − 1),TWL(t),WS(t) 0.4157 0.4749 −0.1224 7.4912 9.9814 5.3459
VP3RF6 VEF(t), VEF(t − 1),TWL(t),WD(t) 0.8670 0.4749 −0.9184 4.4955 9.9814 3.2081
VP3RF7 VEF(t), VEF(t − 1),WS(t),WD(t) 0.7648 0.4749 −0.5450 5.2767 9.9814 3.7656
VP3RF8 VEF(t), VEF(t − 1),TWL(t),WS(t),WD(t) 0.8191 0.4749 −0.4309 4.7590 9.9814 3.3962

Sensitivity experiments for the meridional surface velocity component, presented in Table 5,
showed that RF models using EFDC model outputs, tidal water elevation and wind direction yielded
the best estimations at each of the three locations. Improvements in RMSE values for the meridional
surface velocity component between RF model estimations and radar data were 33%, 32% and 55%
respectively at points P1, P2 and P3 in comparison with RMSE2. Correlations between RF model
results and radar data (R1) were also significantly improved by 116%, 60% and 83% respectively for
points P1, P2 and P3 in comparison with correlation between EFDC model results and radar data (R2).

Improvements were generally more significant in the meridional surface velocity component than
the zonal surface velocity component at all points based on statistics as presented in Tables 4 and 5.
The meridional component is difficult to predict as its signal generally is quite low and is more induced
by transient wind stresses than deterministic tidal forcing. Results show that the proposed RF models
can improve prediction accuracy for surface velocity components, and it is especially significant for
difficult to predict meridional surface velocity components.

3.2. Comparison of Predictions

RF models at the three analysis points, using the best input variable structure, were applied to
produce predictions using the forecasting dataset, and compared against “future” radar data. Time series
of surface velocity components at the three analysis points are presented in Figures 3–8 respectively.
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Figure 4. Predictions of meridional surface velocity component at point P1.



J. Mar. Sci. Eng. 2019, 7, 157 11 of 17J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 10 of 17 

 

 

Figure 3. Predictions of zonal surface velocity component at point P1. 

 

Figure 4. Predictions of meridional surface velocity component at point P1. 

Figure 5. Predictions of zonal surface velocity component at point P2.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 11 of 17 

 

 

Figure 5. Predictions of zonal surface velocity component at point P2. 

 

Figure 6. Predictions of meridional surface velocity component at point P2. 

Figure 6. Predictions of meridional surface velocity component at point P2.



J. Mar. Sci. Eng. 2019, 7, 157 12 of 17

J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 12 of 17 

 

 

Figure 7. Predictions of zonal surface velocity component at point P3. 

 

Figure 8. Predictions of meridional surface velocity component at point P3. 

Figures 3–8 show that established RF models can produce predictions which have a better 
agreement with radar data in comparison with EFDC model results at the three analysis points. 
Statistics between HFR data and RF model predictions, and EFDC results were computed and are 
presented in Table 6. 
  

Figure 7. Predictions of zonal surface velocity component at point P3.J. Mar. Sci. Eng. 2019, 7, x FOR PEER REVIEW 12 of 17 

 

 

Figure 7. Predictions of zonal surface velocity component at point P3. 

 

Figure 8. Predictions of meridional surface velocity component at point P3. 

Figures 3–8 show that established RF models can produce predictions which have a better 
agreement with radar data in comparison with EFDC model results at the three analysis points. 
Statistics between HFR data and RF model predictions, and EFDC results were computed and are 
presented in Table 6. 
  

Figure 8. Predictions of meridional surface velocity component at point P3.

Figures 3–8 show that established RF models can produce predictions which have a better
agreement with radar data in comparison with EFDC model results at the three analysis points.
Statistics between HFR data and RF model predictions, and EFDC results were computed and are
presented in Table 6.
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Table 6. Statistics of forecasting dataset (59 h).

Location Component R1 R2 Bias RMSE1 (cm/s) RMSE2 (cm/s) SI

P1 u 0.9326 0.9589 0.2477 6.3775 6.7774 1.4291
P1 v 0.8250 0.4551 −1.3209 3.7671 5.5251 1.3993

P2 u 0.9772 0.9795 2.7250 4.5843 4.2732 0.9378
P2 v 0.7650 0.4937 0.7659 4.4600 7.5313 2.0941

P3 u 0.9335 0.9710 −2.0553 5.9289 6.9026 1.1886
P3 v 0.7395 0.6713 −0.4820 5.1840 8.1931 2.1957

Table 6 shows that the RF models generally generated better prediction of surface velocity
components than EFDC models based on RMSE values over 59 h forecasting period; the improvements
are statistically highly significant for meridional surface velocity components. Improvement of the
RMSE value for the meridional surface velocity components between the RF model predictions and
radar data was greater than 32% at the three analysis points; the maximum RMSE improvement of
the meridional surface velocity component was at point P2 at 41%, while improvement of RMSE
value for the zonal surface velocity component was greater than 6% at locations P1 and P3. Although
correlation between RF model predictions and radar data was quite similar to the correlation between
EFDC results and radar data, the RMSE value between RF model predictions and radar data (RMSE1)
increased by 7% in comparison with RMSE2. It is also clearly seen from Figures 5, 6 and 8 that RF
models were much closer to HFR data than EFDC output at surface current maxima and minima; this is
highly significant in terms of accurate prediction of tidal energy and transport effects for operational
purposes at marine renewable energy sites. In general, established RF models can improve prediction
of surface current components; improvement was more significant in the meridional surface velocity
component than the zonal surface velocity component.

4. Discussion

The above analysis shows that the newly developed RF models were capable of producing
improved surface velocity components, especially for the meridional surface velocity component.
In the above RF models, the length of training dataset at the three analysis locations accounted for
60% of the total dataset i.e., 184 h. The RF models generally produced highly satisfactory predictions
of surface velocity components over the 59-h forecasting period. The authors were also interested in
assessing the effect of the length of RF training datasets on model predictions. Sensitivity analyses
on the length of training dataset were performed at the three analysis locations respectively. Seven
versions of training dataset lengths, from one day (24 h) to one week (168 h), were performed. Statistics
over a 59-h prediction period between predicted results from RF models and HFR data were computed
and are presented in Table 7.

Table 7 shows that RF models generated forecasts closer to HFR data than the EFDC model, in terms
of RMSE values, except for models with a 24-h training length. In addition, correlation coefficients
between RF model results and HFR data were comparable to those between EFDC model results and
HFR data. High correlation existed in all RF models for the zonal surface velocity component, since the
EFDC model produced satisfactory results for the zonal surface velocity component. The authors
focused on improving forecasting accuracy for the meridional surface velocity component in this
research. For the meridional surface velocity component, statistical values of the correlation coefficient
between RF forecasts and HFR data generally had an increasing trend as the length of the training
dataset increased. This indicated that larger training datasets produced better forecasts than using a
small training dataset. This was because the larger variation range of each input variable used for
training can be more comprehensively captured by RF models, and then the developed RF model is
more robust to deal with the forecasting dataset which may have a large variation range. Additionally,
all correlation coefficients R1 between RF models and radar data were greater than the correlation
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coefficient R2 between EFDC model results and radar data. This illustrated that the proposed approach
that combines a numerical model with the RF model is effective in enhancing forecasts for the
meridional surface velocity components. Moreover, RMSE values between RF model results and HFR
data generally decreased as training datasets over longer periods were used. This proved that RF
models generated forecasts closer to HFR data when a larger dataset was adopted during training
phase. Improvement of the meridional surface velocity component by the RF model in comparison
with EFDC model results was 36% based on RMSE values when the training dataset length was 168 h.
Moreover, computational cost of using the RF algorithm based on R software was less than one hour
for these models, which is much faster than a numerical model with data assimilation.

Table 7. Averaged statistics for training length tests (59-h prediction, averaged at three points).

Length (hours) Variable R1 R2 Bias RMSE1 (cm/s) RMSE2 (cm/s) SI

24
u 0.95 0.97 1.60 6.40 5.98 1.35
v 0.73 0.54 −1.36 5.20 7.08 2.20

48
u 0.95 0.97 0.86 5.63 5.98 1.18
v 0.74 0.54 −0.74 4.84 7.08 2.05

72
u 0.95 0.97 −0.80 5.50 5.98 1.16
v 0.76 0.54 −0.77 4.63 7.08 1.96

96
u 0.94 0.97 0.14 5.68 5.98 1.19
v 0.76 0.54 −0.80 4.66 7.08 1.98

120
u 0.95 0.97 0.41 5.23 5.98 1.10
v 0.76 0.54 −0.91 4.62 7.08 1.96

144
u 0.95 0.97 0.03 5.57 5.98 1.17
v 0.69 0.54 −1.74 5.23 7.08 2.20

168
u 0.94 0.97 0.58 5.83 5.98 1.23
v 0.77 0.54 −0.41 4.54 7.08 1.92

In short, application of RF method based on a numerical model and HFR data improve both
forecasts of surface velocity components. But forecasting performance of meridional surface velocity
component was more sensitive to training dataset length than the zonal surface velocity component.

5. Conclusions

Marine renewable energy sites require the most accurate data and forecasts possible for resources
assessment, project planning and operational purposes. In this research, outputs of surface current
components from a coastal hydrodynamic EFDC model, along with tidal elevations, wind speeds
and directions were taken as input variables to establish RF models for components of surface water
velocity. Input variable structures of each RF model was examined at three analysis points in the model
domain within Galway Bay. Influences of training dataset lengths on model performances were also
examined. Improvements in RF models were assessed based on several skills criteria: Correlation,
RMSE, bias and SI in comparison with HFR data.

The main conclusions from this research are:

1. The best input variable structure in establishing RF models for the zonal surface velocity
component was obtained using outputs u(t) and u(t − 1) from the EFDC model and wind speeds
as input variables at the three analysis points, wind direction was needed at some locations.
Correlation coefficients of zonal surface velocity components between RF model results and HFR
data were improved and greater than 0.89 during testing.

2. The best RF models for the meridional surface velocity component used outputs v(t) and v(t − 1)
from the EFDC model, tidal elevations and wind directions as input variables at the three analysis
points. Correlation coefficients of the meridional surface velocity component between RF model
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results and HFR data were significantly improved and greater than 0.79 for the three analysis
points during testing. This is a significant result as the meridional component of velocity at
Galway Bay is a low signal and strongly influenced by transient wind conditions.

3. The RF models produced comparable, or improved, forecasts over 59 h for both surface velocity
components. Improvement was more significant for the meridional surface velocity component
than for the zonal surface velocity component in terms of RMSE values at the three analysis
points. The maximum improvement in RMSE values between RF model results and radar data
for the zonal surface velocity component was 14% at point P3 and 37% for the meridional surface
velocity component at point P2.

4. The RF models were robust and efficient enough to generate high-accuracy predictions using
a very short-term training dataset, even less than 48 h. Correlation of both surface velocity
components between HFR data and RF model prediction over a 59-h period was greater than 0.73
at the three analysis points when only a 24-h dataset was used to train RF models. This is of great
importance for various realistic applications such as operations of a marine renewable energy site
as improvement in the meridional surface velocity component, by RF model in comparison with
EFDC model results, was 36% based on RMSE values when the training dataset length was 168 h.

5. Along with the improved forecast statistics, maximum and minimum velocities are also
significantly improved using RF models; this is clearly seen by inspecting the zonal velocities
of Figures 5, 6 and 8. At P1, Figure 5, the minimum values of HRF and RF were almost the
same, whereas the minimum value from the EFDC model output was about 50% lower that the
measured HFR data. This is a recurring feature of improved predictions using RF. Minimum
and maximum values are very significant in terms of resource assessment and site operations,
so this improved predictability is very important to developers of marine renewable energy
extraction sites.

In short, the established RF models were capable of improving prediction accuracy for coastal
surface currents. The RF model might become a robust, efficient and promising approach to provide
timely and useful surface current information especially for the meridional surface velocity component
of the Galway Bay area. This research is a test and case study to develop a soft computing model
using an RF method to improve forecasting accuracy of surface currents. Future research will focus on
combining the RF algorithm into the EFDC model to generate predictions over a large domain.
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