First Comprehensive Quantitative Multi-Parameter Assessment of the Eutrophication Status from Coastal to Marine French Waters in the English Channel, the Celtic Sea, the Bay of Biscay, and the Mediterranean Sea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Assessment Areas
2.2. Criteria/Indicators for Eutrophication Assessment
2.3. Datasets
2.4. Data Quality, Quantity, and Confidence
2.5. Methodologies, Threshold and Assessment Procedure
2.6. Data Integration and Aggregation Scoring System
3. Results
3.1. Nutrients (D5C1)
3.2. Chlorophyll-a Concentration (D5C2)
3.3. Turbidity (D5C4)
3.4. Oxygen Concentration (D5C5)
3.5. Abundance of Opportunistic Macroalgae (D5C6)
3.6. Abundance of Perennial Seaweeds and Seagrasses (D5C7)
3.7. Overall Eutrophication Assessment
3.8. Confidence on Assessment
4. Discussion
4.1. Improvement of Eutrophication Assessment
4.2. Identification of the Main Pressures
4.3. Recommendations for Future Assessments
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
SMR | Surface Area | Coastal Area | Intermediate Area | Offshore Area | All SMR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GES | no GES | NA | GES | No GES | NA | GES | No GES | NA | GES | No GES | NA | ||
SMR ECNS | surface(km2) | 917 | 1076 | 424 | 8578 | 3308 | 0 | 14,045 | 0 | 0 | 23,540 | 4384 | 424 |
% | 38 | 45 | 18 | 72 | 28 | 0 | 100 | 0 | 0 | 83 | 15 | 1 | |
SMR CS | surface (km2) | 974 | 812 | 3087 | 6705 | 0 | 0 | 27,422 | 0 | 4464 | 35,101 | 812 | 7551 |
% | 20 | 17 | 63 | 100 | 0 | 0 | 86 | 0 | 14 | 81 | 2 | 17 | |
SMR BB | surface (km2) | 4822 | 325 | 2985 | 13,420 | 955 | 0 | 136,847 | 0 | 29,010 | 155,089 | 1280 | 31,995 |
% | 59 | 4 | 37 | 93 | 7 | 0 | 83 | 0 | 17 | 82 | 1 | 17 | |
SMR WMS | surface (km2) | 0 | 0 | 4631 | 19,715 | 36 | 0 | 86,668 | 0 | 0 | 106,383 | 36 | 4631 |
% | 0 | 0 | 100 | 100 | 0 | 0 | 100 | 0 | 0 | 96 | 0 | 4 |
SMR | Surface Area | Coastal Area | Intermediate Area | Offshore Area | All SMR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GES | No GES | NA | GES | No GES | NA | GES | No GES | NA | GES | No GES | NA | ||
SMR ECNS | surface (km2) | 0 | 0 | 2417 | 9801 | 2085 | 0 | 14,045 | 0 | 0 | 23,846 | 2085 | 2417 |
% | 0 | 0 | 100 | 82 | 18 | 0 | 100 | 0 | 0 | 84 | 7 | 9 | |
SMR CS | surface (km2) | 0 | 0 | 4873 | 6705 | 0 | 0 | 27,422 | 0 | 4464 | 34,127 | 0 | 9337 |
% | 0 | 0 | 100 | 100 | 0 | 0 | 86 | 0 | 14 | 79 | 0 | 21 | |
SMR BB | surface (km2) | 0 | 0 | 8132 | 12,008 | 2367 | 0 | 136,847 | 0 | 29,010 | 148,855 | 2367 | 37,142 |
% | 0 | 0 | 100 | 84 | 16 | 0 | 83 | 0 | 17 | 79 | 1 | 20 | |
SMR WMS | surface (km2) | 0 | 0 | 4631 | 19,751 | 0 | 0 | 86,668 | 0 | 0 | 106,419 | 0 | 4631 |
% | 0 | 0 | 100 | 100 | 0 | 0 | 100 | 0 | 0 | 96 | 0 | 4 |
SMR | Surface Area | Coastal Area | Intermediate Area | Offshore Area | All SMR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GES | No GES | NA | GES | No GES | NA | GES | No GES | NA | GES | No GES | NA | ||
SMR ECNS | surface (km2) | 1886 | 267 | 264 | 9 285 | 2601 | 0 | 14,045 | 0 | 0 | 25,216 | 2868 | 264 |
% | 78 | 11 | 11 | 78 | 22 | 0 | 100 | 0 | 0 | 89 | 10 | 1 | |
SMR CS | surface (km2) | 1786 | 0 | 3087 | 6705 | 0 | 0 | 31,886 | 0 | 0 | 40,377 | 0 | 3087 |
% | 37 | 0 | 63 | 100 | 0 | 0 | 100 | 0 | 0 | 93 | 0 | 7 | |
SMR BB | surface (km2) | 4994 | 152 | 2985 | 14,207 | 168 | 0 | 165,857 | 0 | 0 | 185,058 | 320 | 2985 |
% | 61 | 2 | 37 | 99 | 1 | 0 | 100 | 0 | 0 | 98 | 0 | 2 | |
SMR WMS | surface (km2) | 3108 | 0 | 1524 | 19,725 | 32 | 0 | 86,668 | 0 | 0 | 109,501 | 32 | 1524 |
% | 67 | 0 | 33 | 100 | 0 | 0 | 100 | 0 | 0 | 99 | 0 | 1 |
SMR | Surface Area | Coastal Area | Intermediate Area | Offshore Area | All SMR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GES | no GES | NA | GES | No GES | NA | GES | No GES | NA | GES | No GES | NA | ||
SMR ECNS | surface (km2) | 2137 | 0 | 280 | 11,836 | 50 | 0 | 14,045 | 0 | 0 | 28,018 | 50 | 280 |
% | 88 | 0 | 12 | 100 | 0 | 0 | 100 | 0 | 0 | 99 | 0 | 1 | |
SMR CS | surface (km2) | 3106 | 0 | 1767 | 6705 | 0 | 0 | 31,886 | 0 | 0 | 41,697 | 0 | 1767 |
% | 64 | 0 | 36 | 100 | 0 | 0 | 100 | 0 | 0 | 96 | 0 | 4 | |
SMR BB | surface (km2) | 5147 | 0 | 2984 | 13 885 | 251 | 0 | 165,857 | 0 | 0 | 184,889 | 251 | 2984 |
% | 63 | 0 | 37 | 98 | 2 | 0 | 100 | 0 | 0 | 98 | 0 | 2 | |
SMR WMS | surface (km2) | 2259 | 0 | 2372 | 19,699 | 58 | 0 | 86,668 | 0 | 0 | 108,626 | 58 | 2372 |
% | 49 | 0 | 51 | 100 | 0 | 0 | 100 | 0 | 0 | 98 | 0 | 2 |
SMR | Surface Area | Coastal Area | Intermediate Area | Offshore Area | All SMR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GES | No GES | NA | GES | No GES | NA | GES | No GES | NA | GES | No GES | NA | ||
SMR ECNS | surface (km2) | 2137 | 0 | 280 | 11,886 | 0 | 0 | 14,045 | 0 | 0 | 28,068 | 0 | 280 |
% | 88 | 0 | 12 | 100 | 0 | 0 | 100 | 0 | 0 | 99 | 0 | 1 | |
SMR CS | surface (km2) | 1786 | 0 | 3087 | 6705 | 0 | 0 | 27,422 | 0 | 4464 | 35,913 | 0 | 7551 |
% | 37 | 0 | 63 | 100 | 0 | 0 | 86 | 0 | 14 | 83 | 0 | 17 | |
SMR BB | surface (km2) | 4619 | 0 | 3512 | 13,218 | 912 | 0 | 136,847 | 0 | 29,010 | 154,684 | 912 | 32,522 |
% | 57 | 0 | 43 | 94 | 6 | 0 | 83 | 0 | 17 | 82 | 1 | 17 | |
SMR WMS | surface (km2) | 152 | 0 | 4479 | 19,757 | 0 | 0 | 86,668 | 0 | 0 | 106,577 | 0 | 4479 |
% | 3 | 0 | 97 | 100 | 0 | 0 | 100 | 0 | 0 | 96 | 0 | 4 |
References
- Le Moal, M.; Gascuel-Odoux, C.; Ménesguen, A.; Souchon, Y.; Étrillard, C.; Levain, A.; Moatar, F.; Pannard, A.; Souchu, P.; Lefebvre, A.; et al. Eutrophication: A new wine in an old bottle? Sci. Total Environ. 2019, 651, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Claussen, U.; Zevenboom, W.; Brockmann, U.; Topcu, D.; Bot, P. Assessment of the eutrophication status of transitional, coastal and marine waters within OSPAR. Hydrobiologia 2009, 629, 49–58. [Google Scholar] [CrossRef]
- European Commission. Nitrates Directive 91/676/EEC. Off. J. Eur. Commun. 1991. Available online: https://ec.europa.eu/environment/water/water-nitrates/index_en.html (accessed on 24 July 2020).
- European Commission. Urban Wastewater Treatment Directive 91/271/EEC. Off. J. Eur. Commun. 1991. Available online: https://ec.europa.eu/environment/water/water-urbanwaste/index_en.html (accessed on 24 July 2020).
- European Commission. Directive 2000/60/EC of the European parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy or, in short, the EU Water Framework Directive. Off. J. Eur. Commun. 2000, L 327, 1–72. [Google Scholar]
- European Commission. MSFD Directive 2008/56/EC of the European Parliament and of the Council of 17 June 2008 establishing a framework for community action in the field of marine environmental policy (Marine Strategy Framework Directive) (Text with EEA relevance). Off. J. Eur. Commun. 2008. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32008L0056 (accessed on 24 July 2020).
- OSPAR Commission. Common Procedure for the Identification of the Eutrophication Status of the OSPAR Maritime Area. Agreement 2013, 1–66. Available online: https://www.ospar.org/work-areas/hasec/eutrophication/common-procedure (accessed on 24 July 2020).
- Backer, H.; Leppänen, J.-M.; Brusendorff, A.C.; Forsius, K.; Stankiewicz, M.; Mehtonen, J.; Pyhälä, M.; Laamanen, M.; Paulomäki, H.; Vlasov, N.; et al. HELCOM Baltic Sea Action Plan—A regional programme of measures for the marine environment based on the Ecosystem Approach. Mar. Pollut. Bull. 2010, 60, 642–649. [Google Scholar] [CrossRef]
- UNEP-MAP Mediterranean Action Plan. Eutrophication Monitoring Strategy for the MED POL (revision). English 2007, 14. Available online: https://www.unenvironment.org/unepmap/ (accessed on 24 July 2020).
- Borja, A.; Elliott, M.; Carstensen, J.; Heiskanen, A.-S.; Van De Bund, W.; Elliott, M. Marine management—Towards an integrated implementation of the European Marine Strategy Framework and the Water Framework Directives. Mar. Pollut. Bull. 2010, 60, 2175–2186. [Google Scholar] [CrossRef]
- Lewison, R.L.; Rudd, M.A.; Al-Hayek, W.; Baldwin, C.; Beger, M.; Lieske, S.N.; Jones, C.; Satumanatpan, S.; Junchompoo, C.; Hines, E. How the DPSIR framework can be used for structuring problems and facilitating empirical research in coastal systems. Environ. Sci. Policy 2016, 56, 110–119. [Google Scholar] [CrossRef] [Green Version]
- REPHY. REPHY dataset—French Observation and Monitoring Program for Phytoplankton and Hydrology in Coastal Waters. 1987-2016. Metropolitan Data. SEANOE 2017. [Google Scholar] [CrossRef]
- SRN. SRN dataset—Regional Observation and Monitoring Program for Phytoplankton and Hydrology in the Eastern English Channel. SEANOE 2017. [Google Scholar] [CrossRef]
- REBENT. Network Benthic Invertebrates Abundance Data in ODV Format from French REBENT Network. SEANOE 2019. [Google Scholar] [CrossRef]
- REBENT. Network Intertidal and Subtidal Macroalgae Taxa Data in ODV Format from French REBENT Network. SEANOE 2019. [Google Scholar] [CrossRef]
- Gohin, F.; Druon, J.; Lampert, L. A five channel chlorophyll concentration algorithm applied to SeaWiFS data processed by SeaDAS in coastal waters. Int. J. Remote Sens. 2002, 23, 1639–1661. [Google Scholar] [CrossRef]
- Gohin, F.; Van der Zande, D.; Tilstone, G.; Eleveld, M.A.; Lefebvre, A.; Andrieux-Loyer, F.; Blauw, A.N.; Bryère, P.; Devreker, D.; Garnesson, P.; et al. Twenty years of satellite and in situ observations of surface chlorophyll-a from the northern Bay of Biscay to the eastern English Channel. Is the water quality improving? Remote Sens. Environ. 2019, 233, 111343. [Google Scholar] [CrossRef]
- O’Reilly, J.E.; Maritorena, S.; Mitchell, B.G.; Siegel, D.A.; Carder, K.L.; Garver, S.A.; Kahru, M.; Mcclain, C. Ocean color chlorophyll algorithms for SeaWiFS encompassing chlorophyll concentrations between. J. Geophys. Res. 1998, 103, 24937–24953. [Google Scholar] [CrossRef] [Green Version]
- O’Reilly, J.E.; Werdell, P.J. Chlorophyll algorithms for ocean color sensors—OC4, OC5 & OC6. Remote Sens. Environ. 2019, 229, 32–47. [Google Scholar] [CrossRef]
- Ménesguen, A.; Dussauze, M.; Dumas, F.; Thouvenin, B.; Garnier, V.; Lecornu, F.; Répécaud, M. Ecological model of the Bay of Biscay and English Channel shelf for environmental status assessment part 1: Nutrients, phytoplankton and oxygen. Ocean Model. 2019, 133, 56–78. [Google Scholar] [CrossRef] [Green Version]
- Cossarini, G.; Mariotti, L.; Feudale, L.; Mignot, A.; Salon, S.; Taillandier, V.; Teruzzi, A.; D’Ortenzio, F. Towards operational 3D-Var assimilation of chlorophyll Biogeochemical-Argo float data into a biogeochemical model of the Mediterranean Sea. Ocean Model. 2019, 133, 112–128. [Google Scholar] [CrossRef]
- Moigne, M.L.; Gauthier, E.; Vigies, D. EMODnet—Chemistry Data Qualification Processes for French Coastal Data in Q2; 2015; Available online: https://archimer.ifremer.fr/doc/00315/42612/ (accessed on 24 July 2020).
- Kushary, D. Bootstrap Methods and Their Application. Technometrics 2000, 42, 216. [Google Scholar] [CrossRef]
- Walmsley, S.F.; Weiss, A.; Claussen, U.; Connor, D. ABPmer Draft guidance for assessments under Article 8 of the MSFD. Integration of assessments results. In Proceedings of the 17th Meeting of the Working Group on Good Environmental Status, Brussels, Belgium, 10 March 2017; DG Environment: Brussels, Belgium, 2017; p. 161. [Google Scholar]
- Borja, A.; Elliott, M.; Andersen, J.H.; Berg, T.; Carstensen, J.; Halpern, B.S.; Heiskanen, A.S.; Korpinen, S.; Lowndes, J.S.S.; Martin, G.; et al. Overview of integrative assessment of marine systems: The ecosystem approach in practice. Front. Mar. Sci. 2016, 3, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Claussen, U.; Connor, D.; de Vrees, L.; Leppänen, J.; Percelay, J.; Kapari, M.; Mihail, O.; Ejdung, G.; Rendell, J. Common Understanding of (Initial) Assessment, Determination of Good Environmental Status (GES) and Establishment of Environmental Targets (Art. 8, 9 & 10 MSFD). WG GES EU MSFD WG GES EU. Available online: https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwi3io6FgebqAhXEy4UKHZvcCRAQFjAAegQIAxAB&url=https%3A%2F%2Fcircabc.europa.eu%2Fsd%2Fd%2Fce7e2776-6ac6-4a41-846f-a04832c32da7%2F05_Info_Common_understanding_final.pdf&usg=AOvVaw1AWm3jGWgvvbPmsi2YtlGV (accessed on 20 July 2020).
- Borja, A.; Elliott, M.; Andersen, J.H.; Cardoso, A.C.; Carstensen, J.; Ferreira, J.G.; Heiskanen, A.-S.; Marques, J.C.; Neto, J.M.; Teixeira, H.; et al. Good Environmental Status of marine ecosystems: What is it and how do we know when we have attained it? Mar. Pollut. Bull. 2013, 76, 16–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira, J.G.; Andersen, J.H.; Borja, A.; Bricker, S.B.; Camp, J.; da Silva, M.C.; Garcés, E.; Heiskanen, A.-S.; Humborg, C.; Ignatiades, L.; et al. Overview of eutrophication indicators to assess environmental status within the European Marine Strategy Framework Directive. Estuar. Coast. Shelf Sci. 2011, 93, 117–131. [Google Scholar] [CrossRef] [Green Version]
- Brockmann, U.; Topcu, D.H. Confidence rating for eutrophication assessments. Mar. Pollut. Bull. 2014, 82, 127–136. [Google Scholar] [CrossRef]
- Tew-Kai, E.; Quilfen, V.; Cachera, M.; Noûs, C.B.M. Dynamic coastal-shelf seascapes to support Marine Policies using Operational Coastal Oceanography: The French example. J. Mar. Sci. Eng. 2020, in press. [Google Scholar]
- Blauw, A.; Eleveld, M.; Prins, T.; Zijl, F.; Groenenboom, J.; Winter, G.; Kramer, L.; Troost, T.; Bartosova, A.; Johansson, J.; et al. Activity 1—Coherence in Assessment Framework of Chlorophyll A and Nutrients; European Sommision—DG Environment: Brussels, Belgium, 2019; p. 86. [Google Scholar]
- Enserink, L.; Blauw, A.; Van der Zande, D. Summary Report EU Project Joint Monitoring Programme of the Eutrophication of the North Sea with Satellite Data (JMP EUNOSAT) (Ref: DG ENV/MSFD Second Cycle/2016); JMP EUNOSAT Program, 2019; 21p, Available online: https://www.google.com.hk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwiu3uuPzfTqAhWPMd4KHe_sD14QFjAAegQIBRAB&url=https%3A%2F%2Fwww.informatiehuismarien.nl%2Fpublish%2Fpages%2F163016%2Fsummary_report.pdf&usg=AOvVaw35IyoTZgddtk-OX_s4lvla (accessed on 24 July 2020).
- Paerl, H.W.; Otten, T.G.; Kudela, R. Mitigating the Expansion of Harmful Algal Blooms across the Freshwater-to-Marine Continuum. Environ. Sci. Technol. 2018, 52, 5519–5529. [Google Scholar] [CrossRef]
- Lefebvre, A.; Guiselin, N.; Barbet, F.; Artigas, F.L. Long-term hydrological and phytoplankton monitoring (1992–2007) of three potentially eutrophic systems in the eastern English Channel and the Southern Bight of the North Sea. ICES J. Mar. Sci. 2011, 68, 2029–2043. [Google Scholar] [CrossRef] [Green Version]
- Prins, T.C.; Desmit, X.; Baretta-Bekker, J.G. Phytoplankton composition in Dutch coastal waters responds to changes in riverine nutrient loads. J. Sea Res. 2012, 73, 49–62. [Google Scholar] [CrossRef]
- Ménesguen, A.; Desmit, X.; Dulière, V.; Lacroix, G.; Thouvenin, B.; Thieu, V.; Dussauze, M. How to avoid eutrophication in coastal seas? A new approach to derive river-specific combined nitrate and phosphate maximum concentrations. Sci. Total Environ. 2018, 628, 400–414. [Google Scholar] [CrossRef] [Green Version]
- Desmit, X.; Thieu, V.; Billen, G.; Campuzano, F.; Dulière, V.; Garnier, J.; Lassaletta, L.; Ménesguen, A.; Neves, R.; Pinto, L.; et al. Reducing marine eutrophication may require a paradigmatic change. Sci. Total Environ. 2018, 635, 1444–1466. [Google Scholar] [CrossRef] [PubMed]
- Lefebvre, A.; Poisson-Caillault, E. High resolution overview of phytoplankton spectral groups and hydrological conditions in the eastern English Channel using unsupervised clustering. Mar. Ecol. Prog. Ser. 2019, 608, 73–92. [Google Scholar] [CrossRef]
- Rombouts, I.; Simon, N.; Aubert, A.; Cariou, T.; Feunteun, E.; Guérin, L.; Hoebeke, M.; McQuatters-Gollop, A.; Rigaut-Jalabert, F.; Artigas, L. Changes in marine phytoplankton diversity: Assessment under the Marine Strategy Framework Directive. Ecol. Indic. 2019, 102, 265–277. [Google Scholar] [CrossRef] [Green Version]
- McQuatters-Gollop, A.; Mitchell, I.; Vina-Herbon, C.; Bedford, J.; Addison, P.F.E.; Lynam, C.P.; Geetha, P.N.; Vermeulan, E.A.; Smit, K.; Bayley, D.; et al. From Science to Evidence—How Biodiversity Indicators Can Be Used for Effective Marine Conservation Policy and Management. Front. Mar. Sci. 2019, 6, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Foden, J.; Devlin, M.J.; Mills, D.K.; Malcolm, S.J. Searching for undesirable disturbance: An application of the OSPAR eutrophication assessment method to marine waters of England and Wales. Biogeochemistry 2011, 106, 157–175. [Google Scholar] [CrossRef]
- Lefebvre, A.; Dezécache, C. Trajectories of Changes in Phytoplankton Biomass, Phaeocystis globosa and Diatom (incl. Pseudo-nitzschia sp.) Abundances Related to Nutrient Pressures in the Eastern English Channel, Southern North Sea. J. Mar. Sci. Eng. 2020, 8, 401. [Google Scholar] [CrossRef]
- Sigovini, M.; Keppel, E.; Tagliapietra, D. M-AMBI revisited: Looking inside a widely-used benthic index. Hydrobiologia 2013, 717, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, H.; Berg, T.; Uusitalo, L.; Fürhaupter, K.; Heiskanen, A.S.; Mazik, K.; Lynam, C.P.; Neville, S.; Rodriguez, J.G.; Papadopoulou, N.; et al. A catalogue of marine biodiversity indicators. Front. Mar. Sci. 2016, 3. [Google Scholar] [CrossRef] [Green Version]
- Benthoval Project. Available online: https://anr.fr/Project-ANR-13-BSV7-0006 (accessed on 24 July 2020).
- Langhans, S.D.; Reichert, P.; Schuwirth, N. The method matters: A guide for indicator aggregation in ecological assessments. Ecol. Indic. 2014, 45, 494–507. [Google Scholar] [CrossRef] [Green Version]
- Borja, A.; Prins, T.C.; Simboura, N.; Andersen, J.H.; Berg, T.; Marques, J.C.; Neto, J.M.; Papadopoulou, N.; Reker, J.; Teixeira, H.; et al. Tales from a thousand and one ways to integrate marine ecosystem components when assessing the environmental status. Front. Mar. Sci. 2014, 1, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Borja, Á.; Rodríguez, J.G. Problems associated with the ‘one-out, all-out’ principle, when using multiple ecosystem components in assessing the ecological status of marine waters. Mar. Pollut. Bull. 2010, 60, 1143–1146. [Google Scholar] [CrossRef] [PubMed]
- Perrot, T.; Rossi, N.; Ménesguen, A.; Dumas, F. Modelling green macroalgal blooms on the coasts of Brittany, France to enhance water quality management. J. Mar. Syst. 2014, 132, 38–53. [Google Scholar] [CrossRef] [Green Version]
- Paumier, A.; Tatlian, T.; Réveillac, E.; Le Luherne, E.; Ballu, S.; Lepage, M.; Le Pape, O. Impacts of green tides on estuarine fish assemblages. Estuar. Coast. Shelf Sci. 2018, 213, 176–184. [Google Scholar] [CrossRef] [Green Version]
- OSPAR Commission. Riverine Inputs and Direct Discharges to Convention Waters Case study on normalisation and trend analyses for OSPAR RID data Monitoring and Assessment Series. OSPAR Comm. 2017, 37. Available online: https://www.ospar.org/work-areas/hasec/chemicals/rid (accessed on 24 July 2020).
- Grizzetti, B.; Pistocchi, A.; Liquete, C.; Udias, A.; Bouraoui, F.; Van De Bund, W. Human pressures and ecological status of European rivers. Sci. Rep. 2017, 7, 205. [Google Scholar] [CrossRef] [Green Version]
- Dulière, V.; Gypens, N.; Lancelot, C.; Luyten, P.; Lacroix, G. Origin of nitrogen in the English Channel and Southern Bight of the North Sea ecosystems. Hydrobiologia 2019, 845, 13–33. [Google Scholar] [CrossRef]
- Bartnicki Jerzy, B.A. Atmospheric Deposition of Nitrogen to the OSPAR Maritime Area in the period 1995–2014 Eutrophication. OSPAR Comm. 2017, EMEP/MSC-W, 107. [Google Scholar]
- OSPAR Commission. OSPAR Science Agenda 2018 Update. OSPAR Comm. 2018, 20. Available online: https://www.ospar.org/work-areas/cross-cutting-issues/science-needs-agenda (accessed on 24 July 2020).
- Andersen, J.H.; Carstensen, J.; Conley, D.J.; Dromph, K.; Fleming-Lehtinen, V.; Gustafsson, B.G.; Josefson, A.B.; Norkko, A.; Villnäs, A.; Murray, C. Long-term temporal and spatial trends in eutrophication status of the Baltic Sea. Biol. Rev. 2017, 92, 135–149. [Google Scholar] [CrossRef] [Green Version]
- Dickey, T.D. Emerging ocean observations for interdisciplinary data assimilation systems. J. Mar. Syst. 2003, 40–41, 5–48. [Google Scholar] [CrossRef]
- Muelbert, J.H.; Nidzieko, N.J.; Acosta, A.T.R.; Beaulieu, S.E.; Bernardino, A.F.; Boikova, E.; Bornman, T.G.; Cataletto, B.; Deneudt, K.; Eliason, E.; et al. ILTER—The International Long-Term Ecological Research Network as a Platform for Global Coastal and Ocean Observation. Front. Mar. Sci. 2019, 6, 1–14. [Google Scholar] [CrossRef]
Data Quantity | ||||||
---|---|---|---|---|---|---|
Marine Regions | RMU | Area (km2) | Nutrients | Chl-a | Turbidity | Oxygen |
ECNS | CMW | 2417 | 382 | 934 | 886 | 304 |
Inter. | 11,886 | 453,306 | 16,934,060 | 16,924,128 | 459,330 | |
Offshore | 14,045 | 534,576 | 20,045,685 | 20,033,928 | 541,680 | |
CS | CMW | 4,873 | 225 | 428 | 473 | 85 |
Inter. | 6705 | 250,432 | 9,321,235 | 9,315,768 | 253,760 | |
Offshore | 31,886 | 1,031,828 | 44,272,030 | 44,246,064 | 1,045,540 | |
BB | CMW | 8132 | 469 | 948 | 953 | 332 |
Inter. | 14,135 | 506,282 | 19,031,210 | 19,020,048 | 513,010 | |
Offshore | 165,857 | 4,899,678 | 220,713,955 | 220,584,504 | 4,964,790 | |
WMS | CMW | 4 631 | NA | 741 | 655 | 3 |
Inter. | 19,757 | 33,300 | 36,810,735 | 24,743,784 | 33,300 | |
Offshore | 86,668 | 150,780 | 165,758,580 | 111,421,152 | 150,780 |
Criteria | D5C1 Nutrients in the Water Column | D5C2 Chlorophyll-a in the Water Column | D5C5 Dissolved Oxygen in the Bottom of the Water Column | |
---|---|---|---|---|
Indicators | [DIN] | [DIP] | [Chlorophyll-a] | [Oxygen] |
Metrics | CA: DIN33 IA and OA: Median [NO3−] | CA: na IA et OA: Median [PO43−] | Percentile 90 of [Chlorophyll-a] | Percentile 10 of [Oxygen] |
Elements Used (Parameters) | CA: surf. NO3−, NO2−, NH4+ IA and OA: surface NO3− | CA: na IA et OA: surface PO43− | Surface chlorophyll-a | WMS (IA and OA): Surface oxygen Others: Bottom oxygen |
Metric Units | µmol.l−1 | µmol∙L−1 | µg∙L−1 | mg∙L−1 |
RMU | All (excepted WMS CW) | IA an OA | All | All |
Marine Regions | All | All | All | All |
Assessment Years | CA: 2010–2015 IA and OA: 2012–2016 (Atl.), 2010–2014 (WMS) | CA: 2010–2015 IA and OA: 2010–2016 | CA: 2010–2015 IA and OA: 2012–2016 (Atl.), 2010–2014 (WMS) | |
Data Aquisition Frequency | CA: twice a month IA and OA: daily (Atl.), monthly mean (WMS) | CA: twice a month IA and OA: daily | CA: twice a month IA and OA: daily (Atl.), monthly mean (WMS) | |
Assessment Periods | Atl.: November to February Med: every months | Atl.: March to October WMS: every months | June to September | |
Data Sources | CA: REPHY IA and OA: ECO-MARS3D model (Atl.), 3DVAR-OGSTM-BFM model (WMS) | CA: REPHY IA and OA: remote sensing (MODIS-OC5Me) | CA: REPHY IA and OA: ECO-MARS3D model (Atl.), 3DVAR-OGSTM-BFM model (WMS) | |
Assessment Thresholds | Atl.: CA: 29 µmol/L IA: 24.65 µmol/L OA: 20.03 µmol/L WMS: IA: 20.3 µmol/L OA: 8.7 µmol/L | Atl.: IA and OA: 0.8 µmol/l WMS: IA: 0.56 µmol/L OA: 0.24 µmol/l | Atl.: CA NEA 1/26a: 10 µg∙L-1 CA NEA 1/26b: 15 µg∙L-1 IA NEA 1/26a: 5 µg∙L-1 IA NEA 1/26b: 7.5 µg∙L−1 OA NEA 1/26a: 4 µg∙L−1 OA NEA 1/26b: 6 µg∙L−1 WMS: CA Ecotype 1: 10 µg∙L−1 CA Ecotype 2A: 3.6 µg∙L−1 CA Ecotype 3W: 1.8 µg∙L−1 CA Ecotype W: 1.22 µg∙L−1 IA: 2 µg∙L−1 OA: 1.44 µg∙L−1 | 3 mg∙L−1 |
Criteria | D5C4 Photic Limit (Transparency) of the Water Column | D5C6 Opportunistic Macroalgae of Benthic Habitats | D5C7 Macrophyte Communities (Perennial Seaweeds and Seagrasses) of Benthic Habitats | ||||
---|---|---|---|---|---|---|---|
Indicators | Turbidity | CW-OGA (WFD indicator) | CCO (WFD indicator) | QiSubMac (WFD indicator) | SBQ (WFD indicator) | CARLIT (WFD indicator) | NDSM PREI (WFD indicator) |
Metrics | Percentile 90 of turbidity | EQR | EQR | EQR | EQR | EQR | EQR |
Elements used (parameters) | Surface turbidity | Opportunistic species of genus Ulva, Falkengergia, Cladophora, Enteromorpha, Solieria et Pylaiella | Perennial macroalgae communities of intertidal rocky shore | Perennial macroalgae communities of subtial rocky shore | Zostera marina and Zostera noltei eelgrass | Perennial macroalgae communities of medio- and upper infralittoral shores | Posidonia oceanica eelgrass |
Metric units | NTU | no unit | no unit | no unit | no unit | no unit | no unit |
RMU | All | CA | CA | CA | CA | CA | CA |
Marine regions | All | ECNS, CS and BB | ECNS, CS and BB | ECNS, CS and BB | ECNS, CS and BB | WMS | WMS |
Assessment years | CA: 2010–2015 IA and OA: 2010–2016 | 2010–2015 | 2010–2015 | 2010–2015 | 2010–2015 | 2010–2015 | 2010–2015 |
Data aquisition frequency | CA: twice a month IA and OA: daily | Monthly | Once every 3 years | once a year (once avery 6 years for surface survey) | Once every 6 years | Once every 3 years | |
Assessment periods | March to October | May, July and September | Between March and July | Between August and September | Between April and June | During spring | |
Data sources | CA: REPHY IA and OA: remote sensing (MODIS-OC5Me) | Aerial overflights data of the CEVA geo-database | «REBENT-DCE» data | ||||
Assessment thresholds | Atl.: CA Ecotype 1: 10 NTU CA Ecotype 3: 45 NTU IA: 7 NTU OA: 3 NTU WMS: CA Ecotype 1: 10 NTU CA Ecotype 3: 45 NTU IA: 5 NTU OA: 2 NTU | 0.6 | 0.6 | 0.65 | 0.6 | 0.6 | 0.55 |
D5C1 | D5C2 | D5C5 | D5C4 | D5C7 | D5C6 | Scores | State | |
---|---|---|---|---|---|---|---|---|
+ | + | + | + | + | − | 8 | Non GES | Coastal area |
1 criterion “+” | − | 7 | Non GES | |||||
− | − | − | 6 | Non GES | ||||
2 criteria “+” | + | + | − | 6 | Non GES | |||
1 criterion “+” | − | 5 | Non GES | |||||
− | − | − | 4 | GES | ||||
1 criterion “+” | + | + | − | 4 | GES | |||
1 criterion “+” | − | 3 | GES | |||||
− | − | − | 2 | GES | ||||
− | − | − | + | + | − | 2 | GES | |
1 criterion “+” | − | 1 | GES | |||||
− | − | − | 0 | GES | ||||
−/+ | −/+ | −/+ | −/+ | −/+ | + | nr | Non GES | |
+ | + | + | + | nr | nr | 7 | Non GES | Intermediate and offshore areas |
− | nr | nr | 6 | Non GES | ||||
2 criteria “+” | + | nr | nr | 5 | Non GES | |||
− | nr | nr | 4 | Non GES | ||||
1 criterion “+” | + | nr | nr | 3 | Non GES | |||
− | nr | nr | 2 | GES | ||||
− | − | − | + | nr | nr | 1 | GES | |
− | nr | nr | 0 | GES |
SMR | Surface Area | Coastal Area | Intermediate Area | Offshore Area | All SMR | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
GES | No GES | NA | GES | no GES | NA | GES | No GES | NA | GES | no GES | NA | ||
SMR ECNS | surface (km2) | 2117 | 117 | 183 | 10,703 | 1183 | 0 | 14,045 | 0 | 0 | 26,865 | 1300 | 183 |
% | 88 | 5 | 8 | 90 | 10 | 0 | 100 | 0 | 0 | 95 | 5 | 1 | |
SMR CS | surface (km2) | 3518 | 982 | 373 | 6705 | 0 | 0 | 31,886 | 0 | 0 | 42,109 | 982 | 373 |
% | 72 | 20 | 8 | 100 | 0 | 0 | 100 | 0 | 0 | 97 | 2 | 1 | |
SMR BB | surface (km2) | 6078 | 261 | 1793 | 13,866 | 509 | 0 | 165,857 | 0 | 0 | 185,801 | 770 | 1793 |
% | 75 | 3 | 22 | 96 | 4 | 0 | 100 | 0 | 0 | 99 | 0 | 1 | |
SMR WMS | surface (km2) | 3766 | 0 | 865 | 19,806 | 13 | 0 | 86 662 | 0 | 0 | 110,234 | 13 | 865 |
% | 81 | 0 | 19 | 100 | 0 | 0 | 100 | 0 | 0 | 99 | 0 | 1 | |
All SMR | surface (km2) | 15,479 | 1360 | 3214 | 51,080 | 1705 | 0 | 298,450 | 0 | 0 | 365,009 | 3065 | 3214 |
% | 77 | 7 | 16 | 97 | 3 | 0 | 100 | 0 | 0 | 98 | 1 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lefebvre, A.; Devreker, D. First Comprehensive Quantitative Multi-Parameter Assessment of the Eutrophication Status from Coastal to Marine French Waters in the English Channel, the Celtic Sea, the Bay of Biscay, and the Mediterranean Sea. J. Mar. Sci. Eng. 2020, 8, 561. https://doi.org/10.3390/jmse8080561
Lefebvre A, Devreker D. First Comprehensive Quantitative Multi-Parameter Assessment of the Eutrophication Status from Coastal to Marine French Waters in the English Channel, the Celtic Sea, the Bay of Biscay, and the Mediterranean Sea. Journal of Marine Science and Engineering. 2020; 8(8):561. https://doi.org/10.3390/jmse8080561
Chicago/Turabian StyleLefebvre, Alain, and David Devreker. 2020. "First Comprehensive Quantitative Multi-Parameter Assessment of the Eutrophication Status from Coastal to Marine French Waters in the English Channel, the Celtic Sea, the Bay of Biscay, and the Mediterranean Sea" Journal of Marine Science and Engineering 8, no. 8: 561. https://doi.org/10.3390/jmse8080561
APA StyleLefebvre, A., & Devreker, D. (2020). First Comprehensive Quantitative Multi-Parameter Assessment of the Eutrophication Status from Coastal to Marine French Waters in the English Channel, the Celtic Sea, the Bay of Biscay, and the Mediterranean Sea. Journal of Marine Science and Engineering, 8(8), 561. https://doi.org/10.3390/jmse8080561