Acoustic Characteristics of Small Research Vessels
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Vessel Recordings
2.3. Data Analysis
3. Results
3.1. Measurements
3.2. Received Levels with Range
3.3. One-Third Octave Band Levels
3.4. Received Levels with Speed
4. Discussion
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Winn, H.E. The biological significance of fish sounds. Mar. Bioacoust. 1964, 2, 213–231. [Google Scholar]
- Au, W.W.L.; Hastings, M.C. Principles of Marine Bioacoustics, 2nd ed.; Springer: New York, NY, USA, 2008. [Google Scholar] [CrossRef]
- Radford, C.A.; Stanley, J.A.; Hole, W.; Montgomery, J.C.; Jeffs, A. Localised coastal habitats have distinct underwater sound signatures. Mar. Ecol. Prog. Ser. 2010, 401, 21–29. [Google Scholar] [CrossRef]
- Erbe, C.; Reichmuth, C.; Cunningham, K.; Lucke, K.; Dooling, R. Communication masking in marine mammals: A review and research strategy. Mar. Pollut. Bull. 2016, 103, 15–38. [Google Scholar] [CrossRef] [PubMed]
- Simpson, S.; Meekan, M.G.; Montgomery, J.; McCauley, R.D.; Jeffs, A. Homeward Sound. Science 2005, 308, 221. [Google Scholar] [CrossRef]
- Simpson, S.; Radford, A.; Nedelec, S.; Ferrari, M.C.O.; Chivers, D.P.; McCormick, M.I.; Meekan, M.G. Anthropogenic noise increases fish mortality by predation. Nat. Commun. 2016, 7, 10544. [Google Scholar] [CrossRef]
- Parsons, M.J.G.; McCauley, R.D.; Mackie, M.C.; Siwabessy, P.J.; Duncan, A.J. In situ source levels of mulloway (Argyrosomus japonicus) calls. J. Acoust. Soc. Am. 2012, 132, 3559–3568. [Google Scholar] [CrossRef]
- Stanley, J.A.; Van Parijs, S.M.; Hatch, L.T. Underwater sound from vessel traffic reduces the effective communication range in Atlantic cod and haddock. Sci. Rep. 2017, 7, 14633. [Google Scholar] [CrossRef]
- Van der Graaf, A.J.; Ainslie, M.A.; Andre, M.; Brensing, K.; Dalen, J.; Dekeling, R.P.A.; Robinson, S.M.; Tasker, M.I.; Thomsen, F.; Werner, S. European Marine Strategy Framework Directive-Good Environmental Status (MSFD GES): Report of the Technical Subgroup on Underwater Noise and Other Forms of Energy (JRC Scientific and Technical Report); TSG Noise & Milieu Ltd.: Brussels, Belgium, 2012; 75p. [Google Scholar]
- Weilgart, L.S. The impacts of anthropogenic ocean noise on cetaceans and implications for management. Can. J. Zool. 2007, 85, 1091–1116. [Google Scholar] [CrossRef]
- Graham, A.L.; Cooke, S.J. The effects of noise disturbance from various recreational boating activities common to inland waters on the cardiac physiology of a freshwater fish, the largemouth bass (Micropterus salmoides). Aquat. Cons. Mar. Fresh. Ecosyst. 2008, 18, 1315–1324. [Google Scholar] [CrossRef]
- Williams, R.; Erbe, C.; Ashe, E.; Beerman, A.; Smith, J. Severity of killer whale behavioral responses to ship noise: A dose response study. Mar. Poll. Bull. 2014, 79, 254–260. [Google Scholar] [CrossRef]
- Simpson, S.D.; Radford, A.N.; Holles, S.; Ferarri, M.C.O.; Chivers, D.P.; McCormick, M.I.; Meekan, M.G. Small-Boat Noise Impacts Natural Settlement Behavior of Coral Reef Fish Larvae. In The Effects of Noise on Aquatic Life II. Advances in Experimental Medicine and Biology; Popper, A., Hawkins, A., Eds.; Springer: New York, NY, USA, 2016; Volume 875. [Google Scholar] [CrossRef]
- Nedelec, S.L.; Mills, S.C.; Radford, A.N.; Belade, R.; Simpson, S.D.; Nedelec, B.; Côté, I.M. Motorboat noise disrupts co-operative interspecific interactions. Sci. Rep. 2017, 7, 6987. [Google Scholar] [CrossRef] [PubMed]
- Erbe, C.; Marley, S.; Schoeman, R.; Smith, J.N.; Trigg, L.; Embling, C.B. The effects of ship noise on marine mammals—A review. Front. Mar. Sci. 2019, 6, 606. [Google Scholar] [CrossRef]
- Ross, D. Ship sources of ambient noise. IEEE J. Ocean. Eng. 2005, 30, 257–261. [Google Scholar] [CrossRef]
- McDonald, M.A. Increase in deep ocean ambient noise in the Northeast Pacific west of San Nocolas Island. J. Acoust. Soc. Am. 2006, 120, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, J.A. Anthropogenic and natural sources of ambient noise in the ocean. Mar. Ecol. Prog. Ser. 2009, 395, 5–20. [Google Scholar] [CrossRef]
- Frisk, G. Noiseonomics: The relationship between ambient noise levels in the sea and global economic trends. Sci. Rep. 2012, 2, 437. [Google Scholar] [CrossRef]
- Williams, R.; Wright, A.J.; Ashe, E.; Blight, L.K.; Bruintjes, R.; Canessa, R.; Clark, C.W.; Cullis-Suzuki, S.; Dakin, D.T.; Erbe, C.; et al. Impacts of anthropogenic noise on marine life: Publication patterns, new discoveries, and future directions in research and management. Ocean Coast. Man. 2015, 115, 17–24. [Google Scholar] [CrossRef]
- McWhinnie, L.; Smallshaw, L.; Serra-Sogas, N.; O’Hara, P.D.; Canessa, R. The grand challenges in researching marine noise pollution from vessels: A horizon scan for 2017. Front. Mar. Sci. 2017, 4, 31. [Google Scholar] [CrossRef]
- Duarte, C.M.; Chapuis, L.; Collin, S.P.; Costa, D.P.; Devassy, R.P.; Eguiluz, V.M.; Erbe, C.; Halpern, B.S.; Harding, H.R.; Havlik, M.N.; et al. The Ocean Soundscape of the Anthropocene. Science 2020. accepted. [Google Scholar]
- Blane, J.; Jaakson, R. The impact of ecotourism boats on the St. Lawrence beluga whales. Environ. Cons. 1994, 21, 267–269. [Google Scholar] [CrossRef]
- Erbe, C. Underwater noise of whale-watching boats and potential effects on killer whales (Orcinus orca), based on an acoustic impact model. Mar. Mamm. Sci. 2002, 18, 394–418. [Google Scholar] [CrossRef]
- Erbe, C.; Williams, R.; Sandilands, D.; Ashe, E. Identifying modeled ship noise hotspots for marine mammals of Canadas’ Pacific Region. PLoS ONE 2014, 9, e89820. [Google Scholar] [CrossRef] [PubMed]
- Merchant, N.D.; Pirotta, E.; Barton, T.R.; Thompson, P.M. Monitoring ship noise to assess the impact of coastal developments on marine mammals. Mar. Poll. Bull. 2014, 78, 85–95. [Google Scholar] [CrossRef] [PubMed]
- New, L.F.; Hall, A.J.; Harcourt, R.; Kaufman, G.; Parsons, E.C.M.; Pearson, H.C.; Cosentino, A.M.; Schick, R.S. The modelling and assessment of whale-watching impacts. Ocean Coast. Manag. 2015, 115, 10–16. [Google Scholar] [CrossRef]
- Cominelli, S.; Devillers, R.; Yurk, H.; MacGillivray, A.O.; McWhinnie, L.; Canessa, R. Noise exposure from commercial shipping for the southern resident killer whale population. Mar. Poll. Bull. 2018, 136, 177–200. [Google Scholar] [CrossRef] [PubMed]
- Hatch, L.; Clark, C.W.; Merrick, R.; Van Parijs, S.M.; Ponirakis, D.; Schwehr, K.; Thompson, M.; Wiley, D. Characterizing the relative contributions of large vessels to total ocean noise fields: A case study using the Gerry E. Studds Stellwagen Bank National Marine Sanctuary. Environ. Man. 2008, 42, 735–752. [Google Scholar]
- Erbe, C.; MacGillivray, A.O.; Williams, R. Mapping cumulative noise from shipping to inform marine spatial planning. J. Acoust. Soc. Am. 2012, 132, EL423–EL428. [Google Scholar] [CrossRef]
- Ross, D. Mechanics of Underwater Noise; Pergamon Press: New York, NY, USA, 1976. [Google Scholar]
- Chion, C.; Lagrois, D.; Dupras, J. A meta-analysis to understand the variability in reported source levels of noise radiated by ships from opportunistic studies. Front. Mar. Sci. 2019, 6, 714. [Google Scholar]
- Au, W.W.L.; Green, M. Acoustics interaction of humpback whales and whale-watching boats. Mar. Environ. Res. 2000, 49, 469–481. [Google Scholar] [CrossRef]
- Buckstaff, K.C. Effects of watercraft noise on the acoustic behaviour of bottlenose dolphins Tursiops truncates in Sarasota Bay. Fla. Mar. Mam. Sci. 2004, 20, 709–725. [Google Scholar] [CrossRef]
- Brooker, A.; Humphrey, V. Measurement of radiated underwater noise from a small research vessel in shallow water. Ocean Eng. 2015, 120, 182–189. [Google Scholar] [CrossRef]
- Wladichuk, J.L.; Hannay, D.E.; MacGillivray, A.O.; Li, Z.; Thornton, S.J. Systematic source level measurements of whale watching vessels and other small boats. J. Ocean. Technol. 2019, 14, 110–126. [Google Scholar]
- Erbe, C.; Liong, S.; Koessler, M.W.; Duncan, A.J.; Gourlay, T. Underwater sound of rigid-hulled inflatable boats. J. Acoust. Soc. Am. 2016, 139, EL223–EL227. [Google Scholar] [CrossRef] [PubMed]
- McCloskey, K.P.; Chapman, K.E.; Chapuis, L.; McCormick, M.I.; Radford, A.N.; Simpson, S.D. Assessing and mitigating impacts of motorboat noise on nesting damselfish. Environ. Poll. 2020, 266, 115376. [Google Scholar] [CrossRef]
- Marley, S.A.; Erbe, C.; Salgado-Kent, C.P.; Parsons, M.J.G.; Parnum, I.M. Spatial and Temporal Variation in the Acoustic Habitat of Bottlenose Dolphins (Tursiops aduncus) within a Highly Urbanized Estuary. Front. Mar. Sci. 2017, 4, 197. [Google Scholar] [CrossRef]
- Parsons, M.J.G.; McCauley, R.D.; Mackie, M.C. Characterisation of mulloway (Argyrosomus japonicus) advertisement sounds. Acoust. Aust. 2013, 196, 196–201. [Google Scholar]
- Nedelec, S.L.; Radford, A.N.; Pearl, L.; Nedelec, B.; McCormick, M.I.; Meekan, M.G.; Simpson, S.D. Motorboat noise impacts parental behaviour and offspring survival in a reef fish. Proc. R. Soc. B. 2017, 284, 20170143. [Google Scholar] [CrossRef]
- Parsons, M.J.G.; Duncan, A.J.; Parsons, S.K.; Erbe, C. Reducing vessel noise: An example of a solar-electric passenger ferry. J. Acoust. Soc. Am. 2020, 147, 3575–3583. [Google Scholar] [CrossRef]
- Malinowski, S.J.; Gloza, I. Underwater noise characteristics of small ships. Acta Acust. United Acust. 2002, 88, 718–721. [Google Scholar]
- International Organization for Standardization. Underwater Acoustics—Quantities and Procedures for Description and Measurement of Underwater Sound from Ships—Part 1: Requirements for Precision Measurements in Deep Water Used for Comparison Purposes (ISO 17208-1); International Organization for Standardization: Geneva, Switzerland, 2016; 20p. [Google Scholar]
- International Organization for Standardization. Underwater Acoustics—Quantities and Procedures for Description and Measurement of Underwater Sound from Ships—Part 2: Determination of Source Levels from Deep Water Measurements (ISO 17208-2); International Organization for Standardization: Geneva, Switzerland, 2019; 13p. [Google Scholar]
- Hamylton, S.M.; Leon, J.X.; Saunders, M.I.; Woodroffe, C.D. Simulating reef response to sea-level rise at Lizard Island: A geospatial approach. Geomorphology 2014, 222, 151–161. [Google Scholar] [CrossRef]
- Daly, M. Wave Energy and Shoreline Response on a Fringing Reef Complex, Lizard Island, Qld, Australia. Bachelor’s Thesis, Env. Sci., University of New South Wales, Sydney, Australia, 2005; 105p. [Google Scholar]
- Frith, C.; Leis, J.; Goldmand, B. Currents in the Lizard Island region of the Great Barrier Reef Lagoon and their relevance to potential movements of larvae. Coral Reefs 1986, 5, 81–92. [Google Scholar] [CrossRef]
- Gavrilov, A.G.; Parsons, M.J.G. A Matlab toolbox for the Characterisation of Recorded Underwater Sound (CHORUS). Acoust. Aust. 2014, 42, 191–196. [Google Scholar]
- Urick, R.J. Principles of Underwater Sound, 3rd ed.; McGraw Hill: New York, NY, USA, 1983. [Google Scholar]
- De Jong, C.A.F. Characterization of ships as sources of underwater noise. In Proceedings of the NAG-DAGA 2009, Rotterdam, The Netherlands, 23–26 March 2009; pp. 271–274. [Google Scholar]
- Veirs, S.; Veirs, V. Vessel noise measurements underwater in the Haro Strait, WA. J. Acoust. Soc. Am. 2006, 120, 3382. [Google Scholar] [CrossRef]
- Kipple, B.; Gabriele, C. Underwater noise from skiffs to ships. In Proceedings of the Fourth Glacier Bay Science Symposium, Junea, AK, USA, 26–28 October 2004; Piatt, J.F., Gende, S.M., Eds.; U.S. Geological Survey Scientific Investigations Report 2007-5047; 2007 U.S. Geological Survey. pp. 172–175. [Google Scholar]
- Cato, D.H. Simple methods of estimating source levels and locations of marine animal sounds. J. Acoust. Soc. Am. 1998, 104, 1667–1678. [Google Scholar] [CrossRef] [PubMed]
- McCauley, R.D.; Cato, D.H.; Jeffrey, A.F. A Study of Impacts of the Impacts of Vessel Noise on Humpback Whales in Hervey Bay; Report to the Queensland Department of Environment and Heritage; Maryborough Branch: Queensland, Australia, 1996; 163p. [Google Scholar]
- Ladich, F.; Fay, R.R. Auditory evoked potential audiometry in fish. Rev. Fish. Biol. Fish. 2013, 23, 317–364. [Google Scholar] [CrossRef] [PubMed]
- Kasumyan, A.O. Acoustic signaling in fish. J. Ichthyol. 2009, 49, 963–1020. [Google Scholar] [CrossRef]
- Parsons, M.J.G.; Longbottom, S.; Lewis, P.; McCauley, R.D.; Fairclough, D.V. Sound production by the West Australian dhufish (Glaucosoma hebraicum). J. Acoust. Soc. Am. 2013, 134, 2701–2709. [Google Scholar] [CrossRef]
- McWilliam, J.N.; McCauley, R.D.; Erbe, C.; Parsons, M.J.G. Patterns of biophonic periodicity on coral reefs in the Great Barrier Reef. Sci. Rep. 2017, 7, 17459. [Google Scholar] [CrossRef]
- Montgomery, J.C.; Jeffs, A.; Simpson, S.D.; Meekan, M.G.; Tindle, C. Sound as an Orientation Cue for the Pelagic Larvae of Reef Fishes and Decapod Crustaceans. Adv. Mar. Biol. 2006, 51, 143–196. [Google Scholar]
- Radford, A.N.; Kerridge, E.; Simpson, S.D. Acoustic communication in a noisy world: Can fish compete with anthropogenic noise? Behav. Ecol. 2014, 25, 1022–1030. [Google Scholar] [CrossRef]
- Nedelec, S.L.; Mills, S.C.; Lecchini, D.; Nedelec, B.; Simpson, S.D.; Radford, A.N. Repeated exposure to noise increases tolerance in a coral reef fish. Environ. Pollut. 2016, 216, 428–436. [Google Scholar] [CrossRef] [PubMed]
- Putland, R.L.; Merchant, N.D.; Farcas, A.; Radford, C.A. Vessel noise cuts down communication space for vocalizing fish and marine mammals. Glob. Chang. Biol. 2018, 24, 1708–1721. [Google Scholar] [CrossRef] [PubMed]
- Mensinger, A.F.; Putland, R.L.; Radford, C.A. The effect of motorboat sound on Australian snapper Pagrus auratus inside and outside a marine reserve. Ecol. Evol. 2018, 8, 6438–6448. [Google Scholar] [CrossRef] [PubMed]
Primrose | Macquarie 2 | Kirsty K | ||
---|---|---|---|---|
Vessel specifications | Length (m) | 5 | 5.96 | 5.95 |
Width (m) | 2.1 | 2.4 | 2.6 | |
Draught (cm) | 0.9 | 1.18 | 1.23 | |
Mass (kg) | 360 | 825 | 1500 | |
Propeller | No. blades | 3 | 3 | 3 |
Prop radius (cm) | 25 | 32.5 | 32.5 | |
Depth below water (cm) | 47 | 70 | 63 | |
Engine | Engine | Suzuki | Suzuki | Suzuki |
Horsepower | 30 | 90 | 2x90 | |
Fuel | Petrol (4 stroke) | Petrol (4 stroke) | Petrol (4 stroke) |
Target Speed (km h−1) | Primrose (km h−1) | Macquarie (km h−1) | Kirsty K (km h−1) |
---|---|---|---|
5 | 5.86 (0.12, 5.37, 6.55, 73) | 6.12 (0.23, 5.63, 6.43, 88) | 6.41 (0.61, 5.45, 7.66, 83) |
10 | 10.32 (0.50, 9.73, 10.91, 79) | 10.61 (1.64, 9.86, 11.61, 85) | 10.62 (0.59, 9.73, 11.61, 92) |
20 | 19.44 (0.39, 18.95, 20.28, 75) | 20.63 (3.32, 18.95, 3.32, 86) | 19.74 (0.52, 19.20, 20.87, 88) |
30 | 30.23 (1.23, 28.80, 32.73, 81) | 30.75 (3.30, 30.0, 33.49, 82) | 30.40 (1.72, 27.17, 33.49, 86) |
All Ranges | Excluding <15 m Range | ||||||
---|---|---|---|---|---|---|---|
Vessel | Speed | CPL | ASL (dB re 1 µPa) | R2 | CPL | ASL (dB re 1 µPa) | R2 |
Primrose | 5 | −21.2 (−23.79, −18.64) | 159.8 (156.1, 163.6) | 0.79 | −19.5 (−22.98, −15.96) | 156.9 (151.2, 162.7) | 0.72 |
10 | −17.3 (−18.20, −16.33) | 155.4 (154.0, 156.8) | 0.95 | −16.2 (−17.44, −14.90) | 153.5 (151.4, 155.6) | 0.92 | |
20 | −14.0 (−14.72, −13.24) | 153.0 (151.9, 154.1) | 0.95 | −13.6 (−14.70, −12.50) | 152.4 (150.6, 154.2) | 0.92 | |
30 | −13.2 (−14.02, −12.38) | 154.1 (152.9, 155.3) | 0.93 | −14.5 (−15.65, −13.41) | 156.4 (154.5, 158.2) | 0.92 | |
Macquarie | 5 | −21.5 (−23.50, −19.52) | 156.1 (153.2, 159.0) | 0.84 | −12.2 (−14.95, −9.43) | 140.5 (135.9, 145.0) | 0.58 |
10 | −21.3 (−23.31, −19.31) | 161.8 (158.8, 164.8) | 0.85 | −19.8 (−22.43, −17.10) | 159.2 (155.0, 163.4) | 0.78 | |
20 | −17.9 (−18.96, −16.75) | 161.5 (159.9, 163.1) | 0.93 | −18.3 (−19.92, −16.67) | 162.2 (159.6, 164.8) | 0.90 | |
30 | −13.7 (−14.68, −12.64) | 155.7 (154.2, 157.2) | 0.90 | −14.3 (−16.05, −12.57) | 156.7 (153.9, 159.6) | 0.84 | |
Kirsty K | 5 | −21.6 (−23.83, −19.43) | 163.6 (160.4, 166.8) | 0.83 | −16.7 (−20.03, −13.42) | 155.3 (149.9, 160.7) | 0.67 |
10 | −18.7 (−21.38, −16.11) | 164.2 (160.3, 168.0) | 0.69 | −15.3 (−18.33, −12.21) | 158.5 (153.7, 163.2) | 0.58 | |
20 | −17.2 (−18.41, −15.97) | 161.9 (160.1, 163.7) | 0.90 | −15.0 (−16.62, −13.43) | 158.3 (155.7, 160.8) | 0.86 | |
30 | −17.3 (−18.40, −16.13) | 161.8 (160.1, 163.4) | 0.92 | −16.9 (−18.09, −15.71) | 161.2 (159.2, 163.1) | 0.94 | |
Mean CPL (s.d.) | −17.9 (3.1) | −16.0 (2.3) |
Percentiles of Radiated Noise Level (dB re 1 µPa m) | Percentiles of Affected Source Level (dB re 1 µPa m) | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
All Ranges | Excluding <15 m Range | Loss = 17.9log10 (range) | Loss = 16.0log10 (range) | ||||||||||||||
Vessel | Speed | 25% | 50% | 75% | Range | 25% | 50% | 75% | Range | 25% | 50% | 75% | Range | 25% | 50% | 75% | Range |
Primrose | 5 | 155.5 | 158.4 | 160.2 | 18.8 | 155.6 | 158.3 | 159.9 | 14.3 | 152.4 | 155.1 | 157.4 | 20.2 | 149.3 | 151.7 | 153.9 | 14.6 |
10 | 158.6 | 159.7 | 160.5 | 7.3 | 159.0 | 159.9 | 160.7 | 6.6 | 155.4 | 156.6 | 157.2 | 6.7 | 152.6 | 153.3 | 153.9 | 5.2 | |
20 | 160.3 | 161.6 | 163.5 | 10.8 | 161.3 | 162.3 | 163.9 | 6.9 | 157.6 | 158.4 | 159.9 | 8.9 | 155.5 | 156.2 | 156.9 | 4.7 | |
30 | 163.6 | 164.8 | 166.1 | 9.4 | 164.1 | 165.4 | 166.4 | 6.6 | 160.1 | 161.3 | 162.4 | 8.1 | 158.1 | 158.7 | 159.5 | 4.7 | |
Macquarie | 5 | 151.5 | 153.4 | 155.5 | 15.1 | 151.5 | 153.2 | 155.2 | 8.6 | 148.7 | 150.5 | 153.3 | 15.6 | 145.4 | 146.7 | 148.4 | 11.2 |
10 | 158.1 | 159.6 | 161.2 | 11.4 | 158.0 | 159.3 | 161.0 | 10.6 | 154.8 | 156.4 | 158.0 | 12.2 | 151.4 | 152.9 | 154.3 | 10.7 | |
20 | 163.8 | 164.6 | 165.9 | 8.0 | 163.8 | 164.5 | 165.9 | 6.6 | 160.5 | 161.3 | 162.4 | 8.1 | 157.5 | 158.2 | 159.3 | 6.8 | |
30 | 163.9 | 165.4 | 166.6 | 12.0 | 164.7 | 165.8 | 167.1 | 7.9 | 160.0 | 161.9 | 163.1 | 10.8 | 158.6 | 159.2 | 160.4 | 6.4 | |
Kirsty K | 5 | 159.7 | 161.2 | 162.7 | 14.3 | 159.8 | 161.0 | 162.4 | 14.3 | 156.6 | 158.1 | 160.1 | 15.7 | 153.2 | 154.4 | 155.4 | 15.3 |
10 | 162.9 | 165.3 | 169.0 | 16.2 | 163.5 | 165.5 | 169.7 | 11.9 | 159.7 | 162.1 | 166.0 | 17.1 | 157.1 | 159.5 | 162.7 | 13.3 | |
20 | 165.1 | 166.0 | 167.1 | 9.7 | 165.5 | 166.3 | 167.2 | 6.6 | 161.8 | 163.0 | 164.1 | 9.8 | 159.1 | 160.0 | 160.9 | 7.9 | |
30 | 165.2 | 166.1 | 167.1 | 9.6 | 165.7 | 166.2 | 167.1 | 4.5 | 162.0 | 162.9 | 163.6 | 9.5 | 158.9 | 159.7 | 160.2 | 3.4 |
Vessel | Level at 0 km h−1 | Coefficient Cv1 | Coefficient Cv2 | R2 | RMSE | |
---|---|---|---|---|---|---|
RNL | Primrose | 155.9 (0.7) | 0.84 (0.11) | -- | 0.43 | 2.60 |
Macquarie | 151.5 (0.7) | 1.55 (0.11) | -- | 0.68 | 2.87 | |
Kirsty K | 161.6 (0.9) | 0.53 (0.14) | -- | 0.14 | 3.33 | |
ASL | Primrose | 160.1 (0.7) | −0.78 (0.11) | -- | 0.43 | 2.44 |
Macquarie | 150.1 (1.2) | 0.94 (0.12) | −0.50 (0.06) | 0.50 | 2.62 | |
Kirsty K | 165.1 (0.8) | −0.37 0.12) | -- | 0.09 | 2.97 | |
Full data (17.9 loss) | Primrose | 152.9 (0.6) | 0.84 (0.1) | -- | 0.48 | 2.37 |
Macquarie | 148.4 (0.75) | 1.56 (0.11) | -- | 0.69 | 2.82 | |
Kirsty K | 158.6 (0.9) | 0.53 (0.14) | -- | 0.15 | 3.32 | |
Range >15 m (16.0 loss) | Primrose | 148.8 (0.55) | 1.05 (0.09) | -- | 0.73 | 1.73 |
Macquarie | 143.5 (0.75) | 1.86 (0.12) | -- | 0.81 | 2.36 | |
Kirsty K | 154.5 (11.0) | 0.68 (0.15) | -- | 0.27 | 2.86 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parsons, M.; Meekan, M. Acoustic Characteristics of Small Research Vessels. J. Mar. Sci. Eng. 2020, 8, 970. https://doi.org/10.3390/jmse8120970
Parsons M, Meekan M. Acoustic Characteristics of Small Research Vessels. Journal of Marine Science and Engineering. 2020; 8(12):970. https://doi.org/10.3390/jmse8120970
Chicago/Turabian StyleParsons, Miles, and Mark Meekan. 2020. "Acoustic Characteristics of Small Research Vessels" Journal of Marine Science and Engineering 8, no. 12: 970. https://doi.org/10.3390/jmse8120970
APA StyleParsons, M., & Meekan, M. (2020). Acoustic Characteristics of Small Research Vessels. Journal of Marine Science and Engineering, 8(12), 970. https://doi.org/10.3390/jmse8120970