Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (221)

Search Parameters:
Keywords = radiated noise levels

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 15803 KB  
Article
MNAT: A Simulation Tool for Underwater Radiated Noise
by Mohammad Rasoul Tanhatalab and Paolo Casari
J. Mar. Sci. Eng. 2025, 13(11), 2045; https://doi.org/10.3390/jmse13112045 - 25 Oct 2025
Viewed by 126
Abstract
Shipping expansion, offshore energy generation, fish farming, and construction work radiate high levels of underwater noise, which may critically stress marine ecosystems. Tools for simulating, analyzing, and forecasting underwater noise can be of great help in understanding the impact of underwater radiated noise [...] Read more.
Shipping expansion, offshore energy generation, fish farming, and construction work radiate high levels of underwater noise, which may critically stress marine ecosystems. Tools for simulating, analyzing, and forecasting underwater noise can be of great help in understanding the impact of underwater radiated noise both on the environment and on man-made equipment, such as underwater communication and telemetry systems. To address this challenge, we developed a web-based Marine Noise Analysis Tool (MNAT) that models, simulates, and predicts underwater radiated noise levels. To reproduce realistic shipping conditions, MNAT combines real-time Automatic Identification System data with environmental data using broadly accepted underwater acoustic propagation models, including Bellhop and RAM. Moreover, MNAT can simulate other kinds of noise sources, such as seismic airguns. It features an intuitive interface enabling real-time tracking, noise impact assessment, and interactive visualizations. MNAT’s noise modeling capabilities allow the user to design resilient communication systems in different noise conditions, analyze maritime noise data, and forecast future noise levels, with potential contributions to the design of noise-resilient systems, to the optimization of environmental monitoring device deployments, and to noise mitigation policymaking. MNAT has been made available for the community at a public GIT repository. Full article
Show Figures

Figure 1

26 pages, 2220 KB  
Article
Lindbladian Decoherence in Quantum Universal Gates: An Insight Analysis for Digital Noise and Thermalisation
by José Carlos Rebón and Francisco Delgado
Entropy 2025, 27(11), 1089; https://doi.org/10.3390/e27111089 - 22 Oct 2025
Viewed by 180
Abstract
Quantum computing is an emergent field promising the improvement of processing speed in key algorithms by reducing their exponential scaling to polynomial, thus enabling solutions to problems that exceed classical computational capabilities. Gate-based quantum computing is the most common approach but still faces [...] Read more.
Quantum computing is an emergent field promising the improvement of processing speed in key algorithms by reducing their exponential scaling to polynomial, thus enabling solutions to problems that exceed classical computational capabilities. Gate-based quantum computing is the most common approach but still faces high levels of noise and decoherence. Gates play the role of probability mixers codifying information settled in quantum systems. However, they are deviated from their programmed behaviour due to those decoherent effects as a hidden source modifies the desired probability flux. Their quantification of such unavoidable behaviours becomes crucial for quantum error correction or mitigation. This work presents an approach to decoherence in quantum circuits using the Lindblad master equation to model the impact of noise and thermalisation underlying the ideal programmed behaviour expected for processing gates. The Lindblad approach then provides a comprehensive tool to model both probability fluxes being present in the process, thus regarding the gate and the environment. It analyses the deviation of resulting noisy states from the ideal unitary evolution of some gates considered as universal, setting some operating regimes. Thermalisation considers a radiation bath where gates are immersed as a feasible model of decoherence. Numerical simulations track the information loss as a function of the decay rate magnitude. It also exhibits the minimal impact on decoherence coming from particular quantum states being processed, but a higher impact on the number of qubits being processed by the gate. The methodology provides a unified framework to characterise the processing probability transport in quantum gates, including noise or thermalisation effects. Full article
(This article belongs to the Special Issue Probability Theory and Quantum Information)
Show Figures

Figure 1

20 pages, 7652 KB  
Article
Hybrid Numerical Analysis Models and Experiment Research for Wheel–Rail Noise of Urban Rail Vehicle
by Shangshuai Jia, Xinli Zhao, Wenmin Zhang, Leiming Song, Chen Hu, Hao Lin and Xiaojun Hu
Modelling 2025, 6(4), 133; https://doi.org/10.3390/modelling6040133 - 22 Oct 2025
Viewed by 198
Abstract
For urban rail vehicles operating at speeds ranging from 60 to 250 km/h, the dominant source of radiated noise is the wheel–rail interaction. Finite element modal analysis was conducted on the wheelset, rails, and track slab. A multibody dynamics model under straight-line condition [...] Read more.
For urban rail vehicles operating at speeds ranging from 60 to 250 km/h, the dominant source of radiated noise is the wheel–rail interaction. Finite element modal analysis was conducted on the wheelset, rails, and track slab. A multibody dynamics model under straight-line condition was established. It was a rigid–flexible coupling dynamics model, including the rigid vehicle body, flexible wheelsets, flexible rails, and flexible track slabs. Dynamic simulation calculations were carried out in this model to obtain the wheel–rail forces. The finite element and boundary element models of wheels and rails were established using simulation software to obtain the results of wheel–rail noise. The sound pressure levels on the surfaces of wheels and rails were calculated under the operating conditions of 120 km/h, 140 km/h, 160 km/h, and 200 km/h in the straight-line condition. The variation law of the frequency distribution of wheel–rail noise with the change in speed was obtained. The variation fitting function of wheel–rail noise SPL with speeds was obtained. Within the speed of 200 km/h, as the speed increased, the total value of wheel–rail SPL basically shows a linear growth. The simulation analysis results were compared with the experiment results. It indicated that the simulation results were reasonable. The simulation models are of great significance for the noise prediction in train design and manufacturing. Full article
Show Figures

Graphical abstract

29 pages, 48102 KB  
Article
Infrared Temporal Differential Perception for Space-Based Aerial Targets
by Lan Guo, Xin Chen, Cong Gao, Zhiqi Zhao and Peng Rao
Remote Sens. 2025, 17(20), 3487; https://doi.org/10.3390/rs17203487 - 20 Oct 2025
Viewed by 274
Abstract
Space-based infrared (IR) detection, with wide coverage, all-time operation, and stealth, is crucial for aerial target surveillance. Under low signal-to-noise ratio (SNR) conditions, however, its small target size, limited features, and strong clutters often lead to missed detections and false alarms, reducing stability [...] Read more.
Space-based infrared (IR) detection, with wide coverage, all-time operation, and stealth, is crucial for aerial target surveillance. Under low signal-to-noise ratio (SNR) conditions, however, its small target size, limited features, and strong clutters often lead to missed detections and false alarms, reducing stability and real-time performance. To overcome these issues of energy-integration imaging in perceiving dim targets, this paper proposes a biomimetic vision-inspired Infrared Temporal Differential Detection (ITDD) method. The ITDD method generates sparse event streams by triggering pixel-level radiation variations and establishes an irradiance-based sensitivity model with optimized threshold voltage, spectral bands, and optical aperture parameters. IR sequences are converted into differential event streams with inherent noise, upon which a lightweight multi-modal fusion detection network is developed. Simulation experiments demonstrate that ITDD reduces data volume by three orders of magnitude and improves the SNR by 4.21 times. On the SITP-QLEF dataset, the network achieves a detection rate of 99.31%, and a false alarm rate of 1.97×105, confirming its effectiveness and application potential under complex backgrounds. As the current findings are based on simulated data, future work will focus on building an ITDD demonstration system to validate the approach with real-world IR measurements. Full article
(This article belongs to the Special Issue Deep Learning-Based Small-Target Detection in Remote Sensing)
Show Figures

Figure 1

20 pages, 29355 KB  
Article
Acoustic Experiments for Special Forces Helicopter Operations
by W. F. J. Olsman
Aerospace 2025, 12(10), 903; https://doi.org/10.3390/aerospace12100903 - 8 Oct 2025
Viewed by 239
Abstract
For military missions, the helicopter is a versatile aircraft with many benefits. However, the high levels of noise radiation enable large acoustic detection ranges. For mission success, knowledge of acoustic radiation and propagation is paramount. This paper describes the results of acoustic measurements [...] Read more.
For military missions, the helicopter is a versatile aircraft with many benefits. However, the high levels of noise radiation enable large acoustic detection ranges. For mission success, knowledge of acoustic radiation and propagation is paramount. This paper describes the results of acoustic measurements for a helicopter that is typically used for operations by the German special forces. The measurements include identification of the global noise radiation during different flight conditions, determination of the time between acoustic detection and arrival at the target location, and determination of the acoustic detection distance. Different approaches and departure procedures were executed, and the acoustic radiation was measured. Results indicate that during approaches, the most noise is generated either during the transition from steady level flight to descent/deceleration or at the end of the flare procedure. For the helicopter considered here, a left turn departure generates more noise at a target location then a right turn departure. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

23 pages, 7556 KB  
Article
On-Site Monitoring and a Hybrid Prediction Method for Noise Impact on Sensitive Buildings near Urban Rail Transit
by Yanmei Cao, Yefan Geng, Jianguo Chen and Jiangchuan Ni
Buildings 2025, 15(17), 3227; https://doi.org/10.3390/buildings15173227 - 7 Sep 2025
Viewed by 866
Abstract
The environmental noise impact on sensitive buildings and residents, generated by urban rail transit systems, has attracted increasing attention from the public and various levels of management. Owing to the diversity of building types and the complexity of noise propagation paths, the accurate [...] Read more.
The environmental noise impact on sensitive buildings and residents, generated by urban rail transit systems, has attracted increasing attention from the public and various levels of management. Owing to the diversity of building types and the complexity of noise propagation paths, the accurate prediction of noise levels adjacent to structures through traditional experimental or empirical formula-based methods is challenging. In this paper, on-site multi-dimensional noise monitoring of the noise source affecting the sensitive buildings was first carried out, and a hybrid prediction method combining normative formulas, numerical simulations, and experimental research is proposed and validated. This approach effectively addresses the shortcomings of traditional prediction methods in terms of source strength determination, propagation path distribution, and accuracy of results. The results show that, while predicting or assessing the noise impact on sensitive buildings and interior residents, it is important to properly consider the impact of background noise (such as road traffic) as well as vibration radiation noise of bridge structures. The predicted results obtained by using this method closely match the measured results, with errors controlled within 3 dB(A). The noise prediction error in front of buildings is controlled within 2 dB(A), fully meeting the requirements for environmental noise assessment. Full article
Show Figures

Figure 1

18 pages, 5980 KB  
Article
Effect of Solidity on the Leakage Flow and Related Noise in Axial-Flow Fans with Rotating Shroud Operating at Fixed Performance
by Tayyab Akhtar, Edward Canepa, Andrea Cattanei, Matteo Dellacasagrande and Alessandro Nilberto
Int. J. Turbomach. Propuls. Power 2025, 10(3), 27; https://doi.org/10.3390/ijtpp10030027 - 2 Sep 2025
Viewed by 554
Abstract
This work presents an experimental study of the effect of blade count on the flow field and the radiated noise in a low-speed axial fan with a rotating shroud. A two-component Laser Doppler Velocimetry (LDV) system and Particle Image Velocimetry (PIV) instrumentation have [...] Read more.
This work presents an experimental study of the effect of blade count on the flow field and the radiated noise in a low-speed axial fan with a rotating shroud. A two-component Laser Doppler Velocimetry (LDV) system and Particle Image Velocimetry (PIV) instrumentation have been employed to investigate the flow in the gap region and in front of the rotor blades. Additionally, the fan has been installed in a hemi-anechoic chamber and far-field acoustic measurements have been taken with a microphone mounted on-axis upstream of the rotor to show changes in the spectral features of the radiated noise. The tested rotor is a variable-geometry one that has allowed for studying rotor configurations with different numbers of blades of the same chord and shape, i.e., of the same geometry but different solidity. Rotor pressure rise and flow rate are average quantities that have a relevant effect on the leakage flow. Keeping them fixed while varying solidity allows us to highlight the local effects of circumferential pressure non-uniformity caused by differing blade loading. The results show that, at low solidity, the flow leaving the gap is mainly directed radially outward and follows a longer path before being ingested by the rotor, thus losing strength due to mixing with the main flow. As solidity increases, the flow becomes less radial and is more rapidly ingested by the rotor. In all cases, the sound pressure level spectrum shows marked subharmonic humps and peaks originating from the interaction between the leakage flow and rotor. The departure of such peaks from the blade passing frequency increases with the solidity, while the associated energy increases up to seven blades and then decreases. Full article
Show Figures

Graphical abstract

23 pages, 3846 KB  
Article
A Sea Surface Roughness Retrieval Model Using Multi Angle, Passive, Visible Spectrum Remote Sensing Images: Simulation and Analysis
by Mingzhu Song, Lizhou Li, Yifan Zhang, Xuechan Zhao and Junsheng Wang
Remote Sens. 2025, 17(17), 2951; https://doi.org/10.3390/rs17172951 - 25 Aug 2025
Viewed by 667
Abstract
Sea surface roughness (SSR) retrieval is a frontier topic in the field of ocean remote sensing, and SSR retrieval based on multi angle, passive, visible spectrum remote sensing images has been proven to have potential applications. Traditional multi angle retrieval models ignored the [...] Read more.
Sea surface roughness (SSR) retrieval is a frontier topic in the field of ocean remote sensing, and SSR retrieval based on multi angle, passive, visible spectrum remote sensing images has been proven to have potential applications. Traditional multi angle retrieval models ignored the nonlinear relationship between radiation and digital signals, resulting in low accuracy in SSR retrieval using visible spectrum remote sensing images. Therefore, we analyze the transmission characteristics of signals and random noise in sea surface imaging, establish signals and noise transmission models for typical sea surface imaging visible spectrum remote sensing systems using Complementary Metal Oxide Semiconductor (CMOS) and Time Delay Integration-Charge Coupled Device (TDI-CCD) sensors, and propose a model for SSR retrieval using multi angle passive visible spectrum remote sensing images. The proposed model can effectively suppress the noise behavior in the imaging link and improve the accuracy of SSR retrieval. Simulation experiments show that when simulating the retrieval of multi angle visible spectrum images obtained using CMOS or TDI-CCD imaging systems with four SSR levels of 0.02, 0.03, 0.04, and 0.05, the proposed model relative errors using two angles are decreased by 4.0%, 2.7%, 2.3%, and 2.0% and 6.5%, 4.3%, 3.7%, and 3.2%, compared with the relative errors of the model without considering noise behavior, which are 7.0%, 6.7%, 7.8%, and 9.0% and 9.5%, 8.3%, 9.0%, and 10.2%. When using more fitting data, the relative errors of the model were decreased by 5.0%, 2.7%, 2.5%, and 2.0% and 7.0%, 5.0%, 4.3%, and 3.2%, compared with the relative errors of the model without considering noise behavior, which are 8.5%, 7.0%, 8.0%, and 9.4%, and 10.0%, 8.7%, 9.3%, and 10.0%. Full article
Show Figures

Figure 1

22 pages, 2709 KB  
Article
SPL-Based Modeling of Serrated Airfoil Noise via Functional Regression and Ensemble Learning
by Andrei-George Totu, Daniel-Eugeniu Crunțeanu, Luminița Drăgășanu, Grigore Cican and Constantin Levențiu
Computation 2025, 13(9), 203; https://doi.org/10.3390/computation13090203 - 22 Aug 2025
Viewed by 497
Abstract
This study presents a semi-empirical approach to generalizing the acoustic radiation generated by serrated airfoil configurations, based on small-scale aerodynamic/acoustic experiments and functional regression techniques. In the context of passive noise reduction strategies, such as leading-edge and trailing-edge serrations, acoustic measurements are performed [...] Read more.
This study presents a semi-empirical approach to generalizing the acoustic radiation generated by serrated airfoil configurations, based on small-scale aerodynamic/acoustic experiments and functional regression techniques. In the context of passive noise reduction strategies, such as leading-edge and trailing-edge serrations, acoustic measurements are performed in a controlled subsonic wind tunnel environment. Sound pressure level (SPL) spectra and acoustic power metrics are acquired for various geometric configurations and flow conditions. These spectral data are then analyzed using regression-based modeling techniques—linear, quadratic, logarithmic, and exponential forms—to capture the dependence of acoustic emission on key geometric and flow-related variables (e.g., serration amplitude, wavelength, angle of attack), without relying explicitly on predefined nondimensional numbers. The resulting predictive models aim to describe SPL behavior across relevant frequency bands (e.g., broadband or 1/3 octave) and to extrapolate acoustic trends for configurations beyond those tested. The proposed methodology allows for the identification of compact functional relationships between configuration parameters and acoustic output, offering a practical tool for the preliminary design and optimization of low-noise serrated profiles. The findings are intended to support both physical understanding and engineering application, bridging experimental data and parametric acoustic modeling in aerodynamic noise control. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Graphical abstract

25 pages, 10497 KB  
Article
Transient Vibro-Acoustic Characteristics of Double-Layered Stiffened Cylindrical Shells
by Qirui Luo, Wang Miao, Zhe Zhao, Cong Gao and Fuzhen Pang
Acoustics 2025, 7(3), 50; https://doi.org/10.3390/acoustics7030050 - 21 Aug 2025
Viewed by 734
Abstract
This study investigates the underwater transient vibro-acoustic response of double-layered stiffened cylindrical shells through an integrated experimental-numerical approach. Initially, vibration and noise responses under transient impact loads were experimentally characterized in an anechoic water tank, establishing benchmark datasets. Subsequently, based on the theory [...] Read more.
This study investigates the underwater transient vibro-acoustic response of double-layered stiffened cylindrical shells through an integrated experimental-numerical approach. Initially, vibration and noise responses under transient impact loads were experimentally characterized in an anechoic water tank, establishing benchmark datasets. Subsequently, based on the theory of transient structural dynamics, a numerical framework was developed by extending the time-domain finite element/boundary element (FEM/BEM) method, enabling comprehensive analysis of the transient vibration and acoustic radiation characteristics of submerged structures. Validation through experimental-simulation comparisons confirmed the method’s accuracy and effectiveness. Key findings reveal broadband features with distinct discrete spectral peaks in both structural vibration and acoustic pressure responses under transient excitation. Systematic parametric investigations demonstrate that: (1) Reducing the load pulse width significantly amplifies vibration acceleration and sound pressure levels, while shifting acoustic energy spectra toward higher frequencies; (2) Loading position alters both vibration patterns and noise radiation characteristics. The established numerical methodology provides theoretical support for transient impact noise prediction and low-noise structural optimization in underwater vehicle design. Full article
Show Figures

Figure 1

20 pages, 740 KB  
Article
Virtual Non-Contrast Reconstructions Derived from Dual-Energy CTA Scans in Peripheral Arterial Disease: Comparison with True Non-Contrast Images and Impact on Radiation Dose
by Fanni Éva Szablics, Ákos Bérczi, Judit Csőre, Sarolta Borzsák, András Szentiványi, Máté Kiss, Georgina Juhász, Dóra Papp, Ferenc Imre Suhai and Csaba Csobay-Novák
J. Clin. Med. 2025, 14(15), 5571; https://doi.org/10.3390/jcm14155571 - 7 Aug 2025
Cited by 1 | Viewed by 674
Abstract
Background/Objectives: Virtual non-contrast (VNC) images derived from dual-energy CTA (DE-CTA) could potentially replace true non-contrast (TNC) scans while reducing radiation exposure. This study evaluated the image quality of VNC compared to TNC for assessing native arteries and bypass grafts in patients with [...] Read more.
Background/Objectives: Virtual non-contrast (VNC) images derived from dual-energy CTA (DE-CTA) could potentially replace true non-contrast (TNC) scans while reducing radiation exposure. This study evaluated the image quality of VNC compared to TNC for assessing native arteries and bypass grafts in patients with peripheral arterial disease (PAD). Methods: We retrospectively analyzed 175 patients (111 men, 64 women, mean age: 69.3 ± 9.5 years) with PAD who underwent lower extremity DE-CTA. Mean attenuation and image noise values of TNC and VNC images were measured in native arteries and bypass grafts at six arterial levels, from the aorta to the popliteal arteries, using circular regions of interest (ROI). Signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs) were calculated. Three independent radiologists evaluated the subjective image quality of VNC images compared to baseline TNC scans for overall quality (4-point Likert scale), and for residual contrast medium (CM), calcium subtractions, and bypass graft visualization (3-point Likert scales). Radiation dose parameters (DLP, CTDIvol) were recorded to estimate effective dose values (ED) and the potential radiation dose reduction. Differences between TNC and VNC measurements and radiation dose parameters were compared using a paired t-test. Interobserver agreement was assessed with Gwet’s AC2. Results: VNC attenuation and noise values were significantly lower across all native arterial levels (p < 0.05, mean difference: 4.7 HU–10.8 HU) and generally lower at all bypass regions (mean difference: 2.2 HU–13.8 HU). Mean image quality scores were 3.03 (overall quality), 2.99 (residual contrast), 2.04 (subtracted calcifications), and 3.0 (graft visualization). Inter-reader agreement was excellent for each assessment (AC2 ≥ 0.81). The estimated radiation dose reduction was 36.8% (p < 0.0001). Conclusions: VNC reconstructions demonstrated comparable image quality to TNC in a PAD assessment and offer substantial radiation dose reduction, supporting their potential as a promising alternative in clinical practice. Further prospective studies and optimization of reconstruction algorithms remain essential to confirm diagnostic accuracy and address remaining technical limitations. Full article
(This article belongs to the Section Vascular Medicine)
Show Figures

Figure 1

15 pages, 3025 KB  
Article
High-Power-Density Miniaturized VLF Antenna with Nanocrystalline Core for Enhanced Field Strength
by Wencheng Ai, Huaning Wu, Lin Zhao and Hui Xie
Nanomaterials 2025, 15(14), 1062; https://doi.org/10.3390/nano15141062 - 9 Jul 2025
Viewed by 652
Abstract
In order to break through the difficulties with a very-low-frequency (VLF) miniaturized antenna with small power capacity and low radiation efficiency, this paper proposes a high-radiation-field-strength magnetic loop antenna based on a nanocrystalline alloy magnetic core. A high-permeability nanocrystalline toroidal core (μ [...] Read more.
In order to break through the difficulties with a very-low-frequency (VLF) miniaturized antenna with small power capacity and low radiation efficiency, this paper proposes a high-radiation-field-strength magnetic loop antenna based on a nanocrystalline alloy magnetic core. A high-permeability nanocrystalline toroidal core (μr = 50,000, Bs = 1.2 T) is used to optimize the thickness-to-diameter ratio (t = 0.08) and increase the effective permeability to 11,000. The Leeds wires, characterized by their substantial carrying capacity, are manufactured through a toroidal winding process. This method results in a 68% reduction in leakage compared to traditional radial winding techniques and enhances magnetic induction strength by a factor of 1.5. Additionally, this approach effectively minimizes losses, thereby facilitating support for kilowatt-level power inputs. A cascaded LC resonant network (resonant capacitance 2.3 μF) and ferrite balun transformer (power capacity 3.37 kW) realize a 20-times amplification of the input current. A series connection of a high-voltage isolation capacitor blocks DC bias noise, guaranteeing the stable transmission of 1200 W power, which is 6 times higher than the power capacity of traditional ring antenna. At 7.8 kHz frequency, the magnetic field strength at 120 m reaches 47.32 dBμA/m, and, if 0.16 pT is used as the threshold, the communication distance can reach 1446 m, which is significantly better than the traditional solution. This design marks the first instance of achieving kilowatt-class VLF effective radiation in a compact 51 cm-diameter magnetic loop antenna, offering a highly efficient solution for applications such as mine communication and geological exploration. Full article
Show Figures

Figure 1

28 pages, 3966 KB  
Article
Photovoltaic Power Forecasting Based on Variational Mode Decomposition and Long Short-Term Memory Neural Network
by Zhijian Hou, Yunhui Zhang, Xuemei Cheng and Xiaojiang Ye
Energies 2025, 18(13), 3572; https://doi.org/10.3390/en18133572 - 7 Jul 2025
Viewed by 750
Abstract
The accurate forecasting of photovoltaic (PV) power is vital for grid stability. This paper presents a hybrid forecasting model that combines Variational Mode Decomposition (VMD) and Long Short-Term Memory (LSTM). The model uses VMD to decompose the PV power into modal components and [...] Read more.
The accurate forecasting of photovoltaic (PV) power is vital for grid stability. This paper presents a hybrid forecasting model that combines Variational Mode Decomposition (VMD) and Long Short-Term Memory (LSTM). The model uses VMD to decompose the PV power into modal components and residuals. These components are combined with meteorological variables and their first-order differences, and feature extraction techniques are used to generate multiple sets of feature vectors. These vectors are utilized as inputs for LSTM sub-models, which predict the modal components and residuals. Finally, the aggregation of prediction results is used to achieve the PV power prediction. Validated on Australia’s 1.8 MW Yulara PV plant, the model surpasses 13 benchmark models, achieving an MAE of 63.480 kW, RMSE of 81.520 kW, and R2 of 92.3%. Additionally, the results of a paired t-test showed that the mean differences in the MAE and RMSE were negative, and the 95% confidence intervals for the difference did not include zero, indicating statistical significance. To further evaluate the model’s robustness, white noise with varying levels of signal-to-noise ratios was introduced to the photovoltaic power and global radiation signals. The results showed that the model exhibited higher prediction accuracy and better noise tolerance compared to other models. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

10 pages, 2215 KB  
Article
A Mode-Selective Control in Two-Mode Superradiance from Lambda Three-Level Atoms
by Gombojav O. Ariunbold and Tuguldur Begzjav
Photonics 2025, 12(7), 674; https://doi.org/10.3390/photonics12070674 - 3 Jul 2025
Viewed by 519
Abstract
Dicke superradiance, a single-mode burst of radiation emitted by an ensemble of two-level atoms, has garnered tremendous attention within the physics community. Its extension to multi-level systems introduces additional degrees of freedom, such as mode-selective control over well-known Dicke superradiant behaviors. However, previous [...] Read more.
Dicke superradiance, a single-mode burst of radiation emitted by an ensemble of two-level atoms, has garnered tremendous attention within the physics community. Its extension to multi-level systems introduces additional degrees of freedom, such as mode-selective control over well-known Dicke superradiant behaviors. However, previous work on the extension to two-mode superradiance in three-level atoms has been largely overlooked for over five decades. In this study, we revisit the two-mode superradiance model for a Λ-type three-level system, where two modes couple to a common excited state and two separate lower levels, offering new insights. For the first time, we obtain exact numerical solutions of the two-mode rate equations for this model. We analyze the temporal evolution of two-mode intensities, superradiance time delays, and quantum noise in the time domain as the number of atoms varies. We believe this work will enable external mode-selective control over superradiance processes—a capability unattainable in the single-mode case. Full article
Show Figures

Graphical abstract

11 pages, 1751 KB  
Article
Opportunistic Diagnostics of Dental Implants in Routine Clinical Photon-Counting CT Acquisitions
by Maurice Ruetters, Holger Gehrig, Christian Mertens, Sinan Sen, Ti-Sun Kim, Heinz-Peter Schlemmer, Christian H. Ziener, Stefan Schoenberg, Matthias Froelich, Marc Kachelrieß and Stefan Sawall
J. Imaging 2025, 11(7), 215; https://doi.org/10.3390/jimaging11070215 - 30 Jun 2025
Viewed by 723
Abstract
Two-dimensional imaging is still commonly used in dentistry, but does not provide the three-dimensional information often required for the accurate assessment of dental structures. Photon-counting computed tomography (PCCT), a new three-dimensional modality mainly used in general medicine, has shown promising potential for dental [...] Read more.
Two-dimensional imaging is still commonly used in dentistry, but does not provide the three-dimensional information often required for the accurate assessment of dental structures. Photon-counting computed tomography (PCCT), a new three-dimensional modality mainly used in general medicine, has shown promising potential for dental applications. With growing digitalization and cross-disciplinary integration, using PCCT data from other medical fields is becoming increasingly relevant. Conventional CT scans, such as those of the cervical spine, have so far lacked the resolution to reliably evaluate dental structures or implants. This study evaluates the diagnostic utility of PCCT for visualizing peri-implant structures in routine clinical photon-counting CT acquisitions and assesses the influence of metal artifact reduction (MAR) algorithms on image quality. Ten dental implants were retrospectively included in this IRB-approved study. Standard PCCT scans were reconstructed at multiple keV levels with and without MAR. Quantitative image analysis was performed with respect to contrast and image noise. Qualitative evaluation of peri-implant tissues, implant shoulder, and apex was performed independently by two experienced dental professionals using a five-point Likert scale. Inter-reader agreement was measured using intraclass correlation coefficients (ICCs). PCCT enabled high-resolution imaging of all peri-implant regions with excellent inter-reader agreement (ICC > 0.75 for all structures). Non-MAR reconstructions consistently outperformed MAR reconstructions across all evaluated regions. MAR led to reduced clarity, particularly in immediate peri-implant areas, without significant benefit from energy level adjustments. All imaging protocols were deemed diagnostically acceptable. This is the first in vivo study demonstrating the feasibility of opportunistic dental diagnostics using PCCT in a clinical setting. While MAR reduces peripheral artifacts, it adversely affects image clarity near implants. PCCT offers excellent image quality for peri-implant assessments and enables incidental detection of dental pathologies without additional radiation exposure. PCCT opens new possibilities for opportunistic, three-dimensional dental diagnostics during non-dental CT scans, potentially enabling earlier detection of clinically significant pathologies. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Figure 1

Back to TopTop