A Low-Cost Autonomous Multi-Functional Buoy for Ocean Currents and Seawater Parameter Monitoring, and Particle Tracking
Abstract
1. Introduction
2. Materials and Methods
2.1. System Design and Architecture
2.1.1. Buoyancy
2.2. Laboratory and Controlled Environment Testing
2.2.1. Energy Balance
2.3. Field Deployments in the Seto Inland Sea
3. Results
3.1. System Performance and Reliability
3.2. Seto Inland Sea Deployment Results
3.2.1. Drift Trajectory Analysis
3.2.2. Oceanographic Measurements
3.3. Cost-Effectiveness Analysis
4. Discussion
4.1. System Performance
4.2. Affordability and Applications in Coastal Monitoring
4.3. Limitations
- Sensor biofouling and drift: Although the sensors performed within specifications during short-term deployments, biofouling risk and long-term drift have not been systematically addressed. Without antifouling measures or regular calibration, prolonged operation may lead to data degradation, particularly in nutrient-rich or warm coastal waters. Additionally, the duration of drifting deployments cannot be predetermined, as each unit’s trajectory depends on currents, wind, and other environmental factors. Unlike moored systems, drifting buoys may reach docking locations at unpredictable times, making long-term in situ monitoring inherently variable.
- Data transmission constraints: The Iridium satellite communication ensures global coverage, but transmission costs restrict the volume and frequency of data that can be sent. Larger payloads or more frequent updates significantly increase the operational expenses.
- Mechanical durability: The buoy hull, constructed from 3D-printed PET-G plastic, withstood deployment conditions in calm seas, but rougher offshore environments may exceed its structural limits. The electronics housing and seals were tested in freshwater and limited saltwater exposure but were not pressure-tested beyond shallow conditions.
- No real-time command capability: The system lacks two-way communication for remote reconfiguration or diagnostics during deployment. If transmission errors or sensor failures occur, recovery must wait until physical retrieval.
- The pH measurements in this study were obtained using the NBS scale without spectrophotometric validation through discrete bottle samples. This may introduce systematic differences when compared to oceanographic datasets that use the pHT scale.
4.4. Future Work
- Sensor suite expansion: Future versions will include additional parameters, such as dissolved oxygen, chlorophyll-a (via fluorescence), turbidity, and nitrate sensors, to broaden the biogeochemical monitoring capabilities. Modular firmware and housing support plug-and-play expansion through standard sensor interfaces: I2C (Inter-Integrated Circuit) and UART (Universal Asynchronous Receiver/Transmitter), enabling straightforward integration of additional sensors.
- Biofouling mitigation: Coatings (e.g., copper mesh or silicone paint), mechanical wipers, or UV-based antifouling will be explored to reduce the impact of marine growth on sensor performance during extended deployments.
- Improved communication flexibility: Different communication systems will be investigated to lower the costs of satellite communication. Methods such as LTE communications will be investigated as alternatives.
- Two-way communication and diagnostics: Implementing command-and-control capability would allow operators to update sampling intervals, request diagnostic data, or remotely shut down subsystems for energy conservation.
- To investigate long-term performance factors, such as biofouling and sensor drift, a moored configuration of the buoy will be tested. This configuration will allow for controlled multi-week to multi-month monitoring while preserving the buoy’s low cost, modular architecture.
- Future iterations of the buoy deployment will incorporate seawater-based Tris buffer calibration to improve comparability with standard oceanographic datasets.
- Incorporation of spectrophotometric pH measurements for accuracy validation and proper scale conversion.
- Field network testing: Deployment of a multi-buoy array for spatially distributed observations will be conducted to assess the BOB’s performance in dynamic estuarine systems and to validate its utility for coastal process studies.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AUV | Autonomous Underwater Vehicle |
BOB | Biophysical Ocean Buoy |
CMEMS | Copernicus Marine Environment Monitoring Service |
CTD | Conductivity, Temperature, Depth |
EC | Electrical Conductivity |
GOOS | Global Ocean Observing System |
GNSS | Global Navigation Satellite System |
GPS | Global Positioning System |
I2C | Inter-Integrated Circuit |
LTE | Long Term Evolution |
MQTT | Message Queue Telemetry Transport |
NGO | Non-Governmental Organization |
NMEA | National Marine Electronics Association |
PET-G | Polyethylene Terephthalate Glycol |
PPM | Parts per Million |
PPT | Parts per Thousand |
PSU | Practical Salinity Units |
SIS | Seto Inland Sea |
SG | Specific Gravity |
SLA | Sealed Lead Acid |
SST | Sea Surface Temperature |
TDS | Total Dissolved Solids |
UART | Universal Asynchronous Receiver/Transmitter |
UV | Ultraviolet |
References
- Friedman, W.R.; Halpern, B.S.; McLeod, E.; Beck, M.W.; Duarte, C.M.; Kappel, C.V.; Levine, A.; Sluka, R.D.; Adler, S.; O’Hara, C.C.; et al. Research Priorities for Achieving Healthy Marine Ecosystems and Human Communities in a Changing Climate. Front. Mar. Sci. 2020, 7, 5. [Google Scholar] [CrossRef]
- Doney, S.C.; Ruckelshaus, M.; Emmett Duffy, J.; Barry, J.P.; Chan, F.; English, C.A.; Galindo, H.M.; Grebmeier, J.M.; Hollowed, A.B.; Knowlton, N.; et al. Climate Change Impacts on Marine Ecosystems. Ann. Rev. Mar. Sci. 2012, 4, 11–37. [Google Scholar] [CrossRef] [PubMed]
- Fabry, V.J.; Seibel, B.A.; Feely, R.A.; Orr, J.C. Impacts of Ocean Acidification on Marine Fauna and Ecosystem Processes. ICES J. Mar. Sci. 2008, 65, 414–432. [Google Scholar] [CrossRef]
- Rhein, M.; Rintoul, S.; Aoki, S.; Campos, E.; Chambers, D.; Feely, R.; Wang, F. Observations: Ocean. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. In Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: New York, NY, USA, 2013; pp. 255–315. [Google Scholar]
- Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.R.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic Waste Inputs from Land into the Ocean. Science (1979) 2015, 347, 768–771. [Google Scholar] [CrossRef]
- Diaz, R.; Rosenberg, R. Spreading Dead Zones and Consequences for Marine Ecosystems. Science 2008, 321, 926–929. [Google Scholar] [CrossRef]
- Duarte, C.M.; Agusti, S.; Barbier, E.; Britten, G.L.; Castilla, J.C.; Gattuso, J.-P.; Fulweiler, R.W.; Hughes, T.P.; Knowlton, N.; Lovelock, C.E.; et al. Rebuilding Marine Life. Nature 2020, 580, 39–51. [Google Scholar] [CrossRef]
- Gattuso, J.-P.; Magnan, A.K.; Bopp, L.; Cheung, W.W.L.; Duarte, C.M.; Hinkel, J.; Mcleod, E.; Micheli, F.; Oschlies, A.; Williamson, P.; et al. Ocean Solutions to Address Climate Change and Its Effects on Marine Ecosystems. Front. Mar. Sci. 2018, 5. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The Value of Estuarine and Coastal Ecosystem Services. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Danovaro, R.; Aguzzi, J.; Fanelli, E.; Billett, D.; Gjerde, K.; Jamieson, A.; Ramirez-Llodra, E.; Smith, C.R.; Snelgrove, P.V.R.; Thomsen, L.; et al. An Ecosystem-Based Deep-Ocean Strategy. Science (1979) 2017, 355, 452–454. [Google Scholar] [CrossRef]
- Garaba, S.P.; Dierssen, H.M. An Airborne Remote Sensing Case Study of Synthetic Hydrocarbon Detection Using Short Wave Infrared Absorption Features Identified from Marine-Harvested Macro- and Microplastics. Remote Sens. Environ. 2018, 205, 224–235. [Google Scholar] [CrossRef]
- Amani, M.; Moghimi, A.; Mirmazloumi, S.M.; Ranjgar, B.; Ghorbanian, A.; Ojaghi, S.; Ebrahimy, H.; Naboureh, A.; Nazari, M.E.; Mahdavi, S.; et al. Ocean Remote Sensing Techniques and Applications: A Review (Part I). Water 2022, 14, 3400. [Google Scholar] [CrossRef]
- Roemmich, D.; Alford, M.H.; Claustre, H.; Johnson, K.; King, B.; Moum, J.; Oke, P.; Owens, W.B.; Pouliquen, S.; Purkey, S.; et al. On the Future of Argo: A Global, Full-Depth, Multi-Disciplinary Array. Front. Mar. Sci. 2019, 6. [Google Scholar] [CrossRef]
- Riser, S.; Freeland, H.; Roemmich, D.; Wijffels, S.; Belbéoch, M.; Gilbert, D.; Xu, J.; Pouliquen, S.; Thresher, A.; Traon, P.-Y.; et al. Fifteen Years of Ocean Observations with the Global Argo Array. Nature Clim. Change 2016, 6, 145–153. [Google Scholar] [CrossRef]
- Weller, R.; Schmidt, K.; Teinilä, K.; Hillamo, R. Natural New Particle Formation at the Coastal Antarctic Site Neumayer. Atmos. Chem. Phys. 2015, 15, 11399–11410. [Google Scholar] [CrossRef]
- Cole, R.; Kinder, J.; Yu, W.; Ning, C.L.; Wang, F.; Chao, Y. Ocean Climate Monitoring. Front. Mar. Sci. 2019, 6, 503. [Google Scholar] [CrossRef]
- Tanhua, T.; Hainbucher, D.; Cardin, V.; Álvarez, M.; Civitarese, G.; McNichol, A.P.; Key, R.M. Physical Oceanography and Hydrochemistry Measured on Water Bottle Samples During METEOR Cruise M84/3 in 2001 [Dataset Publication Series]. PANGAEA 2013. Supplement to Earth Syst. Sci. Data 2013, 5, 289–294. https://doi.org/10.5194/essd-5-289-2013. [Google Scholar] [CrossRef]
- Chai, F.; Johnson, K.S.; Claustre, H.; Xing, X.; Wang, Y.; Boss, E.; Riser, S.; Fennel, K.; Schofield, O.; Sutton, A. Monitoring Ocean Biogeochemistry with Autonomous Platforms. Nat. Rev. Earth Environ. 2020, 1, 315–326. [Google Scholar] [CrossRef]
- Testor, P.; de Young, B.; Rudnick, D.L.; Glenn, S.; Hayes, D.; Lee, C.M.; Pattiaratchi, C.; Hill, K.; Heslop, E.; Turpin, V.; et al. OceanGliders: A Component of the Integrated GOOS. Front. Mar. Sci. 2019, 6, 422. [Google Scholar] [CrossRef]
- Lumpkin, R.; Pazos, M. Measuring Surface Currents with Surface Velocity Program Drifters: The Instrument, Its Data, and Some Recent Results. In Lagrangian Analysis and Prediction of Coastal and Ocean Dynamics; Griffa, A., Kirwan, A.D., Jr., Mariano, A.J., Özgökmen, T., Rossby, H.T., Eds.; Cambridge University Press: Cambridge, UK, 2007; pp. 39–67. ISBN 9780521870184. [Google Scholar]
- Mills, D.; Laane, R.W.P.M.; Rees, J.; Loeff, M.; Suylen, J.M.; Pearce, D.; Sivyer, D.; Heins, C.; Platt, K.; Rawlinson, M. Smartbuoy: A Marine Environmental Monitoring Buoy with a Difference. Elsevier Oceanogr. Ser. 2003, 69, 311–316. [Google Scholar] [CrossRef]
- Ando, K.; Kuroda, Y.; Fujii, Y.; Fukuda, T.; Hasegawa, T.; Horii, T.; Ishihara, Y.; Kashino, Y.; Masumoto, Y.; Mizuno, K.; et al. Fifteen Years Progress of the TRITON Array in the Western Pacific and Eastern Indian Oceans. J. Oceanogr. 2017, 73, 403–426. [Google Scholar] [CrossRef]
- Le Traon, P.Y.; Reppucci, A.; Alvarez Fanjul, E.; Aouf, L.; Behrens, A.; Belmonte, M.; Bentamy, A.; Bertino, L.; Brando, V.E.; Kreiner, M.B.; et al. From Observation to Information and Users: The Copernicus Marine Service Perspective. Front. Mar. Sci. 2019, 6, 234. [Google Scholar] [CrossRef]
- Akbari, E.; Alavipanah, S.K.; Jeihouni, M.; Hajeb, M.; Haase, D.; Alavipanah, S. A Review of Ocean/Sea Subsurface Water Temperature Studies from Remote Sensing and Non-Remote Sensing Methods. Water 2017, 9, 936. [Google Scholar] [CrossRef]
- Glasgow, H.B.; Burkholder, J.M.; Reed, R.E.; Lewitus, A.J.; Kleinman, J.E. Real-Time Remote Monitoring of Water Quality: A Review of Current Applications, and Advancements in Sensor, Telemetry, and Computing Technologies. J. Exp. Mar. Biol. Ecol. 2004, 300, 409–448. [Google Scholar] [CrossRef]
- Hart, J.K.; Martinez, K. Environmental Sensor Networks: A Revolution in the Earth System Science? Earth Sci. Rev. 2006, 78, 177–191. [Google Scholar] [CrossRef]
- Martz, T.; Johnson, K.; Riser, S. Ocean Metabolism Observed with Oxygen Sensors on Profiling Floats in the South Pacific. Limnol. Oceanogr. 2008, 53, 2094–2111. [Google Scholar] [CrossRef]
- Roundy, S.; Wright, P.K.; Rabaey, J.M. Energy Scavenging for Wireless Sensor Networks: With Special Focus on Vibrations; Springer: New York, NY, USA, 2004; ISBN 978-1-4613-5100-9. [Google Scholar] [CrossRef]
- Paradiso, J.A.; Starner, T. Energy Scavenging for Mobile and Wireless Electronics. IEEE Pervasive Comput. 2005, 4, 18–27. [Google Scholar] [CrossRef]
- Centenaro, M.; Vangelista, L.; Zanella, A.; Zorzi, M. Long-Range Communications in Unlicensed Bands: The Rising Stars in the IoT and Smart City Scenarios. Wirel. Commun. 2016, 23, 60–67. [Google Scholar] [CrossRef]
- Akyildiz, I.F.; Pompili, D.; Melodia, T. Underwater Acoustic Sensor Networks: Research Challenges. Ad. Hoc Netw. 2005, 3, 257–279. [Google Scholar] [CrossRef]
- Özgökmen, T.; Boufadel, M.; Carlson, D.; Cousin, C.; Guigand, C.; Haus, B.; Horstmann, J.; Lund, B.; Molemaker, J.; Novelli, G. Technological Advances for Ocean Surface Measurements by the Consortium for Advanced Research on Transport of Hydrocarbons in the Environment (CARTHE). Mar. Technol. Soc. J. 2018, 52, 71–76. [Google Scholar] [CrossRef]
- van Sebille, E.; Griffies, S.M.; Abernathey, R.; Adams, T.P.; Berloff, P.; Biastoch, A.; Blanke, B.; Chassignet, E.P.; Cheng, Y.; Cotter, C.J.; et al. Lagrangian Ocean Analysis: Fundamentals and Practices. Ocean Model 2018, 121, 49–75. [Google Scholar] [CrossRef]
- Dickey, T. Emerging Ocean Observations for Interdisciplinary Data Assimilation Systems. J. Mar. Syst. 2003, 40, 5–48. [Google Scholar] [CrossRef]
- Danovaro, R.; Fanelli, E.; Aguzzi, J.; Billett, D.; Carugati, L.; Corinaldesi, C.; Dell’Anno, A.; Gjerde, K.; Jamieson, A.J.; Kark, S.; et al. Ecological Variables for Developing a Global Deep-Ocean Monitoring and Conservation Strategy. Nat. Ecol. Evol. 2020, 4, 181–192. [Google Scholar] [CrossRef]
- Lee, H.S.; Shimoyama, T.; Popinet, S. Impacts of Tides on Tsunami Propagation Due to Potential Nankai Trough Earthquakes in the Seto Inland Sea, Japan. J. Geophys. Res. Ocean. 2015, 120, 6865–6883. [Google Scholar] [CrossRef]
- Albaladejo, C.; Soto, F.; Torres, R.; Sánchez, P.; López, J.A. A Low-Cost Sensor Buoy System for Monitoring Shallow Marine Environments. Sensors 2012, 12, 9613–9634. [Google Scholar] [CrossRef]
- Centurioni, L.R. Drifter Technology and Impacts for Sea Surface Temperature, Sea-Level Pressure, and Ocean Circulation Studies. In Observing the Oceans in Real Time; Venkatesan, R., Tandon, A., D’Asaro, E., Atmanand, M.A., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 37–57. ISBN 978-3-319-66493-4. [Google Scholar]
- Eriksen, C.C.; Osse, T.J.; Light, R.D.; Wen, T.; Lehman, T.W.; Sabin, P.L.; Ballard, J.W.; Chiodi, A.M. Seaglider: A Long-Range Autonomous Underwater Vehicle for Oceanographic Research. IEEE J. Ocean. Eng. 2001, 26, 424–436. [Google Scholar] [CrossRef]
- Ngo, T.D.; Kashani, A.; Imbalzano, G.; Nguyen, K.T.Q.; Hui, D. Additive Manufacturing (3D Printing): A Review of Materials, Methods, Applications and Challenges. Compos. B Eng. 2018, 143, 172–196. [Google Scholar] [CrossRef]
- Shimeta, J.; Wilding-McBride, G.; Bott, N.J.; Piola, R.; Santander, R.; Leary, M.; Scardino, A.J. Growth of Marine Biofilms and Macrofouling Organisms on Biocide-Infused, 3D-Printed Thermoplastics. Front. Mar. Sci. 2023, 10. [Google Scholar] [CrossRef]
- Herbers, T.H.C.; Jessen, P.F.; Janssen, T.T.; Colbert, D.B.; MacMahan, J.H. Observing Ocean Surface Waves with GPS-Tracked Buoys. J. Atmos. Ocean. Technol. 2012, 29, 944–959. [Google Scholar] [CrossRef]
- Butler, J.; Pagniello, C. Emerging, Low-Cost Ocean Observing Technologies to Democratize Access to the Ocean. Oceanography 2021, 34, 94–95. [Google Scholar] [CrossRef]
- Whitt, C.; Pearlman, J.; Polagye, B.; Caimi, F.; Muller-Karger, F.; Copping, A.; Spence, H.; Madhusudhana, S.; Kirkwood, W.; Grosjean, L.; et al. Future Vision for Autonomous Ocean Observations. Front. Mar. Sci. 2020, 7, 697. [Google Scholar] [CrossRef]
- Polejack, A.; Coelho, L.F.; Harden-Davies, H.; Elsler, L.; Amon, D.J.; de Vos, A. Hope for an Accessible Ocean: Blue Justice and Ocean Science Diplomacy Central to the Outcome of the UN Decade of Ocean Science. Mar. Policy 2025, 176, 106639. [Google Scholar] [CrossRef]
- Schmidt, W.; Raymond, D.; Parish, D.; Ashton, I.G.C.; Miller, P.I.; Campos, C.J.A.; Shutler, J.D. Design and Operation of a Low-Cost and Compact Autonomous Buoy System for Use in Coastal Aquaculture and Water Quality Monitoring. Aquac. Eng. 2018, 80, 28–36. [Google Scholar] [CrossRef]
- Lumpkin, R.; Özgökmen, T.; Centurioni, L. Advances in the Application of Surface Drifters. Ann. Rev. Mar. Sci. 2017, 9, 59–81. [Google Scholar] [CrossRef]
- Soreide, N.N.; Woody, C.E.; Holt, S.M. Overview of Ocean Based Buoys and Drifters: Present Applications and Future Needs. In Proceedings of the MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295), Honolulu, HI, USA, 5–8 November 2001; Volume 4, pp. 2470–2472. [Google Scholar]
- Vitousek, S.; Buscombe, D.; Vos, K.; Barnard, P.L.; Ritchie, A.C.; Warrick, J.A. The Future of Coastal Monitoring through Satellite Remote Sensing. Camb. Prism. Coast. Futures 2023, 1, e10. [Google Scholar] [CrossRef]
- Tobey, J.; Pamela, R.; Donald, R., Jr.; Glen, R.; Richard, V.; John, F.; and Anderson, G. Practicing Coastal Adaptation to Climate Change: Lessons from Integrated Coastal Management. Coast. Manag. 2010, 38, 317–335. [Google Scholar] [CrossRef]
- Wagener, A.d.L.R. Constraints to the Implementation of Effective Environmental Management in Coastal Areas of Developing Countries. An. Acad. Bras. Cienc. 2005, 77, 613–623. [Google Scholar] [CrossRef]
- Hamilton, A. Buoy Technology. In Springer Handbook of Ocean Engineering; Dhanak, M.R., Xiros, N.I., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 937–962. ISBN 978-3-319-16649-0. [Google Scholar]
- Wang, J.; Wang, Z.; Wang, Y.; Liu, S.; Li, Y. Current Situation and Trend of Marine Data Buoy and Monitoring Network Technology of China. Acta Oceanol. Sin. 2016, 35, 1–10. [Google Scholar] [CrossRef]
- Smyth, T.J.; Fishwick, J.R.; Gallienne, C.P.; Stephens, J.A.; Bale, A.J. Technology, Design, and Operation of an Autonomous Buoy System in the Western English Channel. J. Atmos. Ocean. Technol. 2010, 27, 2056–2064. [Google Scholar] [CrossRef]
Component | Model | Range/Accuracy | Key Features |
---|---|---|---|
Temperature sensor | Dallas DS18B20 | ±0.5 °C, 0.0625 °C resolution | Waterproof, 1–12-bit resolution |
EC probe | Atlas Scientific K 1.0 + EZO-EC circuit | 0.07–50,000 μS/cm, ±2% | Auto temperature compensation |
pH sensor | Atlas Scientific Gen 3 + EZO-pH | 0–14, ±0.002 accuracy | Isolated circuit, marine grade |
GPS module | Quectel L76K | 2.5 m CEP, 1 Hz update | Multi-GNSS, low power mode |
Satellite modem | RockBLOCK 9603 | 340-byte messages | Global Iridium coverage |
Microcontroller | ESP32-WROOM | 240 MHz dual-core | Deep sleep capability |
Power supply | 12 V 10 Ah SLA battery | - | 6 × 12 V 150 mA solar panels |
Component | Active Time/Day | Current (mA) | Energy Use (Wh/day) | % of Total |
---|---|---|---|---|
ESP32 microcontroller | 4 h | 160 | 7.68 | 56.1% |
Satellite modem (RockBLOCK) | 4 h | 100 | 4.80 | 35.0% |
GPS module | 1.2 h | 46 | 0.66 | 4.8% |
Temperature Sensor | 24 h | 1.5 | 0.43 | 3.1% |
EC Probe | 12 min | 50 | 0.12 | 0.9% |
pH Sensor | 12 min | 18.3 | 0.044 | 0.3% |
Total | 13.7 Wh/day | 100% |
Deployment | Date | Sensors Included | Duration | Sampling Interval | Notes |
---|---|---|---|---|---|
#1 | 29 May 2024 | Temp, EC, Salinity, GPS | ~26 h | 10 min | Initial test of full system functionality |
#2A | 19 December 2024 | Temp, EC, Salinity, GPS | ~27 h | 20 min | Same location, without pH |
#2B | 19 December 2024 | Temp, EC, Salinity, GPS, pH | ~56 h | 20 min | Extended test, included pH |
Buoy | Base Cost (Approx. USD) | Tracking Cost (USD) | Total Cost (USD) | Measured Parameters | Communication Method | Notes |
---|---|---|---|---|---|---|
Commercial buoy A | 3400 | Included | 3400 | Position only | Iridium satellite | Full unit cost including tracking |
Commercial buoy B | 485 | 885 | 1370 | Position only | Globalstar satellite network | Cost split reflects optional tracking device |
BOB (this study) | 1810 | Included | 1810 | Position, Temp., salinity, EC, pH | Iridium satellite | Includes integrated sensors and Iridium modem |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Williams, Z.; Soto Calvo, M.; Lee, H.S.; Aljber, M.; Jeong, J.-S. A Low-Cost Autonomous Multi-Functional Buoy for Ocean Currents and Seawater Parameter Monitoring, and Particle Tracking. J. Mar. Sci. Eng. 2025, 13, 1629. https://doi.org/10.3390/jmse13091629
Williams Z, Soto Calvo M, Lee HS, Aljber M, Jeong J-S. A Low-Cost Autonomous Multi-Functional Buoy for Ocean Currents and Seawater Parameter Monitoring, and Particle Tracking. Journal of Marine Science and Engineering. 2025; 13(9):1629. https://doi.org/10.3390/jmse13091629
Chicago/Turabian StyleWilliams, Zachary, Manuel Soto Calvo, Han Soo Lee, Morhaf Aljber, and Jae-Soon Jeong. 2025. "A Low-Cost Autonomous Multi-Functional Buoy for Ocean Currents and Seawater Parameter Monitoring, and Particle Tracking" Journal of Marine Science and Engineering 13, no. 9: 1629. https://doi.org/10.3390/jmse13091629
APA StyleWilliams, Z., Soto Calvo, M., Lee, H. S., Aljber, M., & Jeong, J.-S. (2025). A Low-Cost Autonomous Multi-Functional Buoy for Ocean Currents and Seawater Parameter Monitoring, and Particle Tracking. Journal of Marine Science and Engineering, 13(9), 1629. https://doi.org/10.3390/jmse13091629