An Iterative Physical Acoustics Method for Modeling Acoustic Scattering by Penetrable Objects
Abstract
1. Introduction
2. Methodology
2.1. Thin-Shell Integral Formulation
2.2. Discretization and Numerical Implementation
2.3. Numerical Validation
3. Sail-Scattering Modeling and Experimental Validation
3.1. IPA-Based Sail-Scattering Modeling
3.2. Sail-Scattering Experiment and Validation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Aslam, M.A.; Zhang, L.; Liu, X.; Irfan, M.; Xu, Y.; Li, N.; Zhang, P.; Jiangbin, Z.; Yaan, L. Underwater sound classification using learning based methods: A review. Expert Syst. Appl. 2024, 255, 124498. [Google Scholar] [CrossRef]
- Urick, R.J. Principles of Underwater Sound, 2nd ed.; McGraw-Hill: New York, NY, USA, 1975. [Google Scholar]
- Werby, M.F.; Überall, H. A systematic study of water-filled submerged elastic spherical shells and the resolution of elastic- and water-included resonances. J. Acoust. Soc. Am. 2002, 112, 896–905. [Google Scholar] [CrossRef]
- España, A.L.; Williams, K.L.; Plotnick, D.S.; Marston, P.L. Acoustic scattering from a water-filled cylindrical shell: Measurements, modeling, and interpretation. J. Acoust. Soc. Am. 2014, 136, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Gaunaurd, G.C.; Werby, M.F. Lamb and creeping waves around submerged spherical shells resonantly excited by sound scattering. J. Acoust. Soc. Am. 1987, 82, 2021–2033. [Google Scholar] [CrossRef]
- Gaunaurd, G.C.; Werby, M.F. Sound scattering by resonantly excited, fluid-loaded, elastic spherical shells. J. Acoust. Soc. Am. 1991, 90, 2536–2550. [Google Scholar] [CrossRef]
- Brill, D.; Gaunaurd, G.C. Acoustic resonance scattering by a penetrable cylinder. J. Acoust. Soc. Am. 1983, 73, 1448–1455. [Google Scholar] [CrossRef]
- Everstine, G.C. Finite element formulatons of structural acoustics problems. Comput. Struct. 1997, 65, 307–321. [Google Scholar] [CrossRef]
- Kirkup, S. The Boundary Element Method in Acoustics: A Survey. Appl. Sci. 2019, 9, 1642. [Google Scholar] [CrossRef]
- Everstine, G.C.; Henderson, F.M. Coupled finite element/boundary element approach for fluid–structure interaction. J. Acoust. Soc. Am. 1990, 87, 1938–1947. [Google Scholar] [CrossRef]
- Wu, H.; Yu, L.; Jiang, W. A coupling FEM/BEM method with linear continuous elements for acoustic-structural interaction problems. Appl. Acoust. 2019, 150, 44–54. [Google Scholar] [CrossRef]
- Timoshenko, S.P.; Woinowsky-Krieger, S. Theory of Plates and Shells; McGraw-Hill Companies: New York, NY, USA, 1959. [Google Scholar]
- Burgschweiger, R.; Ochmann, M.; Schäfer, I. Implementation and results of a mass inertia coupling as an extension of the BEM for thin shells. In Proceedings of the 22nd International Congress on Sound and Vibration (ICSV), Florence, Italy, 12–16 July 2015. [Google Scholar]
- Chernokozhin, E.; Tsinovoy, A.; Boag, A. Scattering by thin shells in fluids: Fast solver and experimental validation. JASA Express Lett. 2021, 1, 016002. [Google Scholar] [CrossRef] [PubMed]
- Chernokozhin, E.; Boag, A. Numerical Modeling of Acoustic Scattering by Thin Elastic Shells Immersed in Fluids. TechRxiv 2024. [Google Scholar]
- Williams, K.L.; Marston, P.L. Backscattering from an elastic sphere: Sommerfeld–Watson transformation and experimental confirmation. J. Acoust. Soc. Am. 1985, 78, 1093–1102. [Google Scholar] [CrossRef]
- Yang, Y.; Norris, A.N.; Couchman, L.S. Ray tracing over smooth elastic shells of arbitrary shape. J. Acoust. Soc. Am. 1996, 99, 55–64. [Google Scholar] [CrossRef]
- Fawcett, J.A. Computing the Scattering from Slightly Deformed Spherical Shells—A Ray-Based Approach. IEEE J. Ocean. Eng. 2018, 43, 1161–1170. [Google Scholar] [CrossRef]
- Fan, J.; Liu, T.; Tang, W. The structure of highlight echoes due to specular reflection from shells of immerged target. Tech. Acoust. 2002, 21, 153–157. [Google Scholar]
- Liszka, E.G.; McCoy, J.J. Scattering at a rough boundary—Extensions of the Kirchhoff approximation. J. Acoust. Soc. Am. 1982, 71, 1093–1100. [Google Scholar] [CrossRef]
- McCammon, D.F.; McDaniel, S.T. Surface velocity, shadowing, multiple scattering, and curvature on a sinusoid. J. Acoust. Soc. Am. 1986, 79, 1778–1785. [Google Scholar] [CrossRef]
- Dacol, D.K. The Kirchhoff approximation for acoustic scattering from a rough fluid–elastic solid interface. J. Acoust. Soc. Am. 1990, 88, 978–983. [Google Scholar] [CrossRef]
- Lieuwen, T. Explicit results for wave scattering and transmission through a rough fluid–fluid interface. Appl. Acoust. 2002, 63, 1031–1050. [Google Scholar] [CrossRef]
- Ganesh, M.; Hawkins, S.C. A fast algorithm for the two-dimensional Helmholtz transmission problem with large multiple scattering configurationsa). J. Acoust. Soc. Am. 2024, 156, 752–762. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Wang, B.; Fan, J. Study on target strength prediction method of water-filled acoustic transparent structure. Tech. Acoust. 2021, 40, 316–323. [Google Scholar] [CrossRef]
- Junger, M.C.; Feit, D.; Greenspon, J.E. Sound, Structures, and Their Interaction; MIT Press: Cambridge, MA, USA, 1972. [Google Scholar]
- Wang, W.; Wang, B.; Fan, J. Time-domain Kirchhoff approximation extensions modeling of acoustic camera imagery with multiple scattering. Appl. Acoust. 2023, 211, 109465. [Google Scholar] [CrossRef]
- Wang, W.; Wang, B.; Fan, J.; Zhou, F.; Zhao, K.; Jiang, Z. A simulation method on target strength and circular SAS imaging of X-rudder UUV including multiple acoustic scattering. Def. Technol. 2023, 23, 214–228. [Google Scholar] [CrossRef]
- Pierce, A.D.; Beyer, R.T. Acoustics: An Introduction to Its Physical Principles and Applications; Acoustical Society of America: New York, NY, USA, 1991. [Google Scholar]
- Wang, B.; Wang, W.-h.; Fan, J.; Zhao, K.-q.; Zhou, F.-l.; Tan, L.-w. Modeling of bistatic scattering from an underwater non-penetrable target using a Kirchhoff approximation method. Def. Technol. 2022, 18, 1097–1106. [Google Scholar] [CrossRef]
- Nijhofa, M.; Fillingera, L.; Gilroyb, L.; Ehrlichc, J.; Schäferc, I. BeTSSi IIb: Submarine target strength modeling workshop. In Proceedings of the UACE2017—4th Underwater Acoustics Conference and Exhibition, Skiathos, Greece, 3–8 September 2017; pp. 377–384. [Google Scholar]
- Wu, T.W.; Wan, G.C. Numerical modeling of acoustic radiation and scattering from thin bodies using a Cauchy principal integral equation. J. Acoust. Soc. Am. 1992, 92, 2900–2906. [Google Scholar] [CrossRef]
- Lee, K.; Seong, W. Time-domain Kirchhoff model for acoustic scattering from an impedance polygon facet. J. Acoust. Soc. Am. 2009, 126, EL14–EL21. [Google Scholar] [CrossRef] [PubMed]
- Gordon, W. Far-field approximations to the Kirchoff-Helmholtz representations of scattered fields. IEEE Trans. Antennas Propag. 1975, 23, 590–592. [Google Scholar] [CrossRef]
- Multiphysics, C. COMSOL. Available online: http://cn.comsol.com (accessed on 1 August 2025).
- Frisk, G.V.; Dickey, J.W.; Überall, H. Surface wave modes on elastic cylinders. J. Acoust. Soc. Am. 1975, 58, 996–1008. [Google Scholar] [CrossRef]
- Ufimtsev; Yakovlevich, P. Fundamentals of the Physical Theory of Diffraction; Wiley: New York, NY, USA, 2007. [Google Scholar]
Parameter Name | Symbol | Value | Unit |
Density of water | 1000 | ||
Longitudinal velocity of water | 1500 | ||
Density of shell | 7800 | ||
Young’s modulus of shell | 200 | GPa | |
Poisson’s ratio of shell | 0.30 | / | |
Longitudinal velocity of shell | 5790 | ||
Shear velocity of shell | 3100 | ||
Outer radius | 1 | m | |
Thickness of shell | 3 | mm |
Parameter Name | Symbol | Value | Unit |
---|---|---|---|
Length of upper surface | 1.23 | m | |
Length of lower surface | 1.30 | m | |
Height | 0.35 | m | |
Shell thickness | 1.50 | mm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.; Xie, Y.; Wang, B.; Fan, J. An Iterative Physical Acoustics Method for Modeling Acoustic Scattering by Penetrable Objects. J. Mar. Sci. Eng. 2025, 13, 1611. https://doi.org/10.3390/jmse13091611
Wang W, Xie Y, Wang B, Fan J. An Iterative Physical Acoustics Method for Modeling Acoustic Scattering by Penetrable Objects. Journal of Marine Science and Engineering. 2025; 13(9):1611. https://doi.org/10.3390/jmse13091611
Chicago/Turabian StyleWang, Wenhuan, Yi Xie, Bin Wang, and Jun Fan. 2025. "An Iterative Physical Acoustics Method for Modeling Acoustic Scattering by Penetrable Objects" Journal of Marine Science and Engineering 13, no. 9: 1611. https://doi.org/10.3390/jmse13091611
APA StyleWang, W., Xie, Y., Wang, B., & Fan, J. (2025). An Iterative Physical Acoustics Method for Modeling Acoustic Scattering by Penetrable Objects. Journal of Marine Science and Engineering, 13(9), 1611. https://doi.org/10.3390/jmse13091611