Evaluation of Free-Surface Exposure Effects on Tidal Turbine Performance Using CFD
Abstract
1. Introduction
2. Methodology
2.1. Mathematical Formulation
2.2. Geometry and Simulation Scenarios
2.3. Computational Domain and Boundary Conditions
2.4. Mesh Generation
3. Validation and Verification Studies
3.1. Validation Study
3.2. Verification Study
4. Result
4.1. Quantitative Evaluation of Free-Surface Exposure Effect
4.2. Comparison in Terms of Torque Components
4.3. Torque Variations Acting on a Single Blade
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Symbols | Description | Unit |
---|---|---|
Swept area of the turbine | ||
Power coefficient | ||
Thrust coefficient | ||
Turbine diameter | ||
Blade radius of the turbine | ||
r/R | Non-dimensional radius | |
Rotational speed of the turbine | ||
Density of fluid | ||
Reynolds stress | ||
Mean viscous tensor components | ||
T | Period for one complete rotation | |
TSR | Tip speed ratio | |
Current velocity (inlet velocity) | ||
Grid Convergence Index for fine mesh | % | |
VOF | Volume of Fluid | |
HRIC | High-Resolution Interface Capturing | |
SIMPLE | Semi-Implicit Method for Pressure-Linked Equations | |
MRF | Moving Reference Frame | |
URANS | Unsteady Reynolds-Averaged Navier–Stokes |
References
- Zhang, J.; Moreau, L.; Machmoum, M.; Guillerm, P.E. State of the art in tidal current energy extracting technologies. In Proceedings of the 2014 First International Conference on Green Energy ICGE 2014, Sfax, Tunisia, 25–27 March 2014. [Google Scholar]
- Lewis, M.; Murray, R.O.; Fredriksson, S.; Maskell, J.; de Fockert, A.; Neill, S.P.; Robins, P.E. A standardised tidal-stream power curve, optimised for the global resource. Renew. Energy 2021, 170, 1308–1323. [Google Scholar] [CrossRef]
- Gaurier, B.; Carlier, C.; Germain, G.; Pinon, G.; Rivoalen, E. Three tidal turbines in interaction: An experimental study of turbulence intensity effects on wakes and turbine performance. Renew. Energy 2020, 148, 1150–1164. [Google Scholar] [CrossRef]
- Zhang, Y.; Peng, B.; Zheng, J.; Zheng, Y.; Tang, Q.; Liu, Z.; Xu, J.; Wang, Y.; Fernandez-Rodriguez, E. The impact of yaw motion on the wake interaction of adjacent floating tidal stream turbines under free surface condition. Energy 2023, 283, 129071. [Google Scholar] [CrossRef]
- Bahaj, A.S.; Molland, A.F.; Chaplin, J.R.; Batten, W.M.J. Power and thrust measurements of marine current turbines under various hydrodynamic flow conditions in a cavitation tunnel and a towing tank. Renew. Energy 2007, 32, 407–426. [Google Scholar] [CrossRef]
- Wang, D.; Atlar, M.; Sampson, R. An experimental investigation on cavitation, noise, and slipstream characteristics of ocean stream turbines. Proc. Inst. Mech. Eng. Part A J. Power Energy 2007, 221, 219–231. [Google Scholar] [CrossRef]
- Koh, W.; Ng, E. A CFD study on the performance of a tidal turbine under various flow and blockage conditions. Renew. Energy 2017, 107, 124–137. [Google Scholar] [CrossRef]
- Apsley, D.D. CFD simulation of tidal-stream turbines in a compact array. Renew. Energy 2024, 224, 120133. [Google Scholar] [CrossRef]
- Nuernberg, M.; Tao, L. Three dimensional tidal turbine array simulations using OpenFOAM with dynamic mesh. Ocean. Eng. 2018, 147, 629–646. [Google Scholar] [CrossRef]
- Harrison, M.; Batten, W.; Myers, L.; Bahaj, A. Comparison between CFD simulations and experiments for predicting the far wake of horizontal axis tidal turbines. IET Renew. Power Gener. 2010, 4, 613–627. [Google Scholar] [CrossRef]
- Gebreslassie, M.G.; Tabor, G.R.; Belmont, M.R. Investigation of the performance of a staggered configuration of tidal turbines using CFD. Renew. Energy 2015, 80, 690–698. [Google Scholar] [CrossRef]
- Jeffcoate, P.; Salvatore, F.; Boake, C.; Elsaesser, B.; Vallerano, V. Effect of submergence on tidal turbine performance. In Proceedings of the 11th European Wave and Tidal Energy Conference, Nantes, France, 6–11 September 2015. [Google Scholar]
- Yan, J.; Deng, X.; Korobenko, A.; Bazilevs, Y. Free-surface flow modeling and simulation of horizontal-axis tidal-stream turbines. Comput. Fluids 2017, 158, 157–166. [Google Scholar] [CrossRef]
- Ferziger, J.H.; Perić, M.; Street, R.L. Computational Methods for Fluid Dynamics; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Shi, W.; Rosli, R.; Atlar, M.; Norman, R.; Wang, D.; Yang, W. Hydrodynamic performance evaluation of a tidal turbine with leading-edge tubercles. Ocean. Eng. 2016, 117, 246–253. [Google Scholar] [CrossRef]
- Song, S.; Demirel, Y.K.; Atlar, M.; Shi, W. Prediction of the fouling penalty on the tidal turbine performance and development of its mitigation measures. Appl. Energy 2020, 276, 115498. [Google Scholar] [CrossRef]
- Machado, L.d.V.; Fernandes, A.C. Proposals to Improve Load and Cavitation Computational Fluid Dynamics Analysis with Moving Reference Frame of a Conventional Propeller. J. Offshore Mech. Arct. Eng. 2021, 143, 021901. [Google Scholar] [CrossRef]
- Celik, I.B.; Ghia, U.; Roache, P.J.; Freitas, C.J.; Coleman, H.; Raad, P.E. Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. J. Fluids Eng.-Trans. ASME 2008, 130, 078001. [Google Scholar]
Main Dimension | |
---|---|
Diameter (m) | 20 |
Number of blades | 3 |
Immersion of shaft (m) | 20 |
Rotation rate (RPM) | 12 |
Current speed (m/s) | 3.2 |
Airfoil | S814 |
r/R | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 |
---|---|---|---|---|---|---|---|---|---|
Chord length (m) | 3.218 | 3.003 | 2.788 | 2.574 | 2.359 | 2.144 | 1.930 | 1.715 | 1.50 |
Pitch angle (deg) | 35.33 | 23.33 | 15.83 | 12.33 | 10.33 | 8.83 | 7.93 | 7.03 | 6.33 |
No. Cells | |||
---|---|---|---|
Coarse | 1,040,788 | 4.62 × 10−1 | 8.31 × 10−1 |
Medium | 1,654,709 | 4.67 × 10−1 | 8.29 × 10−1 |
Fine | 2,531,253 | 4.69 × 10−1 | 8.34 × 10−1 |
0.37% | 0.27% |
Spatial Convergence Test | No. Cells | |||
---|---|---|---|---|
1,299,546 | 2.48 × 10−1 | 4.76 × 10−1 | ||
2,644,462 | 2.53 × 10−1 | 4.83 × 10−1 | ||
3,579,152 | 2.53 × 10−1 | 4.83 × 10−1 | ||
0.03% | 0.01% | |||
Temporal Convergence Test | (s) | |||
0.02 | 2.45 × 10−1 | 4.64 × 10−1 | ||
0.01 | 2.56 × 10−1 | 4.91 × 10−1 | ||
0.005 | 2.53 × 10−1 | 4.83 × 10−1 | ||
0.75% | 0.90% |
0.1D Immersion Depth | 0.3D Immersion Depth | 0.5D Immersion Depth | |
---|---|---|---|
TSR 3 | 45.51% | 18.35% | 1.92% |
TSR 4 | 45.19% | 18.28% | 1.32% |
TSR 5 | 44.36% | 18.35% | 0.60% |
TSR 6 | 41.17% | 16.32% | 0.44% |
Variation in | 0.1D Immersion Depth | 0.3D Immersion Depth | 0.5D Immersion Depth |
TSR 3 | 43.13% | 16.46% | 1.04% |
TSR 4 | 42.92% | 16.87% | 0.89% |
TSR 5 | 41.89% | 16.99% | 0.39% |
TSR 6 | 39.35% | 14.91% | 0.22% |
Deep Water | 0.1D Immersion Depth | 0.3D Immersion Depth | 0.5D Immersion Depth | |
---|---|---|---|---|
TSR 3 | 4.41 × 10−1 | 2.40 × 10−1 | 3.60 × 10−1 | 4.32 × 10−1 |
TSR 4 | 4.61 × 10−1 | 2.53 × 10−1 | 3.77 × 10−1 | 4.55 × 10−1 |
TSR 5 | 4.44 × 10−1 | 2.47 × 10−1 | 3.63 × 10−1 | 4.42 × 10−1 |
TSR 6 | 4.03 × 10−1 | 2.36 × 10−1 | 3.37 × 10−1 | 4.01 × 10−1 |
Deep Water | 0.1D Immersion Depth | 0.3D Immersion Depth | 0.5D Immersion Depth | |
TSR 3 | 7.66 × 10−1 | 4.36 × 10−1 | 6.40 × 10−1 | 7.58 × 10−1 |
TSR 4 | 8.46 × 10−1 | 4.83 × 10−1 | 7.04 × 10−1 | 8.39 × 10−1 |
TSR 5 | 8.66 × 10−1 | 5.03 × 10−1 | 7.19 × 10−1 | 8.63 × 10−1 |
TSR 6 | 8.63 × 10−1 | 5.23 × 10−1 | 7.34 × 10−1 | 8.61 × 10−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, G.; Choi, W.; Yun, H.; Do, Y.; Kim, K.; Shi, W.; Dai, S.; Kim, D.; Song, S. Evaluation of Free-Surface Exposure Effects on Tidal Turbine Performance Using CFD. J. Mar. Sci. Eng. 2025, 13, 1589. https://doi.org/10.3390/jmse13081589
Min G, Choi W, Yun H, Do Y, Kim K, Shi W, Dai S, Kim D, Song S. Evaluation of Free-Surface Exposure Effects on Tidal Turbine Performance Using CFD. Journal of Marine Science and Engineering. 2025; 13(8):1589. https://doi.org/10.3390/jmse13081589
Chicago/Turabian StyleMin, Gyeongseo, Wooseok Choi, Haechan Yun, Younguk Do, Kangmin Kim, Weichao Shi, Saishuai Dai, Daejeong Kim, and Soonseok Song. 2025. "Evaluation of Free-Surface Exposure Effects on Tidal Turbine Performance Using CFD" Journal of Marine Science and Engineering 13, no. 8: 1589. https://doi.org/10.3390/jmse13081589
APA StyleMin, G., Choi, W., Yun, H., Do, Y., Kim, K., Shi, W., Dai, S., Kim, D., & Song, S. (2025). Evaluation of Free-Surface Exposure Effects on Tidal Turbine Performance Using CFD. Journal of Marine Science and Engineering, 13(8), 1589. https://doi.org/10.3390/jmse13081589