Dynamic Event-Triggering Surrounding Control for Multi-USVs Under FDI Attacks via Adaptive Dynamic Programming
Abstract
1. Introduction
2. Materials and Methods
2.1. Communication Network Diagram of USV
2.2. The Dynamical Model of USV
2.3. The Surrounding Control for Multi-USVs
2.4. Design of a Preset Time Controller Based on ADP and Dynamic Event-Triggering Mechanism
2.4.1. Predefined-Time FDI Attack Observer Design
2.4.2. Tracking Error Subsystem of USVs
2.4.3. ADP-Based Optimal Time-Varying Surrounding Control
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
USVs | Unmanned surface vehicles |
FDI | False data injection |
PPC | Prescribed performance control |
DET | Dynamic event-triggering |
PTO | Predefined-time observer |
MASs | Multi-agent systems |
FTESO | Fixed-time extended state observer |
CLSs | Closed-loop systems |
RL | Reinforcement learning |
NN | Neural network |
SMC | Sliding mode control |
PE | Persistent excitation |
IDETM | improved dynamic event-triggered mechanism |
PPCADP | Prescribed-performance control ADP |
TADP | Traditional ADP |
DETC | Dynamic event-triggered control |
Symbols and terms. | |
The directed communication network of USVs | |
The node set among the directed graph | |
The edge set among the directed graph | |
The adjacency matrix of multi-USVs, | |
The connection weight between the ith USV and jth USV | |
The in-degree matrix of USVs | |
The Laplacian matrix of USV | |
The Laplacian matrix of digraph | |
The state of ith USV | |
the state of target USV | |
The position state of ith USV | |
The yaw angle of ith USV | |
The surge, sway, yaw velocities | |
The velocity vector of ith USV | |
The control input | |
The inertia matrix | |
The skew-symmetric Coriolis force matrix | |
The damping matrix | |
) | |
The false information injected by the attacker | |
The FDI attacks probability matrix | |
Random variables that follow the Bernoulli distribution | |
The time-varying surrounding function | |
The RL-based controller | |
The feedforward control law | |
The estimation error | |
The position error of ith USV relative to its neighbor | |
The velocity tracking error of ith USV relative to its neighbor | |
The prescribed performance function | |
The sampling error of ith USV | |
The performance index function for the ith USV |
References
- Zhao, J.; Li, X.; Yu, X.; Wang, H. Finite-Time Cooperative Control for Bearing-Defined Leader-Following Formation of Multiple Double-Integrators. IEEE Trans. Cybern. 2022, 52, 13363–13372. [Google Scholar] [CrossRef]
- Hu, B.-B.; Zhang, H.-T. Bearing-Only Motional Target-Surrounding Control for Multiple Unmanned Surface Vessels. IEEE Trans. Ind. Electron. 2022, 69, 3988–3997. [Google Scholar] [CrossRef]
- An, B.; Wang, B.; Fan, H.; Liu, L.; Hu, H.; Wang, Y. Fully distributed prescribed performance formation control for UAVs with unknown maneuver of leader. Aerosp. Sci. Technol. 2022, 130, 107886. [Google Scholar] [CrossRef]
- Hu, B.-B.; Zhang, H.-T.; Wang, J. Multiple-Target Surrounding and Collision Avoidance With Second-Order Nonlinear Multiagent Systems. IEEE Trans. Ind. Electron. 2021, 68, 7454–7463. [Google Scholar] [CrossRef]
- Skjetne, R.; Fossen, T.I.; Kokotović, P.V. Adaptive maneuvering, with experiments, for a model ship in a marine control laboratory. Automatica 2005, 41, 289–298. [Google Scholar] [CrossRef]
- He, S.; Wang, M.; Dai, S.-L.; Luo, F. Leader–Follower Formation Control of USVs With Prescribed Performance and Collision Avoidance. IEEE Trans. Ind. Inform. 2019, 15, 572–581. [Google Scholar] [CrossRef]
- Li, J.; Fan, Y.; Liu, J. Distributed fixed-time formation tracking control for multiple underactuated USVs with lumped uncertainties and input saturation. ISA Trans. 2024, 154, 186–198. [Google Scholar] [CrossRef]
- Wang, L.; Zhu, D.; Pang, W.; Luo, C. A Novel Obstacle Avoidance Consensus Control for Multi-AUV Formation System. IEEE/CAA J. Autom. Sin. 2023, 10, 1304–1318. [Google Scholar] [CrossRef]
- Jin, X. Fault tolerant finite-time leader–follower formation control for autonomous surface vessels with LOS range and angle constraints. Automatica 2016, 68, 228–236. [Google Scholar] [CrossRef]
- Xiong, H.; Zhang, Y. Time-Varying Formation-Surrounding Control for Multiquadrotors Pursuit–Evasion Games With Disturbances and Collision Avoidance. IEEE Trans. Aerosp. Electron. Syst. 2025, 61, 522–541. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, H.-T.; Ding, Y.; Ren, W. Event-Triggered Surrounding Formation Control of Multiagent Systems for Multiple Dynamic Targets. IEEE Trans. Control Netw. Syst. 2023, 10, 752–764. [Google Scholar] [CrossRef]
- Ding, Y.; Ren, W. Sampled-data containment control for double-integrator agents with dynamic leaders with nonzero inputs. Syst. Control Lett. 2020, 139, 104673. [Google Scholar] [CrossRef]
- Wang, N.; Gao, Y.; Zhao, H.; Ahn, C.K. Reinforcement Learning-Based Optimal Tracking Control of an Unknown Unmanned Surface Vehicle. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 3034–3045. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, G.; Dong, Q. Adaptive dynamic programming-based adaptive-gain sliding mode tracking control for fixed-wing unmanned aerial vehicle with disturbances. Int. J. Robust Nonlinear Control. 2023, 33, 1065–1097. [Google Scholar] [CrossRef]
- Bechlioulis, C.P.; Rovithakis, G.A. Robust Adaptive Control of Feedback Linearizable MIMO Nonlinear Systems With Prescribed Performance. IEEE Trans. Autom. Control 2008, 53, 2090–2099. [Google Scholar] [CrossRef]
- Wang, N.; Gao, Y.; Zhang, X. Data-Driven Performance-Prescribed Reinforcement Learning Control of an Unmanned Surface Vehicle. IEEE Trans. Neural Netw. Learn. Syst. 2021, 32, 5456–5467. [Google Scholar] [CrossRef]
- Hu, Q.; Shao, X.; Guo, L. Adaptive Fault-Tolerant Attitude Tracking Control of Spacecraft With Prescribed Performance. IEEE/ASME Trans. Mechatron. 2018, 23, 331–341. [Google Scholar] [CrossRef]
- Xiao, B.; Zhang, H.; Chen, Z.; Cao, L. Fixed-Time Fault-Tolerant Optimal Attitude Control of Spacecraft With Performance Constraint via Reinforcement Learning. IEEE Trans. Aerosp. Electron. Syst. 2023, 59, 7715–7724. [Google Scholar] [CrossRef]
- Gong, W.; Li, B.; Yang, Y.; Xiao, B.; Ran, D. Leader-following output-feedback consensus for second order multiagent systems with arbitrary convergence time and prescribed performance. ISA Trans. 2023, 141, 251–260. [Google Scholar] [CrossRef]
- Nie, J.; Zhang, X.; Wang, H.; Sheng, C.; Zhang, C.; Zhang, C. Anti-saturation distributed fixed-time prescribed performance sliding mode formation control based on FXESO for uncertain USVs. Ocean Eng. 2025, 318, 120101. [Google Scholar] [CrossRef]
- Liu, H.; Chen, Y.; Tian, X.; Mai, Q. Reinforcement learning control for USVs using prescribed performance sliding surfaces and an event-triggered strategy. Ocean Eng. 2024, 306, 118045. [Google Scholar] [CrossRef]
- Feng, K.; Li, K.; Li, Y. Finite-Time Formation Tracking Control for USVs Based on Dynamic Event-triggered Mechanism. In Proceedings of the 2023 IEEE International Conference on Unmanned Systems (ICUS), Hefei, China, 13–15 October 2023; pp. 1148–1153. [Google Scholar] [CrossRef]
- Ma, Y.; Che, W.; Deng, C. Event-triggered model-free adaptive control for nonlinear cyber-physical systems with false data injection attacks. Int. J. Robust Nonlinear Control 2022, 32, 2442–2452. [Google Scholar] [CrossRef]
- Huang, S.; Zhang, Y. Secrecy Rate Optimization for Multi-User Secure Communication Assisted by Intelligent Reflecting Surfaces (IRS) Under Imperfect CSI Conditions. Trans. Emerg. Telecommun. Technol. 2025, 36, 70117. [Google Scholar] [CrossRef]
- Zhan, W.; Miao, Z.; Chen, Y.; Wu, Z.-G.; Wang, Y. Event-Triggered Finite-Time Formation Control for Networked Nonholonomic Mobile Robots Under Denial-of-Service Attacks. IEEE Trans. Netw. Sci. Eng. 2023, 10, 354–368. [Google Scholar] [CrossRef]
- He, W.; Gao, X.; Zhong, W.; Qian, F. Secure impulsive synchronization control of multi-agent systems under deception attacks. Inf. Sci. 2018, 459, 354–368. [Google Scholar] [CrossRef]
- Mu, X.; Gu, Z.; Lu, Q. Memory-event-triggered consensus control for multi-UAV systems against deception attacks. ISA Trans. 2023, 139, 95–105. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Mendis, G.J.; Wei, J. Real-Time Detection of False Data Injection Attacks in Smart Grid: A Deep Learning-Based Intelligent Mechanism. IEEE Trans. Smart Grid 2017, 8, 2505–2516. [Google Scholar] [CrossRef]
- He, W.; Mo, Z.; Han, Q.-L.; Qian, F. Secure impulsive synchronization in Lipschitz-type multi-agent systems subject to deception attacks. IEEE/CAA J. Autom. Sin. 2020, 7, 1326–1334. [Google Scholar] [CrossRef]
- Tahoun, A.; Arafa, M. Cooperative control for cyber–physical multi-agent networked control systems with unknown false data-injection and replay cyber-attacks. ISA Trans. 2021, 110, 1–14. [Google Scholar] [CrossRef]
- Amini, A.; Mohammadi, A.; Asif, A.; Hou, M.; Plataniotis, K.N. Fault-Tolerant Periodic Event-Triggered Consensus Under Communication Delay and Multiple Attacks. IEEE Syst. J. 2022, 16, 6338–6349. [Google Scholar] [CrossRef]
- Zuo, S.; Yue, D. Resilient Output Formation Containment of Heterogeneous Multigroup Systems Against Unbounded Attacks. IEEE Trans. Cybern. 2022, 52, 1902–1910. [Google Scholar] [CrossRef]
- Zuo, S.; Yue, D. Resilient Containment of Multigroup Systems Against Unknown Unbounded FDI Attacks. IEEE Trans. Ind. Electron. 2022, 69, 2864–2873. [Google Scholar] [CrossRef]
- Zhang, D.-W.; Liu, G.-P. Predictive sliding-mode control of networked high-order fully actuated systems under random deception attacks. Sci. China Inf. Sci. 2023, 66, 190204. [Google Scholar] [CrossRef]
- Zhang, D.-W.; Liu, G.-P. Predictive Sliding-Mode Control for Networked High-Order Fully Actuated Multiagents Under Random Deception Attacks. IEEE Trans. Syst. Man Cybern. Syst. 2024, 54, 484–496. [Google Scholar] [CrossRef]
- Li, D.; Zhang, W.; He, W.; Li, C.; Ge, S.S. Two-Layer Distributed Formation-Containment Control of Multiple Euler–Lagrange Systems by Output Feedback. IEEE Trans. Cybern. 2019, 49, 675–687. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Li, C.; Xiao, B.; Guo, Y. Formation-containment control of networked Euler–Lagrange systems: An event-triggered framework. ISA Trans. 2019, 86, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Xiong, H.; Zhang, Y. Reinforcement learning-based formation-surrounding control for multiple quadrotor UAVs pursuit-evasion games. ISA Trans. 2024, 145, 205–224. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, H.; Xiao, B.; Dong, K. Command-filtered incremental backstepping attitude control of spacecraft with predefined-time stability. Aerosp. Sci. Technol. 2024, 155, 109552. [Google Scholar] [CrossRef]
- Xue, S.; Luo, B.; Liu, D. Event-Triggered Adaptive Dynamic Programming for Zero-Sum Game of Partially Unknown Continuous-Time Nonlinear Systems. IEEE Trans. Syst. Man Cybern. Syst. 2020, 50, 3189–3199. [Google Scholar] [CrossRef]
- Li, B.; Gong, W.; Xiao, B.; Yang, Y. Distributed prescribed-time leader-following formation control for second-order multi-agent systems with mismatched disturbances. Int. J. Robust Nonlinear Control 2023, 33, 9781–9803. [Google Scholar] [CrossRef]
- Xiong, H.; Zhang, Y. Dynamic Event-Triggering Formation-Surrounding Control for Multiagent Pursuit-Evasion Games under DoS Attacks. IEEE Internet Things J. 2025, 1–14. [Google Scholar] [CrossRef]
- Zhao, M.; Li, H. Distributed Model Predictive Contouring Control of Unmanned Surface Vessels. IEEE Trans. Ind. Electron. 2024, 71, 13012–13019. [Google Scholar] [CrossRef]
- Gao, Z.; Guo, G. Fixed-time sliding mode formation control of AUVs based on a disturbance observer. IEEE/CAA J. Autom. Sin. 2020, 7, 539–545. [Google Scholar] [CrossRef]
- Owais, M.; Moussa, G.S. Global sensitivity analysis for studying hot-mix asphalt dynamic modulus parameters. Constr. Build. Mater. 2024, 413, 134775. [Google Scholar] [CrossRef]
- Idriss, L.K.; Owais, M. Global sensitivity analysis for seismic performance of shear wall with high-strength steel bars and recycled aggregate concrete. Constr. Build. Mater. 2024, 411, 134498. [Google Scholar] [CrossRef]
Parameters | Values | Parameters | Values |
---|---|---|---|
25.8 kg | |||
33.8 kg | |||
1.0948 kg | |||
1.0948 kg | |||
2.76 kg | |||
Parameters | Values | Parameters | Values |
---|---|---|---|
1 | |||
0.2 | |||
10 | |||
10 s | |||
1.1 | |||
1 | |||
1.2 | |||
1.5 | |||
0.5 | |||
0.01 | |||
1 | 1.1 | ||
1 | 0.5 |
Parameters | Values |
---|---|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, D.; Zhang, Y.; Hu, Q. Dynamic Event-Triggering Surrounding Control for Multi-USVs Under FDI Attacks via Adaptive Dynamic Programming. J. Mar. Sci. Eng. 2025, 13, 1588. https://doi.org/10.3390/jmse13081588
Wang D, Zhang Y, Hu Q. Dynamic Event-Triggering Surrounding Control for Multi-USVs Under FDI Attacks via Adaptive Dynamic Programming. Journal of Marine Science and Engineering. 2025; 13(8):1588. https://doi.org/10.3390/jmse13081588
Chicago/Turabian StyleWang, Dongwei, Ying Zhang, and Qing Hu. 2025. "Dynamic Event-Triggering Surrounding Control for Multi-USVs Under FDI Attacks via Adaptive Dynamic Programming" Journal of Marine Science and Engineering 13, no. 8: 1588. https://doi.org/10.3390/jmse13081588
APA StyleWang, D., Zhang, Y., & Hu, Q. (2025). Dynamic Event-Triggering Surrounding Control for Multi-USVs Under FDI Attacks via Adaptive Dynamic Programming. Journal of Marine Science and Engineering, 13(8), 1588. https://doi.org/10.3390/jmse13081588