Ocean Acidification and Aquacultured Seaweeds: Progress and Knowledge Gaps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Resource Identification
2.2. Scoping and Screening
2.3. Article Analysis
Region | Species | CCM Type | Variable | Main Findings | References |
---|---|---|---|---|---|
Temperate | Alaria esculenta | 3 | Photosynthetic activity, biochemical composition (lipid content), enzymatic activities (eCA) | Increase in growth, lipid content, and photosynthetic efficiency (Fv/Fm) under elevated CO2, with lower photon requirements; enzymes are not sensitive to changes in CO2. | [57,58,59,60] |
Saccharina japonica | 1, 2, 3 | Iodine accumulation, photosynthetic efficiency, photosynthetic oxygen, germination | Tissue growth enhanced under lower pH with a simultaneous increase in iodine accumulation; inhibition of photosynthetic rate is relatively higher under lower pH, and the photosynthetic efficiency (Fv/Fm) is not much affected; reduction in meiospore germination and reproduction rate. | [10,51,61,62,63,64,65,66] | |
Saccharina latissima | 2 and 3 | Photosynthetic acclimation, pigment composition | Photosynthesis and growth rates are negatively affected; CCMs are deactivated; optimal temperature for growth is 5–15 °C; no effects on biochemical composition. | [17,34,57,67,68,69,70] | |
Undaria pinnatifida | 2 and 3 | Gametophyte development | No significant impact on meiospore germination but increase in germling growth rates and gametophyte sizes when seawater pH is reduced from 8.40 to 7.20; rates of net photosynthesis (NPS) of gametophytes and juvenile sporophytes start to decrease when pH drops from 7.20 to 5.5. | [1,10,12,65,71,72,73] | |
Pyropia sp. | 1 and 2 | Photosynthetic rate, growth rate | Increase in growth and nutrient uptake; growth of thalli enhanced by 30% at pH of 6 and 7; photosynthetic rate increases when pH drops from 7 to 6, but photosynthesis and respiration rate decrease at pH of 4 and 5; tissue death when low pH conditions are prolonged. | [1,4,74,75,76,77,78,79,80] | |
Gracilaria sp. | 2 and 3 | Growth rate, photosynthesis, photosynthetic inorganic carbon uptake, iodine accumulation | Growth rate increases through carbon uptake; enhanced carbon/nitrogen ration; photosynthetic pigments remain unchanged; increase in photosynthetic acclimation; increase in iodine accumulation under elevated dissolved CO2. | [1,4,12,16,61,81,82,83,84,85] | |
Chondrus crispus | 2 and 3 | Photosynthetic rate | Able to acclimatise when oceanic pH decreases, and photosynthetic rate is maintained; carbon fixation rate is highest at pH of 7. | [1,18,29,86,87,88] | |
Sargassum fusiforme | 1, 2, 3 | Growth rate, nitrogen assimilation, photorespiration | Photosynthetic rate is maintained under increase in CO2 since the species is able to tolerate pH declines with enhanced relative growths; biomass increase was associated with nitrogen assimilation within tissues. | [12,27,39,89,90] | |
Macrocystis pyrifera | 1, 2, 3 | Germination rate, gametophyte development, iodine accumulation, growth rate, photosynthetic rate | Meiospore germination, gametophyte development, and spore production and recruitment negatively affected in acidified conditions; iodine accumulation slightly increases, and tissue growth exhibited under elevated pCO2; no changes in growth and photosynthetic rate but increased uptake of CO2. | [18,61,90,91,92,93,94] | |
Sargassum vulgare | 1, 2, 3 | Alginate content, polysaccharides content, bioactivity (antibacterial activity, antifungal activity), carbohydrate availability, antioxidant capacity, enzymatic activities, photosynthetic rates | This species is able to acclimatise to low pH conditions of 6–6.7; secondary metabolites are lower; bioactive properties grow naturally in acidified conditions; alginate content higher in acidified conditions; increase in dissolved CO2 results in increased bioactivity, antioxidant capacity, enzyme activity, photosynthetic rate, and polysaccharide content. | [95,96,97,98,99] | |
Porphyra sp. | 2 and 3 | Growth rate | Increase in growth. | [16,94] | |
Ulva rigida | 2 and 3 | Growth rate and assimilation (carbon and nitrogen), HCO3-utilisation, photosynthetic rate, dark respiration rate, soluble protein content, inactivation of CCMs, nitrogen metabolism | Increase in growth rate and nutrient assimilation especially for carbon and nitrogen under acidified conditions; photosynthetic rate, dark respiration, and soluble protein reduced with increased dissolved CO2; photosynthesis process is negatively affected due to the inactivation of CCMs. | [99,100,101] | |
Fucus vesiculosus | 2 and 3 | Growth, nutritional quality, carbon and nitrogen content, fertility | Reduction in growth and C:N ratio; no changes in other elemental compositions; increase in pCO2 alter temporal development of fertility, according to the changes in temperature seasonally. | [45,101,102,103,104] | |
Tropical | Gracilaria sp. | 2 and 3 | Growth rate, photosynthesis, gephotosynthetic inorganic carbon uptake, iodine accumulation | Growth rate increases through carbon uptake; no significant effect on maximum relative electron transport rates (rETRmax); increase in iodine accumulation under elevated dissolved CO2. | [1,4,12,82,105,106,107] |
Undaria pinnatifida | 2 and 3 | Photosynthesis, gametophyte development, germling growth rate | No significant impact on meiospore germination; increase in germling growth rate, and gametophyte size when seawater pH is reduced from 8.40 to 7.20; rates of net photosynthesis of gametophytes and juvenile sporophytes decrease when pH drops from 7.20 to 5.5. | [12,72,73,108] | |
Kappaphycus alvarezii | 1 and 3 | Daily growth rate (DGR), photosynthesis | DGR decreases at pH 6 due to the low availability of photosynthetic carbon sources in low pH conditions; decrease in efficiency of CO2 accumulation. | [1,12,13,18,93,109] | |
Pyropia sp. | 1 and 2 | Net photosynthesis, growth rate, respiration | Increased growth and nutrient uptake; growth of thalli enhanced by 30% at pH of 6 and 7; photosynthetic rate increases when pH drops from 7 to 6; photosynthesis and respiration rate decrease at pH of 4 and 5; thalli death in prolonged low pH conditions. | [4,74,75,76,79,80,110,111,112,113] | |
Eucheuma sp. | 2 and 3 | Photosynthetic rate | Increase in photosynthetic rate when oceanic pH decreases below 8. | [1,18,94] | |
Caulerpa lentillifera | 3 | Carbon absorption rate | Increase in growth through carbon uptake. | [111,114,115] | |
Hypnea spp. | 3 | Growth rate, maximum quantum yield, chlorophyll a content, antioxidant activity | Decrease in growth rate, maximum quantum yield (fv/fm), and chlorophyll a content; increase in antioxidant activity. | [116,117,118,119,120,121,122] | |
Gelidium spp. | 3 | Growth rate, carbohydrate content | Decrease in growth rate; no significant changes in carbohydrate content; reduction in species richness. | [87,123,124,125,126,127] |
Keyword | Definition in Context | References |
---|---|---|
Policy | The related aims to: mitigate CO2 emission to the atmosphere; | [8,128] |
inform decision-making at local, regional, and national levels in order to integrate into global goals; | [7,14,16,56,129] | |
manage areas that are used for seaweed aquaculture. | ||
Framework | The provisions for: policy and integrated planning that requires more experimental and innovative practices at different authoritative levels (local, state, or federal jurisdictions); | [16,56] |
legal frameworks, which refer to guidelines in the setting up and management of seaweed aquaculture; | [8,13,54] | |
management of fisheries resources and aquaculture governance; conservation and the sustainable use of aquatic living resources. | [14,56,130] | |
Regulation | The provisions to: adequately manage the resources of coastal aquaculture, including seaweed cultivation; | [13,128] |
coupled with an appropriate monitoring and law enforcement system while banning unsustainable practices. | [14,16] | |
Monitoring | Efforts to: measure the local environmental and spatial variability in carbonate chemistry within coastal areas or aquaculture farms; | [50,53,54,131] |
track long-term environmental changes through a combination of efforts by various stakeholders globally; | [17,34,128] | |
incorporating a Fisheries and Resources Monitoring System (FIRMS) in seaweed aquaculture; improve transparency in fisheries and aquaculture stock and production records. | [14,56,132] | |
Evaluation | The appraisal of: the application and performance of aquaculture systems that involve several authorities to ensure ecosystem sustainability; | [4,14,54,131,133] |
the interaction with existing resources that are characteristic of coastal areas and suitable for different types of farming. | [13,17,128] | |
Assessment | The inclusion of: managerial tools for quantifying the risks and benefits associated with seaweed aquaculture; | [8,54] |
diagnosing the current status of stocks in fisheries and aquaculture; | [14,34,133] | |
Environmental Impact Assessment; | [25,128] | |
Site selection | Related efforts to: choose optimal sites for aquaculture activities within each environment; | [4,53,133,134,135] |
match seaweed species with specific cultivation techniques; | [13] | |
include licensing approvals from authorities. | [50] | |
IMTA | A method of aquaculture that: consist of species components from different trophic levels and serving different ecosystem functions; | [13,53,130,133] |
increases the biomass production and sustainability of aquaculture; | [17,54,130,132] | |
mitigates environmental problems caused by specific forms of fed aquaculture | [131] | |
Site buffering | Related efforts to: buffer seawater pH and carbonate chemistry; | [53] |
quantify the ability of seaweeds to buffer the impacts of climate change including OA. | [3,8,135] | |
Selective breeding and genetic improvement | A method of aquaculture that is used: to cultivate seaweeds for specific traits to enhance production and resilience under conditions of projected climate change; | [4,13,14,53,54] |
to obtain a culture stock that has increased tolerance against the impacts of OA through strain development. | [34,136] |
3. Ocean Acidification and Seaweeds’ Photosynthetic Rates and Nutrient Uptakes
4. Potential Mitigation Strategies for Ocean Acidification Impacts on Seaweed Aquaculture
5. Multi-Disciplinary Approach to Mitigate the Ocean Acidification Impacts on Seaweed Aquaculture
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hurd, C.L.; Harrison, P.J.; Bischof, K.; Lobban, C.S. Seaweed Ecology and Physiology, 2nd ed.; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Najiha Badar, S.; Mohammad, M.; Emdadi, Z.; Yaakob, Z. Algae and their growth requirements for bioenergy: A review. Biofuels 2021, 12, 307–325. [Google Scholar] [CrossRef]
- Duarte, C.M.; Wu, J.; Xiao, X.; Bruhn, A.; Krause-Jensen, D. Can seaweed farming play a role in climate change mitigation and adaptation? Front. Mar. Sci. 2017, 4, 100. [Google Scholar] [CrossRef] [Green Version]
- Chung, I.K.; Sondak, C.F.A.; Beardall, J. The future of seaweed aquaculture in a rapidly changing world. Eur. J. Phycol. 2017, 52, 495–505. [Google Scholar] [CrossRef]
- van den Burg, S.W.K.; van Duijn, A.P.; Bartelings, H.; van Krimpen, M.M.; Poelman, M. The economic feasibility of seaweed production in the North Sea. Aquac. Econ. Manag. 2016, 20, 235–252. [Google Scholar] [CrossRef] [Green Version]
- Jagtap, A.S.; Meena, S.N. Chapter 23—Seaweed Farming: A Perspective of Sustainable Agriculture and Socio-Economic Development. In Natural Resources Conservation and Advances for Sustainability; Jhariya, M.K., Meena, R.S., Banerjee, A., Meena, S.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 493–501. [Google Scholar] [CrossRef]
- Sondak, C.F.A.; Ang, P.O.; Beardall, J.; Bellgrove, A.; Boo, S.M.; Gerung, G.S.; Hepburn, C.D.; Hong, D.D.; Hu, Z.; Kawai, H.; et al. Carbon dioxide mitigation potential of seaweed aquaculture beds (SABs). J. Appl. Phycol. 2017, 29, 2363–2373. [Google Scholar] [CrossRef]
- Froehlich, H.E.; Afflerbach, J.C.; Frazier, M.; Halpern, B.S. Blue growth potential to mitigate climate change through seaweed offsetting. Curr. Biol. 2019, 29, 3087–3093. [Google Scholar] [CrossRef]
- Krause-Jensen, D.; Duarte, C.M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 2016, 9, 737–742. [Google Scholar] [CrossRef]
- Chopin, T.; Sawhney, M. Seaweeds and Their Mariculture. In Encyclopedia of Ocean Sciences, 2nd ed.; Steele, J.H., Thorpe, S.S., Turekian, K.K., Eds.; Elsevier: Oxford, UK, 2009; pp. 4477–4487. [Google Scholar] [CrossRef]
- Chopin, T.; Tacon, A. Importance of seaweeds and extractive species in global aquaculture production. Rev. Fish. Sci. Aquac. 2021, 29, 139–148. [Google Scholar] [CrossRef]
- Ferdouse, F.; Holdt, S.L.; Smith, R.; Murúa, P.; Yang, Z. The Global Status of Seaweed Production, Trade and Utilization; FAO: Rome, Italy, 2018; pp. 1–114. [Google Scholar]
- Radulovich, R.; Neori, A.; Valderrama, D.; Reddy, C.R.K.; Cronin, H.; Forster, J. Chapter 3—Farming of Seaweeds. In Seaweed Sustainability; Tiwari, B.K., Troy, D.J., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 27–59. [Google Scholar]
- FAO. The State of World Fisheries and Aquaculture. Sustainability in Action; FAO: Rome, Italy, 2020; p. 244. [Google Scholar] [CrossRef]
- FAO. The State of World Fisheries and Aquaculture; Towards Blue Transformation; FAO: Rome, Italy, 2022; p. 54. [Google Scholar] [CrossRef]
- Chopin, T.; Buschmann, A.H.; Halling, C.; Troell, M.; Kautsky, N.; Neori, A.; Kraemer, G.P.; Zertuche-González, J.A.; Yarish, C.; Neefus, C. Integrating seaweeds into marine aquaculture systems: A key toward sustainability. J. Phycol. 2001, 37, 975–986. [Google Scholar] [CrossRef]
- Broch, O.J.; Alver, M.O.; Bekkby, T.; Gundersen, H.; Forbord, S.; Handå, A.; Skjermo, J.; Hancke, K. The kelp cultivation potential in coastal and offshore regions of Norway. Front. Mar. Sci. 2019, 5, 529. [Google Scholar] [CrossRef]
- Bixler, H.J.; Porse, H. A decade of change in the seaweed hydrocolloids industry. J. Appl. Phycol. 2011, 23, 321–335. [Google Scholar] [CrossRef]
- FAO. World Review of Fisheries Aquaculture; FAO Fisheries and Aquaculture Department: Rome, Italy, 2009; pp. 1–84. [Google Scholar]
- Harley, C.D.G.; Anderson, K.M.; Demes, K.W.; Jorve, J.P.; Kordas, R.L.; Coyle, T.A.; Graham, M.H. Effects of climate change on global seaweed communities. J. Phycol. 2012, 48, 1064–1078. [Google Scholar] [CrossRef] [PubMed]
- Dennis, J.M. A Guide to the Seaweed Industry; FAO Fisheries and Aquaculture Technical Paper; FAO: Rome, Italy, 2003; pp. 100–108. [Google Scholar]
- FAO. Social and Economic Dimensions of Carrageenan Seaweed Farming; FAO Fisheries and Aquaculture Technical Paper; Valderrama, D., Cai, J., Hishamunda, N., Ridler, N., Eds.; FAO: Rome, Italy, 2013; pp. 1–204. [Google Scholar]
- Hayashi, L.; Hurtado, A.Q.; Msuya, F.E.; Bleicher-Lhonneur, G.; Critchley, A.T. A Review of Kappaphycus Farming: Prospects and Constraints BT—Seaweeds and Their Role in Globally Changing Environments; Seckbach, J., Einav, R., Israel, A., Eds.; Springer: Dordrecht, The Netherlands, 2010; pp. 251–283. [Google Scholar]
- Neish, I.C. Good Agronomy Practices for Kappaphycus and Eucheuma: Including an Overview of Basic Biology; SEAPlant.net Monograph: Makassar, Indonesia, 2008; pp. 1–72. [Google Scholar]
- De San, M. The Farming of Seaweeds; Smartfish Programme, Indian Ocean Commission: Ebène, Mauritius, 2012; pp. 1–23. [Google Scholar]
- Zainee, N.F.A.; Rozaimi, M. Influence of monsoonal storm disturbance on the diversity of intertidal macroalgae along the eastern coast of Johor (Malaysia). Reg. Stud. Mar. Sci. 2020, 40, 101481. [Google Scholar] [CrossRef]
- Zou, D.; Gao, K. Physiological responses of seaweeds to elevated atmospheric CO2 concentrations. Seaweeds Their Role Glob. Chang. Environ. 2010, 15, 115–126. [Google Scholar] [CrossRef]
- Orr, J.C.; Fabry, V.J.; Aumont, O.; Bopp, L.; Doney, S.C.; Feely, R.A.; Gnanadesikan, A.; Gruber, N.; Ishida, A.; Joos, F. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 2005, 437, 681–686. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, L.C.; Bischof, K. Ocean acidification effects on calcifying macroalgae. Aquat. Biol. 2014, 22, 261–279. [Google Scholar] [CrossRef] [Green Version]
- Wizemann, A.; Meyer, F.; Hofmann, L.; Wild, C.; Westphal, H. Ocean acidification alters the calcareous microstructure of the green macroalga Halimeda opuntia. Coral Reefs 2015, 34, 941–954. [Google Scholar] [CrossRef]
- Jiang, L.Q.; Carter, B.R.; Feely, R.A.; Lauvset, S.K.; Olsen, A. Surface ocean pH and buffer capacity: Past, present and future. Sci. Rep. 2019, 9, 18624. [Google Scholar] [CrossRef] [Green Version]
- Kottmeier, D.M.; Chrachri, A.; Langer, G.; Helliwell, K.E.; Wheeler, G.L.; Brownlee, C. Reduced H+ channel activity disrupts pH homeostasis and calcification in coccolithophores at low ocean pH. Proc. Natl. Acad. Sci. USA 2022, 119, e2118009119. [Google Scholar] [CrossRef]
- Garcia-Soto, C.; Cheng, L.; Caesar, L.; Schmidtko, S.; Jewett, E.B.; Cheripka, A.; Rigor, I.; Caballero, A.; Chiba, S.; Báez, J.C.; et al. An overview of ocean climate change indicators: Sea surface temperature, ocean heat content, ocean pH, dissolved oxygen concentration, arctic sea ice extent, thickness and volume, sea level and strength of the AMOC (Atlantic Meridional Overturning Circula). Front. Mar. Sci. 2021, 8, 642372. [Google Scholar] [CrossRef]
- Callaway, R.; Shinn, A.P.; Grenfell, S.E.; Bron, J.E.; Burnell, G.; Cook, E.J.; Crumlish, M.; Culloty, S.; Davidson, K.; Ellis, R.P.; et al. Review of climate change impacts on marine aquaculture in the UK and Ireland. Aquat. Conserv. Mar. Freshw. Ecosyst. 2012, 22, 389–421. [Google Scholar] [CrossRef]
- Hoegh-Guldberg, O.; Jacob, D.; Taylor, M.; Guillén Bolaños, T.; Bindi, M.; Brown, S.; Camilloni, I.A.; Diedhiou, A.; Djalante, R.; Ebi, K. The human imperative of stabilizing global climate change at 1.5 °C. Science 2019, 365, eaaw6974. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P.; et al. Climate Change 2014: Synthesis Report. In Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Pachauri, R., Meyer, L., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; Van Diemen, R.; et al. (Eds.) Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switzerland, 2019; pp. 551–672. [CrossRef]
- Noor, N.M.; Das, S.K. Effects of elevated carbon dioxide on marine ecosystem and associated fishes. Thalass. Int. J. Mar. Sci. 2019, 35, 421–429. [Google Scholar] [CrossRef]
- Zou, D. Effects of elevated atmospheric CO2 on growth, photosynthesis and nitrogen metabolism in the economic brown seaweed, Hizikia fusiforme (Sargassaceae, Phaeophyta). Aquaculture 2005, 250, 726–735. [Google Scholar] [CrossRef]
- Raven, J.; Caldeira, K.; Elderfield, H.; Hoegh-Guldberg, O.; Liss, P.; Riebesell, U.; Shepherd, J.; Turley, C.; Watson, A. Ocean Acidification Due to Increasing Atmospheric Carbon Dioxide; The Royal Society: Cardiff, UK, 2005; pp. 1–68. ISBN 0-85403-617-2. [Google Scholar]
- Fabry, V.J.; Seibel, B.A.; Feely, R.A.; Orr, J.C. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 2008, 65, 414–432. [Google Scholar] [CrossRef]
- Noor, N.M.; De, M.; Iskandar, A.; Keng, W.L.; Cob, Z.C.; Ghaffar, M.A.; Das, S.K. Effects of elevated carbon dioxide on the growth and welfare of juvenile tiger grouper (Epinephelus Fuscoguttatus) × giant grouper (E. Lanceolatus) hybrid. Aquaculture 2019, 513, 734448. [Google Scholar] [CrossRef]
- Ho, M.; McBroom, J.; Bergstrom, E.; Diaz-Pulido, G. Physiological responses to temperature and ocean acidification in tropical fleshy macroalgae with varying affinities for inorganic carbon. ICES J. Mar. Sci. 2021, 78, 89–100. [Google Scholar] [CrossRef]
- Johnson, M.D.; Price, N.N.; Smith, J.E. Contrasting effects of ocean acidification on tropical fleshy and calcareous algae. PeerJ 2014, 2, e411. [Google Scholar] [CrossRef] [Green Version]
- Gutow, L.; Rahman, M.M.; Bartl, K.; Saborowski, R.; Bartsch, I.; Wiencke, C. Ocean acidification affects growth but not nutritional quality of the seaweed Fucus vesiculosus (phaeophyceae, fucales). J. Exp. Mar. Biol. Ecol. 2014, 453, 84–90. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Gao, K. Future CO2-induced ocean acidification mediates the physiological performance of a green tide alga. Plant Physiol. 2012, 160, 1762–1769. [Google Scholar] [CrossRef] [Green Version]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Syst. Rev. 2021, 10, 89. [Google Scholar] [CrossRef] [PubMed]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Li, Z.-S.; Hasson, F. Resilience, stress, and psychological well-being in nursing students: A systematic review. Nurse Educ. Today 2020, 90, 104440. [Google Scholar] [CrossRef] [PubMed]
- Bregnballe, J. A Guide to Recirculation Aquaculture: An Introduction to the New Environmentally Friendly and Highly Productive Closed Fish Farming Systems; FAO Eurofish International Organisation: Copenhagen, Denmark, 2015; pp. 1–95. [Google Scholar]
- Culture Aquaculture Species Information Program: Laminaria japonica Areschoug 1851. Available online: https://www.fao.org/fishery/en/culturedspecies/Laminaria_japonica/en (accessed on 17 August 2020).
- IPCC. Summary for Policymakers. In AR4 Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 1–18. [Google Scholar]
- Clements, J.; Chopin, T. Ocean acidification and marine aquaculture in North America: Potential impacts and mitigation strategies. Rev. Aquac. 2016, 9, 326–341. [Google Scholar] [CrossRef]
- Stévant, P.; Rebours, C.; Chapman, A. Seaweed aquaculture in Norway: Recent industrial developments and future perspectives. Aquac. Int. 2017, 25, 1373–1390. [Google Scholar] [CrossRef] [Green Version]
- Bartley, D.; Menezes, A.; Metzner, R.; Ansah, Y. The FAO Blue Growth Initiative: Strategy for the Development of Fisheries and Aquaculture in Eastern Africa; FAO Fisheries and Aquaculture Technical Paper; FAO: Rome, Italy, 2018. [Google Scholar] [CrossRef]
- UN Office of Legal Affairs. The Second World Ocean Assessment; United Nations: New York, NY, USA, 2021.
- Gordillo, F.J.L.; Carmona, R.; Viñegla, B.; Wiencke, C.; Jiménez, C. Effects of simultaneous increase in temperature and ocean acidification on biochemical composition and photosynthetic performance of common macroalgae from Kongsfjorden (Svalbard). Polar Biol. 2016, 39, 1993–2007. [Google Scholar] [CrossRef]
- Schiener, P.; Black, K.D.; Stanley, M.S.; Green, D.H. The seasonal variation in the chemical composition of the kelp species Laminaria gigitata, Laminaria hyperborea, Saccharina latissima and Alaria esculenta. J. Appl. Phycol. 2015, 27, 363–373. [Google Scholar] [CrossRef]
- Iñiguez, C.; Carmona, R.; Lorenzo, M.R.; Niell, F.X.; Wiencke, C.; Gordillo, F.J.L. Increased CO2 modifies the carbon balance and the photosynthetic yield of two common arctic brown seaweeds: Desmarestia aculeata and Alaria esculenta. Polar Biol. 2016, 39, 1979–1991. [Google Scholar] [CrossRef]
- Moroney, J.V.; Ynalvez, R.A. Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. Eukaryot. Cell 2007, 6, 1251–1259. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Brennan, G.; Xu, L.; Zhang, X.W.; Fan, X.; Han, W.T.; Mock, T.; McMinn, A.; Hutchins, D.A.; Ye, N. Ocean acidification increases iodine accumulation in kelp-based coastal food webs. Glob. Chang. Biol. 2019, 25, 629–639. [Google Scholar] [CrossRef] [Green Version]
- Kang, J.W.; Chung, I.K. The interactive effects of elevated CO2 and ammonium enrichment on the physiological performances of Saccharina japonica (Laminariales, Phaeophyta). Ocean Sci. J. 2018, 53, 487–497. [Google Scholar] [CrossRef]
- Jiang, Z.; Fang, J.; Mao, Y.; Han, T.; Wang, G. Influence of seaweed aquaculture on marine inorganic carbon dynamics and sea-air CO2 flux. J. World Aquac. Soc. 2013, 44, 133–140. [Google Scholar] [CrossRef]
- Xu, D.; Wang, D.; Li, B.; Fan, X.; Zhang, X.W.; Ye, N.H.; Wang, Y.; Mou, S.; Zhuang, Z. Effects of CO2 and seawater acidification on the early stages of Saccharina japonica development. Environ. Sci. Technol. 2015, 49, 3548–3556. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.; Kim, J.H.; Park, S.K.; Yu, O.H.; Kim, Y.S.; Choi, H.G. Diverse responses of sporophytic photochemical efficiency and gametophytic growth for two edible kelps, Saccharina japonica and Undaria pinnatifida, to ocean acidification and warming. Mar. Pollut. Bull. 2019, 142, 315–320. [Google Scholar] [CrossRef]
- Zhang, X.; Xu, D.; Guan, Z.; Wang, S.; Zhang, Y.; Wang, W.; Zhang, X.; Fan, X.; Li, F.; Ye, N. Elevated CO2 concentrations promote growth and photosynthesis of the brown alga Saccharina japonica. J. Appl. Phycol. 2020, 32, 1949–1959. [Google Scholar] [CrossRef]
- Peteiro, C.; Freire, Ó. Offshore cultivation methods affects blade features of the edible seaweed Saccharina latissima in a Bay of Galicia, Northwest Spain. Russ. J. Mar. Biol. 2011, 37, 319. [Google Scholar] [CrossRef]
- Pedersen, M. Temperature Effects on the Kelp Saccharina latissimi. In Proceedings of the Association for the Science of Limnology and Oceanography (ASLO) Aquatic Sciences Meeting, Grenada, Spain, 22–27 February 2015. [Google Scholar]
- Olischläger, M.; Iñiguez, C.; Koch, K.; Wiencke, C.; Gordillo, F.J.L. Increased pCO2 and temperature reveal ecotypic differences in growth and photosynthetic performance of temperate and arctic populations of Saccharina latissima. Planta 2017, 245, 119–136. [Google Scholar] [CrossRef]
- Olischläger, M.; Iñiguez, C.; Gordillo, F.J.L.; Wiencke, C. Biochemical composition of temperate and arctic populations of Saccharina latissima after exposure to increased pCO2 and temperature reveals ecotypic variation. Planta 2014, 240, 1213–1224. [Google Scholar] [CrossRef] [Green Version]
- Shim, J.H.; Kim, J.B.; Hwang, D.-W.W.; Choi, H.-G.G.; Lee, Y. Variations in carbon and nitrogen stable isotopes and in heavy metal contents of mariculture kelp Undaria pinnatifida in Gijang, Southeastern Korea. Algae 2017, 32, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Hu, H.; Tan, T. Photosynthetic inorganic carbon utilization of gametophytes and sporophytes of Undaria pinnatifida (Phaeophyceae). Phycologia 2006, 45, 642–647. [Google Scholar] [CrossRef]
- Leal, P.P.; Hurd, C.L.; Fernández, P.A.; Roleda, M.Y. Meiospore development of the kelps Macrocystis pyrifera and Undaria pinnatifida under ocean acidification and ocean warming: Independent effects are more important than their interaction. Mar. Biol. 2016, 164, 7. [Google Scholar] [CrossRef]
- Xu, K.; Chen, H.; Wang, W.; Xu, Y.; Ji, D.; Chen, C.; Xie, C. Responses of photosynthesis and CO2 concentrating mechanisms of marine crop Pyropia haitanensis thalli to large pH variations at different time scales. Algal Res. 2017, 28, 200–210. [Google Scholar] [CrossRef]
- Chen, B.; Zou, D.; Ma, J. Interactive effects of elevated CO2 and nitrogen–phosphorus supply on the physiological properties of Pyropia haitanensis (Bangiales, Rhodophyta). J. Appl. Phycol. 2016, 28, 1235–1243. [Google Scholar] [CrossRef]
- Chen, B.; Lin, L.; Ma, Z.; Zhang, T.; Chen, W.; Zou, D. Carbon and nitrogen accumulation and interspecific competition in two algae species, Pyropia haitanensis and Ulva lactuca, under ocean acidification conditions. Aquac. Int. 2019, 27, 721–733. [Google Scholar] [CrossRef]
- Koh, Y.H.; Kim, M.S. DNA barcoding reveals cryptic diversity of economic red algae, Pyropia (Bangiales, Rhodophyta): Description of novel species from Korea. J. Appl. Phycol. 2018, 30, 3425–3434. [Google Scholar] [CrossRef]
- Nelson, W.A. Pyropia plicata Sp. Nov. (Bangiales, Rhodophyta): Naming a common intertidal alga from New Zealand. PhytoKeys 2013, 21, 17–28. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zou, D. Effects of elevated CO2 on the photosynthesis and nitrate reductase activity of Pyropia haitanensis (Bangiales, Rhodophyta) grown at different nutrient levels. Chin. J. Oceanol. Limnol. 2015, 33, 419–429. [Google Scholar] [CrossRef]
- Ma, J.; Xu, T.; Bao, M.; Zhou, H.; Zhang, T.; Li, Z.; Gao, G.; Li, X.; Xu, J. Response of the red algae Pyropia yezoensis grown at different light intensities to co2-induced seawater acidification at different life cycle stages. Algal Res. 2020, 49, 101950. [Google Scholar] [CrossRef]
- Kang, J.W.; Chung, I.K. The effects of eutrophication and acidification on the ecophysiology of Ulva pertusa Kjellman. J. Appl. Phycol. 2017, 29, 2675–2683. [Google Scholar] [CrossRef]
- Young, C.S.; Gobler, C.J. Ocean acidification accelerates the growth of two bloom-forming macroalgae. PLoS ONE 2016, 11, e0155152. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zou, D.; Yang, Y.; Chen, B.; Jiang, H. Temperature responses of pigment contents, chlorophyll fluorescence characteristics, and antioxidant defenses in Gracilariopsis lemaneiformis (Gracilariales, Rhodophyta) under different CO2 levels. J. Appl. Phycol. 2017, 29, 983–991. [Google Scholar] [CrossRef]
- Wei, Z.; Zhang, Y.; Yang, F.; Liang, J.; Long, L. Increased light availability modulates carbon and nitrogen accumulation in the macroalga Gracilariopsis lemaneiformis (Rhodophyta) in response to ocean acidification. Environ. Exp. Bot. 2021, 187, 104492. [Google Scholar] [CrossRef]
- Wang, L.; Jiang, H.; Zou, D.; Ye, C. Effects of increased pH and inorganic carbon on growth and photosynthesis in the macroalga Gracilaria lemaneiformis (Gigartinales, Rhodophyta). Phycologia 2020, 59, 218–226. [Google Scholar] [CrossRef]
- Smith, R.G.; Bidwell, R.G.S. Mechanism of photosynthetic carbon dioxide uptake by the red macroalga, Chondrus crispus. Plant Physiol. 1989, 89, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Phang, S.-M.; Yeong, H.-Y.; Hussin, H.; Lim, P.-E.; You, H.-C.; Juan, J.-C. Techno-economics of seaweed farming along the coasts of Kelantan, East Coast Peninsular Malaysia. Malays. J. Sci. 2017, 36, 85–102. [Google Scholar] [CrossRef]
- Chopin, T.; Sharp, G.; Belyea, E.; Semple, R.; Jones, D. Open-water aquaculture of the red alga Chondrus crispus in Prince Edward Island, Canada. Hydrobiologia 1999, 398–399, 417–425. [Google Scholar] [CrossRef]
- Reidenbach, L.B.; Fernandez, P.A.; Leal, P.P.; Noisette, F.; McGraw, C.M.; Revill, A.T.; Hurd, C.L.; Kübler, J.E. Growth, Ammonium metabolism, and photosynthetic properties of Ulva australis (Chlorophyta) under decreasing pH and ammonium enrichment. PLoS ONE 2017, 12, e0188389. [Google Scholar] [CrossRef] [Green Version]
- Bi, Y.; Zhou, Z. Absorption and transport of inorganic carbon in kelps with emphasis on Saccharina japonica. In Applied Photosynthesis; Najafpour, M.M., Ed.; IntechOpen: Rijeka, Croatia, 2016; Chapter 6. [Google Scholar] [CrossRef] [Green Version]
- Fernández, P.A.; Roleda, M.Y.; Hurd, C.L. Effects of ocean acidification on the photosynthetic performance, carbonic anhydrase activity and growth of the giant kelp Macrocystis pyrifera. Photosynth. Res. 2015, 124, 293–304. [Google Scholar] [CrossRef]
- Roleda, M.Y.; Morris, J.N.; McGraw, C.M.; Hurd, C.L. Ocean acidification and seaweed reproduction: Increased CO2 ameliorates the negative effect of lowered pH on meiospore germination in the giant kelp Macrocystis pyrifera (Laminariales, Phaeophyceae). Glob. Chang. Biol. 2012, 18, 854–864. [Google Scholar] [CrossRef]
- Tee, M.Z.; Yong, Y.S.; Rodrigues, K.F.; Yong, W.T.L. Growth rate analysis and protein identification of Kappaphycus alvarezii (Rhodophyta, Gigartinales) under pH Induced Stress Culture. Aquac. Rep. 2015, 2, 112–116. [Google Scholar] [CrossRef] [Green Version]
- Largo, D.B.; Chung, I.K.; Phang, S.-M.; Gerung, G.S.; Sondak, C.F.A. Impacts of Climate Change on Eucheuma-Kappaphycus Farming BT—Tropical Seaweed Farming Trends, Problems and Opportunities: Focus on Kappaphycus and Eucheuma of Commerce; Hurtado, A.Q., Critchley, A.T., Neish, I.C., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 121–129. [Google Scholar] [CrossRef]
- Kumar, A.; AbdElgawad, H.; Castellano, I.; Lorenti, M.; Delledonne, M.; Beemster, G.T.S.; Asard, H.; Buia, M.C.; Palumbo, A. Physiological and biochemical analyses shed light on the response of Sargassum vulgare to ocean acidification at different time scales. Front. Plant Sci. 2017, 8, 570. [Google Scholar] [CrossRef] [PubMed]
- Israel, A.; Hophy, M. Growth, photosynthetic properties and Rubisco activities and amounts of marine macroalgae grown under current and elevated seawater CO2 concentrations. Glob. Chang. Biol. 2002, 8, 831–840. [Google Scholar] [CrossRef]
- Celis-Plá, P.S.M.; Hall-Spencer, J.M.; Horta, P.A.; Milazzo, M.; Korbee, N.; Cornwall, C.E.; Figueroa, F.L. Macroalgal responses to ocean acidification depend on nutrient and light levels. Front. Mar. Sci. 2015, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Buia, M.C.; Palumbo, A.; Mohany, M.; Wadaan, M.A.M.; Hozzein, W.N.; Beemster, G.T.S.; AbdElgawad, H. Ocean acidification affects biological activities of seaweeds: A case study of Sargassum vulgare from Ischia Volcanic CO2 Vents. Environ. Pollut. 2020, 259, 113765. [Google Scholar] [CrossRef]
- Young, C.S.; Lowell, A.; Peterson, B.; Gobler, C.J. Ocean acidification and food limitation combine to suppress herbivory by the gastropod Lacuna vincta. Mar. Ecol. Prog. Ser. 2019, 627, 83–94. [Google Scholar] [CrossRef] [Green Version]
- Gordillo, F.J.L.; Niell, F.X.; Figueroa, F.L. Non-photosynthetic enhancement of growth by high CO2 level in the nitrophilic seaweed Ulva rigida C. Agardh (Chlorophyta). Planta 2001, 213, 64–70. [Google Scholar] [CrossRef]
- Meichssner, R.; Krost, P.; Schulz, R. Experimental testing of density-and season-dependent growth in vegetative Fucus aquaculture and modelling of growth over one year for different cultivation scenarios. J. Appl. Phycol. 2021, 33, 3939–3950. [Google Scholar] [CrossRef]
- Meichssner, R.; Krost, P.; Schulz, R. Vegetative aquaculture of Fucus in the Baltic Sea—Obtaining low-fertility biomass from attached or unattached populations? J. Appl. Phycol. 2021, 33, 1709–1720. [Google Scholar] [CrossRef]
- Graiff, A.; Dankworth, M.; Wahl, M.; Karsten, U.; Bartsch, I. Seasonal variations of Fucus vesiculosus fertility under ocean acidification and warming in the western Baltic Sea. Bot. Mar. 2017, 60, 239–255. [Google Scholar] [CrossRef] [Green Version]
- Ober, G.T.; Thornber, C.S. Divergent responses in growth and nutritional quality of coastal macroalgae to the combination of increased pCO2 and nutrients. Mar. Environ. Res. 2017, 131, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Yang, Y.L.; Li, W.; Chen, W.Z.; Xu, J.T. Photosynthetic responses to solar UV Radiation of Gracilaria lemaneiformis cultured under different temperatures and CO2 concentrations. Shengtai Xuebao/Acta Ecol. Sin. 2013, 33, 5538–5545. [Google Scholar] [CrossRef]
- Lee, W.-K.; Lim, Y.-Y.; Ho, C.-L. pH affects growth, physiology and agar properties of agarophyte Gracilaria changii (Rhodophyta) under low light intensity from Morib, Malaysia. Reg. Stud. Mar. Sci. 2019, 30, 100738. [Google Scholar] [CrossRef]
- Kang, J.W.; Kambey, C.; Shen, Z.; Yang, Y.; Chung, I.K. The short-term effects of elevated CO2 and ammonium concentrations on physiological responses in Gracilariopsis lemaneiformis (Rhodophyta). Fish. Aquat. Sci. 2017, 20, 18. [Google Scholar] [CrossRef] [Green Version]
- Gao, G.; Qu, L.; Xu, T.; Burgess, J.G.; Li, X.; Xu, J.; Norkko, J. Future CO2-induced ocean acidification enhances resilience of a green tide alga to low-salinity stress. ICES J. Mar. Sci. 2019, 76, 2437–2445. [Google Scholar] [CrossRef]
- Thien, V.Y.; Rodrigues, K.F.; Voo, C.L.Y.; Wong, C.M.V.L.; Yong, W.T.L. Comparative transcriptome profiling of Kappaphycus alvarezii (Rhodophyta, Solieriaceae) in response to light of different wavelengths and carbon dioxide enrichment. Plants 2021, 10, 1236. [Google Scholar] [CrossRef]
- Chen, B.; Xia, J.; Zou, D.; Zhang, X. Responses to ocean acidification and diurnal temperature variation in a commercially farmed seaweed, Pyropia haitanensis (Rhodophyta). Eur. J. Phycol. 2019, 54, 184–192. [Google Scholar] [CrossRef]
- Mashoreng, S.; La Nafie, Y.A.; Isyrini, R. Cultivated seaweed carbon sequestration capacity. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Moscow, Russia, 2019. [Google Scholar] [CrossRef]
- Zhang, B.; Liu, X.; Huan, L.; Shao, Z.; Zheng, Z.; Wang, G. Carbonic anhydrase isoforms of Neopyropia yezoensis: Intracellular localization and expression profiles in response to inorganic carbon concentration and life stage. J. Phycol. 2022, 58, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Xie, X.; Liu, X.; He, L.; Sun, Y.; Wang, G. The carbonate concentration mechanism of Pyropia yezoensis (Rhodophyta): Evidence from transcriptomics and biochemical data. BMC Plant Biol. 2020, 20, 424. [Google Scholar] [CrossRef]
- Kevekordes, K.; Holland, D.; Häubner, N.; Jenkins, S.; Koss, R.; Roberts, S.; Raven, J.A.; Scrimgeour, C.M.; Shelly, K.; Stojkovic, S.; et al. Inorganic carbon acquisition by eight species of Caulerpa (Caulerpaceae, Chlorophyta). Phycologia 2006, 45, 442–449. [Google Scholar] [CrossRef]
- Zubia, M.; Draisma, S.G.A.; Morrissey, K.L.; Varela-Álvarez, E.; De Clerck, O. Concise review of the genus Caulerpa J.V. Lamouroux. J. Appl. Phycol. 2020, 32, 23–39. [Google Scholar] [CrossRef]
- Ganesan, M.; Thiruppathi, S.; Jha, B. Mariculture of Hypnea musciformis (Wulfen) Lamouroux in South East Coast of India. Aquaculture 2006, 256, 201–211. [Google Scholar] [CrossRef]
- Pereira, S.A.; Kimpara, J.M.; Valenti, W.C. A bioeconomic analysis of the potential of seaweed Hypnea pseudomusciformis farming to different targeted markets. Aquac. Econ. Manag. 2020, 24, 507–525. [Google Scholar] [CrossRef]
- Nauer, F.; Borburema, H.D.S.; Yokoya, N.S.; Fujii, M.T. Effects of ocean acidification on growth, pigment contents and antioxidant potential of the subtropical Atlantic Red Alga Hypnea pseudomusciformis Nauer, Cassano & M.C. Oliveira (Gigartinales) in laboratory. Braz. J. Bot. 2021, 44, 69–77. [Google Scholar] [CrossRef]
- Nauer, F.; Yokoya, N.S.; Fujii, M.T. Short-term effects of temperature on morphology and physiology of turf-forming Hypnea species (Rhodophyta) from Southeastern Brazil. Appl. Phycol. 2021, 3, 247–259. [Google Scholar] [CrossRef]
- Pereira, S.A.; Kimpara, J.M.; Valenti, W.C. Sustainability of the seaweed Hypnea pseudomusciformis farming in the tropical southwestern Atlantic. Ecol. Indic. 2021, 121, 107101. [Google Scholar] [CrossRef]
- Suárez-Álvarez, S.; Gómez-Pinchetti, J.L.; García-Reina, G. Effects of increased CO2 levels on growth, photosynthesis, ammonium uptake and cell composition in the macroalga Hypnea spinella (Gigartinales, Rhodophyta). J. Appl. Phycol. 2012, 24, 815–823. [Google Scholar] [CrossRef] [Green Version]
- Velázquez-Ochoa, R.; Ochoa-Izaguirre, M.J.; Soto-Jiménez, M.F. An analysis of the variability in δ13C in macroalgae from the Gulf of California: Indicative of carbon concentration mechanisms and isotope discrimination during carbon assimilation. Biogeosciences 2022, 19, 1–27. [Google Scholar] [CrossRef]
- Friedlander, M. Advances in cultivation of Gelidiales. J. Appl. Phycol. 2007, 20, 1–6. [Google Scholar] [CrossRef]
- Mercado, J.M.; Xavier Niell, F.; Candelaria Gil-Rodríguez, M. Photosynthesis might be limited by light, not inorganic carbon availability, in three intertidal Gelidiales species. New Phytol. 2001, 149, 431–439. [Google Scholar] [CrossRef]
- Kawaroe, M.; Sunuddin, A.; Augustine, D.; Lestari, D.F. The effect of CO2 injection on macroalgae Gelidium latifolium biomass growth rate and carbohydrate content. Indones. J. Mar. Sci. Kelaut. 2016, 21, 85–92. [Google Scholar] [CrossRef]
- Melo, R.A.; Harger, B.W.W.; Neushul, M. Gelidium Cultivation in the sea. In Proceedings of the International Workshop on Gelidium, Santander, Spain, 3–8 September 1991; Juanes, J.A., Santelices, B., McLachlan, J.L., Eds.; Springer: Dordrecht, The Netherlands, 1991. [Google Scholar]
- Porzio, L.; Buia, M.C.; Hall-Spencer, J.M. Effects of ocean acidification on macroalgal communities. J. Exp. Mar. Bio. Ecol. 2011, 400, 278–287. [Google Scholar] [CrossRef] [Green Version]
- Buck, B.H.; Krause, G.; Rosenthal, H. Extensive open ocean aquaculture development within wind farms in Germany: The prospect of offshore co-management and legal constraints. Ocean Coast. Manag. 2004, 47, 95–122. [Google Scholar] [CrossRef]
- Anyanwu, C.N.; Amadi-Eke, A.S.; Nwaka, D.E.; Ezeafulukwe, C.F.; Adaka, G.S. Climate change, effects and mitigation strategies on aquaculture: A review. Agric. For. Fish. 2015, 4, 70–72. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, N.; Thompson, S.; Glaser, M. Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environ. Manag. 2019, 63, 159–172. [Google Scholar] [CrossRef]
- Abreu, M.H.; Pereira, R.; Yarish, C.; Buschmann, A.H.; Sousa-Pinto, I. IMTA with Gracilaria vermiculophylla: Productivity and nutrient removal performance of the seaweed in a land-based pilot scale system. Aquaculture 2011, 312, 77–87. [Google Scholar] [CrossRef]
- Troell, M.; Joyce, A.; Chopin, T.; Neori, A.; Buschmann, A.H.; Fang, J.-G. Ecological engineering in aquaculture—Potential for Integrated Multi-Trophic Aquaculture (IMTA) in marine offshore systems. Aquaculture 2009, 297, 1–9. [Google Scholar] [CrossRef]
- Buchholz, C.M.; Krause, G.; Buck, B.H. Seaweed and man. In Seaweed Biology; Ecological Studies; Springer: Berlin/Heidelberg, Germany, 2012; pp. 471–493. [Google Scholar] [CrossRef] [Green Version]
- Hafting, J.T.; Craigie, J.S.; Stengel, D.B.; Loureiro, R.R.; Buschmann, A.H.; Yarish, C.; Edwards, M.D.; Critchley, A.T. Prospects and challenges for industrial production of seaweed bioactives. J. Phycol. 2015, 51, 821–837. [Google Scholar] [CrossRef]
- Xiao, X.; Agustí, S.; Yu, Y.; Huang, Y.; Chen, W.; Hu, J.; Li, C.; Li, K.; Wei, F.; Lu, Y.; et al. Seaweed Farms Provide Refugia from Ocean Acidification. Sci. Total Environ. 2021, 776, 145192. [Google Scholar] [CrossRef]
- Kim, J.K.; Yarish, C.; Hwang, E.K.; Park, M.; Kim, Y. Seaweed aquaculture: Cultivation technologies, challenges and its ecosystem services. ALGAE 2017, 32, 1–13. [Google Scholar] [CrossRef]
- van der Loos, L.M.; Schmid, M.; Leal, P.P.; McGraw, C.M.; Britton, D.; Revill, A.T.; Virtue, P.; Nichols, P.D.; Hurd, C.L. Responses of macroalgae to CO2 enrichment cannot be inferred solely from their inorganic carbon uptake strategy. Ecol. Evol. 2019, 9, 125–140. [Google Scholar] [CrossRef] [Green Version]
- Cornwall, C.; Comeau, S.; McCulloch, M. Coralline algae elevate pH at the site of calcification under ocean acidification. Glob. Chang. Biol. 2017, 23, 4245–4256. [Google Scholar] [CrossRef] [PubMed]
- Zweng, R.C.; Koch, M.S.; Bowes, G. The role of irradiance and C-Use strategies in tropical macroalgae photosynthetic response to ocean acidification. Sci. Rep. 2018, 8, 9479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornwall, C.E.; Revill, A.T.; Hall-Spencer, J.M.; Milazzo, M.; Raven, J.A.; Hurd, C.L. Inorganic carbon physiology underpins macroalgal responses to elevated CO2. Sci. Rep. 2017, 7, 46297. [Google Scholar] [CrossRef] [Green Version]
- Giordano, M.; Beardall, J.; Raven, J.A. CO2 Concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 2005, 56, 99–131. [Google Scholar] [CrossRef] [Green Version]
- Koch, M.; Bowes, G.; Ross, C.X. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Chang. Biol. 2013, 19, 103–132. [Google Scholar] [CrossRef]
- Gao, K.; Aruga, Y.; Asada, K.; Kiyohara, M. Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. J. Appl. Phycol. 1993, 5, 563–571. [Google Scholar] [CrossRef]
- Gao, K.; Aruga, Y.; Asada, K.; Ishihara, T.; Akano, T.; Kiyohara, M. Enhanced growth of the red alga Porphyra yezoensis Ueda in high CO2 concentrations. J. Appl. Phycol. 1991, 3, 355–362. [Google Scholar] [CrossRef]
- Krause-Jensen, D.; Lavery, P.; Serrano, O.; Marba, N.; Masque, P.; Duarte, C.M. Sequestration of macroalgal carbon: The elephant in the blue carbon room. Biol. Lett. 2018, 14, 20180236. [Google Scholar] [CrossRef] [Green Version]
- García-Sánchez, M.J.; Fernández, J.A.; Niell, X. Effect of inorganic carbon supply on the photosynthetic physiology of Gracilaria tenuistipitata. Planta 1994, 194, 55–61. [Google Scholar] [CrossRef]
- Israel, A.; Katz, S.; Dubinsky, Z.; Merrill, J.E.; Friedlander, M. Photosynthetic inorganic carbon utilization and growth of Porphyra linearis (Rhodophyta). J. Appl. Phycol. 1999, 11, 447. [Google Scholar] [CrossRef]
- Mercado, J.M.; Javier, F.; Gordillo, L.; Xavier Niell, F.; Figueroa, F.L. Effects of different levels of CO2 on photosynthesis and cell components of the red alga Porphyra leucosticta. J. Appl. Phycol. 1999, 11, 455–461. [Google Scholar] [CrossRef]
- Gnanavel, V.; Roopan, S.M.; Rajeshkumar, S. Aquaculture: An overview of chemical ecology of seaweeds (food species) in natural products. Aquaculture 2019, 507, 1–6. [Google Scholar] [CrossRef]
- Nalamothu, N.; Potluri, A.; Muppalla, M.B. Review on marine alginates and its applications. J. Pharmacol. Res. 2014, 4, 4006–4015. [Google Scholar]
- Razak, A.A.R.; Cob, Z.; Jamari, Z.; Majid, A.M.; Toda, T.; Ross, O. Effect of seaweeds as biofilters for mass culture of rotifer Brachionus plicatilis. Sains Malays. 2015, 44, 891–898. [Google Scholar] [CrossRef]
- Fernández, P.A.; Roleda, M.Y.; Leal, P.P.; Hurd, C.L. Seawater pH, and not inorganic nitrogen source, affects pH at the blade surface of Macrocystis pyrifera: Implications for responses of the giant kelp to future oceanic conditions. Physiol. Plant. 2017, 159, 107–119. [Google Scholar] [CrossRef]
- Gao, K.; Beardall, J.; Häder, D.-P.; Hall-Spencer, J.M.; Gao, G.; Hutchins, D.A. Effects of ocean acidification on marine photosynthetic organisms under the concurrent influences of warming, UV radiation, and deoxygenation. Front. Mar. Sci. 2019, 6, 322. [Google Scholar] [CrossRef]
- Cao, L.; Caldeira, K.; Jain, A.K. Effects of carbon dioxide and climate change on ocean acidification and carbonate mineral saturation. Geophys. Res. Lett. 2007, 34, 1–5. [Google Scholar] [CrossRef]
- Straub, S.C.; Wernberg, T.; Thomsen, M.S.; Moore, P.J.; Burrows, M.T.; Harvey, B.P.; Smale, D.A. Resistance, extinction, and everything in between—The diverse responses of seaweeds to marine heatwaves. Front. Mar. Sci. 2019, 6, 763. [Google Scholar] [CrossRef]
- Al-Janabi, B.; Kruse, I.; Graiff, A.; Winde, V.; Lenz, M.; Wahl, M. Buffering and amplifying interactions among OAW (Ocean Acidification & Warming) and nutrient enrichment on early life-stage Fucus vesiculosus L. (Phaeophyceae) and their carry over effects to hypoxia impact. PLoS ONE 2016, 11, e0152948. [Google Scholar] [CrossRef] [Green Version]
- Díez, I.; Muguerza, N.; Santolaria, A.; Ganzedo, U.; Gorostiaga, J.M. Seaweed assemblage changes in the Eastern Cantabrian Sea and their potential relationship to climate change. Estuar. Coast. Shelf Sci. 2012, 99, 108–120. [Google Scholar] [CrossRef]
- Wahl, M.; Werner, F.J.; Buchholz, B.; Raddatz, S.; Graiff, A.; Matthiessen, B.; Karsten, U.; Hiebenthal, C.; Hamer, J.; Ito, M.; et al. Season affects strength and direction of the interactive impacts of ocean warming and biotic stress in a coastal seaweed ecosystem. Limnol. Oceanogr. 2020, 65, 807–827. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, A.; Abdullah, S.R.S.; Hasan, H.A.; Othman, A.R.; Ismail, N. Aquaculture industry: Supply and demand, best practices, effluent and its current issues and treatment technology. J. Environ. Manag. 2021, 287, 112271. [Google Scholar] [CrossRef] [PubMed]
- Valderrama, D.; Cai, J.; Hishamunda, N.; Ridler, N.; Neish, I.C.; Hurtado, A.Q.; Msuya, F.E.; Krishnan, M.; Narayanakumar, R.; Kronen, M.; et al. The economics of Kappaphycus seaweed cultivation in developing countries: A comparative analysis of farming systems. Aquac. Econ. Manag. 2015, 19, 251–277. [Google Scholar] [CrossRef] [Green Version]
- Radzi, S.N.; Osman, K.; Mohd Said, M.N. Progressing towards global citizenship and a sustainable nation: Pillars of climate change education and actions. Sustainability 2022, 14, 5163. [Google Scholar] [CrossRef]
- Geroe, S. Addressing climate change through a low-cost, high-impact carbon tax. J. Environ. Dev. 2019, 28, 3–27. [Google Scholar] [CrossRef]
- Hänsel, M.C.; van den Bergh, J.C.J.M. Taxing interacting externalities of ocean acidification, global warming, and eutrophication. Nat. Resour. Model. 2021, 34, e12317. [Google Scholar] [CrossRef]
- Li, W.; Jia, Z. Carbon tax, emission trading, or the mixed policy: Which is the most effective strategy for climate change mitigation in China? Mitig. Adapt. Strateg. Glob. Chang. 2017, 22, 973–992. [Google Scholar] [CrossRef]
- Craigie, J.S.; Shacklock, P.F. Culture of Irish Moss. In Cold-Water Aquaculture in Atlantic Canada, 2nd ed.; Canadian Institute for Research on Regional Development: Moncton, NB, Canada, 1995; pp. 241–270. [Google Scholar]
- Chopin, T.; Cooper, J.A.; Reid, G.; Cross, S.; Moore, C. Open-water integrated multi-trophic aquaculture: Environmental biomitigation and economic diversification of fed aquaculture by extractive aquaculture. Rev. Aquac. 2012, 4, 209–220. [Google Scholar] [CrossRef]
- Kang, Y.H.; Shin, J.A.; Kim, M.S.; Chung, I.K. A preliminary study of the bioremediation potential of Codium fragile applied to seaweed Integrated Multi-Trophic Aquaculture (IMTA) during the summer. J. Appl. Phycol. 2008, 20, 183–190. [Google Scholar] [CrossRef]
- Global Ocean Acidification Observing Network (GOA-ON). Available online: http://www.goa-on.org/home.php (accessed on 12 October 2022).
- IOC WESTPAC. Southeast Asian Global Ocean Observing System (SEAGOOS). Available online: https://goosocean.org/ (accessed on 12 October 2022).
- Hardman-Mountford, N.J.; Moore, G.; Bakker, D.C.E.; Watson, A.J.; Schuster, U.; Barciela, R.; Hines, A.; Moncoiffé, G.; Brown, J.; Dye, S. An operational monitoring system to provide indicators of CO2-related variables in the ocean. ICES J. Mar. Sci. 2008, 65, 1498–1503. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Tsai, H.-L.; Lyu, W.-H. An integrated wireless multi-sensor system for monitoring the water quality of aquaculture. MDPI Sens. 2021, 21, 8179. [Google Scholar] [CrossRef] [PubMed]
- Kübler, J.E.; Dudgeon, S.R.; Bush, D. Climate change challenges and opportunities for seaweed aquaculture in California, the United States. J. World Aquac. Soc. 2021, 52, 1069–1080. [Google Scholar] [CrossRef]
- Yan, X.-H.; Lv, F.; Liu, C.-J.; Zheng, Y.-F. Selection and characterization of a high-temperature tolerant strain of Porphyra haitanensis (Bangiales, Rhodophyta). J. Appl. Phycol. 2010, 22, 511–516. [Google Scholar] [CrossRef]
- Andersen, L.B.; Grefsrud, E.S.; Svåsand, T.; Sandlund, N. Risk understanding and risk acknowledgement: A new approach to environmental risk assessment in marine aquaculture. ICES J. Mar. Sci. 2022, 79, 987–996. [Google Scholar] [CrossRef]
- Holsman, K.; Samhouri, J.; Cook, G.; Hazen, E.; Olsen, E.; Dillard, M.; Kasperski, S.; Gaichas, S.; Kelble, C.R.; Fogarty, M.; et al. An ecosystem-based approach to marine risk assessment. Ecosyst. Health Sustain. 2017, 3, e01256. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hengjie, T.; Das, S.K.; Zainee, N.F.A.; Yana, R.; Rozaimi, M. Ocean Acidification and Aquacultured Seaweeds: Progress and Knowledge Gaps. J. Mar. Sci. Eng. 2023, 11, 78. https://doi.org/10.3390/jmse11010078
Hengjie T, Das SK, Zainee NFA, Yana R, Rozaimi M. Ocean Acidification and Aquacultured Seaweeds: Progress and Knowledge Gaps. Journal of Marine Science and Engineering. 2023; 11(1):78. https://doi.org/10.3390/jmse11010078
Chicago/Turabian StyleHengjie, Tan, Simon Kumar Das, Nur Farah Ain Zainee, Raja Yana, and Mohammad Rozaimi. 2023. "Ocean Acidification and Aquacultured Seaweeds: Progress and Knowledge Gaps" Journal of Marine Science and Engineering 11, no. 1: 78. https://doi.org/10.3390/jmse11010078
APA StyleHengjie, T., Das, S. K., Zainee, N. F. A., Yana, R., & Rozaimi, M. (2023). Ocean Acidification and Aquacultured Seaweeds: Progress and Knowledge Gaps. Journal of Marine Science and Engineering, 11(1), 78. https://doi.org/10.3390/jmse11010078